Modeling of Self-Assembly of Microinductors Produced Due to Residual Mechanical Stress

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The finite element method was used to simulate four designs of three-dimensional microinductors, the production of which is carried out by self-assembly using residual mechanical stress. During the simulation the deformation of blanks made of a 300 nm thick Cr film was calculated in the specified areas of which a gradient of mechanical stress was formed. The finite element method was also used to determine the inductance of the obtained microinductors.

About the authors

A. S. Babushkin

NRC “Kurchatov institute” – Valiev IPT, Yaroslavl Branch

Author for correspondence.
Email: artem.yf-ftian@mail.ru
Yaroslavl, Russia

R. V. Selyukov

NRC “Kurchatov institute” – Valiev IPT, Yaroslavl Branch

Email: rvselyukov@mail.ru
Yaroslavl, Russia

References

  1. Varadan V.K., Vinoy K.J., Jose K.A. RF MEMS and their applications. – John Wiley & Sons, 2003. ISBN: 0-470-84308-X
  2. Hikmat O.F., Ali M.S.M. RF MEMS inductors and their applications — A review // Journal of Microelectromechanical systems. 2016. V. 26. P. 17—44. https://doi.org/10.1109/JMEMS.2016.2627039
  3. Shetty C. A detailed study of Qdc of 3D micro air-core inductors for integrated power supplies: Power supply in package (PSiP) and power supply on chip (PSoC) // Power Electronic Devices and Components. 2022. V. 2. P. 100006. https://doi.org/10.1016/j.pedc.2022.100006
  4. Lou J., Ren H, Chao X., Chen K., Bai H., Wang Z. Recent progress in the preparation technologies for micro metal coils // Micromachines. 2022. V. 13. № 6. P. 872. https://doi.org/10.3390/mi13060872
  5. Fang D.M., Wang X.N., Zhou Y., Zhao X.L. Fabrication and performance of a micromachined 3-D solenoid inductor // Microelectronics journal. 2006. V. 37. № 9. P. 948–951. https://doi.org/10.1016/j.mejo.2006.01.009
  6. Fang D.M., Zhou Y., Wang X.N., Zhao X.L. Surface micromachined high-performance RF MEMS inductors // Microsystem technologies. 2007. V. 13. P. 79–83. https://doi.org/10.1007/s00542-006-0262-4
  7. Xu T., Sun J., Wu H., Li H., Li H., Tao Z. 3D MEMS in-chip solenoid inductor with high inductance density for power MEMS device // IEEE Electron Device Letters. 2019. V. 40. №. 11. P. 1816–1819. https://doi.org/10.1109/LED.2019.2941003
  8. Le H.T., Haque R.I., Ouyang Z., Lee S.W., Fried S.I., Zhao D., Qiu M., Han A. MEMS inductor fabrication and emerging applications in power electronics and neurotechnologies // Microsyst Nanoeng. V. 7. P. 59. 2021. https://doi.org/10.1038/s41378-021-00275-w
  9. Woytasik M., Grandchamp J.P., Dufour-Gergam E., Gilles J.P., Megherbi S., Martincic E. Two-and three-dimensional microcoil fabrication process for three-axis magnetic sensors on flexible substrates // Sensors and Actuators A: Physical. 2006. Т. 132. № 1. С. 2–7. https://doi.org/10.1016/j.sna.2006.06.062
  10. Chua C.L. Fork D.K., Schuylenbergh K. Van, Lu J.P. Out-of-plane high-Q inductors on low-resistance silicon // Journal of Microelectromechanical Systems. 2003. V. 12. № 6. P. 989–995. https://doi.org/10.1109/JMEMS.2003.820274
  11. Weon D.H., Jeon J.H., Mohammadi S. High-Q micromachined three-dimensional integrated inductors for high-frequency applications // Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 2007. V. 25. № 1. P. 264–270. https://doi.org/10.1116/1.2433984
  12. Uchiyama S., Yang Z.Q., Toda A., Hayase M., Takagi H., Itoh T., Maeda R., Zhang Y. Novel MEMS-based fabrication technology of micro solenoid-type inductor // Journal of Micromechanics and Microengineering. 2013. V. 23. № 11. P. 114009. https://doi.org/10.1088/0960-1317/23/11/114009
  13. Yang C., Wu S.Y., Glick C., Choi Y.S., Hsu W., Lin L. 3D printed RF passive components by liquid metal filling // 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2015. P. 261–264. https://doi.org/10.1109/MEMSYS.2015.7050938
  14. Dechev N., Mills J.K., Cleghorn W.L. Mechanical fastener designs for use in the microassembly of 3d microstructures // ASME International Mechanical Engineering Congress and Exposition. – 2004. – V. 47144. – P. 447–456. https://doi.org/10.1115/IMECE2004-62212
  15. Bo R., Xu S., Yang Y., Zhang Y. Mechanically-guided 3D assembly for architected flexible electronics // Chemical Reviews. 2023. V. 123. № 18. P. 11137–11189. https://doi.org/10.1021/acs.chemrev.3c00335
  16. Zhang Z., Tian Z., Mei Y., Di Z. Shaping and structuring 2D materials via kirigami and origami // Materials Science and Engineering: R: Reports. 2021. V. 145. P. 100621. https://doi.org/10.1016/j.mser.2021.100621
  17. Karnaushenko D., Kang T., Bandari V.K., Zhu F., Schmidt O.G. 3D self-assembled microelectronic devices: concepts, materials, applications // Advanced Materials. 2020. V. 32. P. 1902994. https://doi.org/10.1002/adma.201902994
  18. Liu Z., Du H., Li Z.Y., Fang N.X., Li J. Invited Article: Nano-kirigami metasurfaces by focused-ion-beam induced close-loop transformation // Apl Photonics. 2018. V. 3. № 10. https://doi.org/10.1063/1.5043065
  19. Mao Y., Zheng Y., Li C., Guo L., Pan Y., Zhu R., Xu J., Zhang W., Wu W. Programmable bidirectional folding of metallic thin films for 3D chiral optical antennas // Advanced materials. 2017. V. 29. №. 19. P. 1606482. https://doi.org/10.1002/adma.201606482
  20. Babushkin A.S., Uvarov I.V., Amirov I.I. Effect of low-energy ion-plasma treatment on residual stresses in thin chromium films // Technical Physics. – 2018. V. 63. P. 1800–1807. https://doi.org/10.1134/S1063784218120228
  21. Babushkin A., Selyukov R., Amirov I. Effect of Ar ion-plasma treatment on residual stress in thin Cr films // Proc. of SPIE, 2019. V. 11022. P. 1102223–1. https://doi.org/10.1117/12.2521617
  22. Zienkiewicz O.C., Morgan K. Finite elements and approximation. – Courier Corporation, 2006. ISBN: 0-486-45301-4

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences