Determination of bacterial sensitivity to a bacteriophage by using a compact acoustic analyzer
- Autores: Guliy O.I.1, Zaitsev B.D.2, Karavaeva O.A.1, Borodina I.A.2
-
Afiliações:
- Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences
- Edição: Volume 61, Nº 2 (2025)
- Páginas: 207-216
- Seção: Articles
- URL: https://rjmseer.com/0555-1099/article/view/687484
- DOI: https://doi.org/10.31857/S0555109925020103
- EDN: https://elibrary.ru/EPBUYQ
- ID: 687484
Citar
Resumo
The work demonstrates for the first time the potential of a compact acoustic sensor system for assessing the impact of bacteriophages on microbial cells and assessing their bacteriophage sensitivity. It was found that using the developed system one can evaluate the activity of bacteriophages against microbial cells within 5 min without taking into account the time of cultivating microbial cells for analysis. The results obtained are promising for the further development of the acoustic sensory system in the phage therapy.
Palavras-chave
Texto integral

Sobre autores
O. Guliy
Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)
Autor responsável pela correspondência
Email: guliy_olga@mail.ru
Institute of Biochemistry and Physiology of Plants and Microorganisms
Rússia, Saratov, 410049B. Zaitsev
Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences
Email: guliy_olga@mail.ru
Saratov Branch
Rússia, Saratov, 410019O. Karavaeva
Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)
Email: guliy_olga@mail.ru
Institute of Biochemistry and Physiology of Plants and Microorganisms
Rússia, Saratov, 410049I. Borodina
Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences
Email: guliy_olga@mail.ru
Saratov Branch
Rússia, Saratov, 410019Bibliografia
- Sulakvelidze A., Alavidze Z., Morris J.G. Jr. // Antimicrob. Agents Chemother. 2001. V. 45. № 3. P. 649–659. https://doi.org/10.1128/AAC.45.3.649-659.2001
- Kifelew L.G., Warner M.S., Morales S., Vaughan L., Woodman R., Fitridge R. et al. // BMC Microbiol. 2020. V. 20. № 1. P. 204. https://doi.org/10.1186/s12866-020-01891-8
- Macdonald K.E., Stacey H.J., Harkin G., Hall L.M.L, Young M.J., Jones J.D. // PLoS ONE. 2020. V. 15. e0243947. https://doi.org/10.1371/journal.pone.0243947
- Chanishvili N. // Adv. Virus Res. 2012. V. 83. P. 3–40. https://doi.org/10.1016/B978-0-12-394438-2.00001-3
- Horcajada J.P., Montero M., Oliver A., Sorlí L., Luque S., Gómez-Zorrilla S. et al. // Clin. Microbiol. Rev. 2019. V. 32. № 4. e00031-19. https://doi.org/10.1128/CMR.00031-19
- Mandal S.M., Roy A., Ghosh A.K., Hazra T.K., Basak A., Franco O.L. // Front. Pharmacol. 2014. V. 5. P. 105. https://doi.org/10.3389/fphar.2014.00105
- Pirnay J.P., Ferry T., Resch G. // FEMS Microbiol. Rev. 2022. V. 46. № 1. https://doi.org/10.1093/femsre/fuab040
- Botka T., Pantůček R., Mašlaňová I., Benešík M., Petráš P., Růžičková V. et al. // Sci. Rep. 2019. V. 9. P. 5475. https://doi.org/10.1038/s41598-019-41868-w
- Taati Moghadam M., Amirmozafari N., Shariati A., Hallajzadeh M., Mirkalantari S., Khoshbayan A., Masjedian Jazi F. // Infect. Drug. Resist. 2020. V. 13. P. 45–61. https://doi.org/10.2147/IDR.S234353
- Taati Moghadam M., Khoshbayan A., Chegini Z., Farahani I., Shariati A. // Drug. Des. Devel. Ther. 2020. V. 14. P. 1867–1883. https://doi.org/10.2147/DDDT.S251171
- Huon J.F., Montassier E., Leroy A.G., Grégoire M., Vibet M.A., Caillon J. et al. // mSystems. 2020. V. 5. № 6. e00542-20. https://doi.org/10.1128/mSystems.00542-20
- Shivaram K.B., Bhatt P., Verma M.S., Clase K., Simsek H. // Science of the Total Environment. 2023. V. 901. P. 165859. https://doi.org/10.1016/j.scitotenv.2023.165859
- Wang Z., Zhao X. // J. Appl. Microbiol. 2022. V. 133. № 4. P. 2137–2147. https://doi.org/10.1111/jam.15555
- Tang A.-Q., Yuan L., Chen C.-W., Zhang Y.-S., Yang Z.-Q. // Lwt. 2023. V. 182. P. 114774. https://doi.org/10.1016/j.lwt.2023.114774
- Carmody C.M., Goddard J.M., Nugen S.R. // Bioconjugate Chemistry. 2021. V. 32. № 3. P. 466–481. https://doi.org/10.9931021/acs. bioconjchem.1c00018
- Li T., Lu X.M., Zhang M.R., Hu K., Li Z. // Bioactive Materials. 2022. V. 11. P. 268–282. https://doi.org/10.1016/j.1130 bioactmat.2021.09.029
- Stone E., Campbell K., Grant I., McAulie O. // Viruses. 2019. V. 11. P. 567. https://doi.org/10.3390/v11060567
- Alaoui Mdarhri H., Benmessaoud R., Yacoubi H., Seffar L., Guennouni Assimi H., Hamam M. et al. // Antibiotics (Basel). 2022. V. 11. № 12. P. 1826. https://doi.org/10.3390/antibiotics11121826
- Soothill J.S. // Burns. 1994. V. 20. № 3. P. 209–211. https://doi.org/10.1016/0305-4179(94)90184-8
- Mendes J.J., Leandro C., Corte-Real S., Barbosa R., Cavaco-Silva P, Melo-Cristino J. et al. // Wound Repair Regen. 2013. V. 21. P. 595–603. https://doi.org/10.1111/wrr.12056
- dos Santos Ferreira N., Hayashi Sant’ Anna F., Massena Reis V., Ambrosini A., Gazolla Volpiano C., Rothballer M. et al. // Int. J. Syst. Evol. Microbiol. 2020. V. 70. № 12. P. 6203–6212.22. https://doi.org/10.1099/ijsem.0.004517
- Guliy O.I., Zaitsev B.D., Borodina I.A., Shikhabudinov A.P., Teplykh A.A. // Appl. Biochem. Microbiol. 2017. V. 53. № 4. P. 464–469. https://doi.org/10.1134/S0003683817040068
- Sambrook J., Fritsch E.F., Maniatis T. Molecular Сloning: a Laboratory Manual. 2 Ed. N.Y.: Cold Spring. Maven Lab. Press, 1989. 1626 p.
- Hoogenboom H.R., Griffits A.D., Johnson K.S., Chiswell D.J., Hundson P., Winter G. // Nucleic Acids Res. 1991. V. 19. P. 4133–4137. https://doi.org/10.1093/nar/19.15.4133.
- Click E.M., Webster R.E. // J. Bacteriol. 1997. V. 179. №. 20. P. 6464–6471. https://doi.org/10.1128/jb.179.20.6464-6471.1997
- Click E.M., Webster R.E. // J. Bacteriol. 1998. V. 180. №. 7. P. 1723–1728. https://doi.org/10.1128/JB.180.7.1723-1728.1998
- Riechmann L., Holliger P. // Cell. 1997. V. 90. № 2. P. 351–360. https://doi.org/10.1016/s0092-8674(00)80342-6.
- Deng L.W., Malik P., Perham R.N. // Virology. 1999. V. 253. P. 271–277. https://doi.org/10.1006/viro.1998.9509
- Branston S.D., Stanley E.C., Ward J.M., Keshavarz-Moore E. // Biotechnol. Bioproc. Eng. 2013. V. 18. P. 560–566. https://doi.org/10.1007/s12257-012-0776-9
- Moghimian P., Srot V., Pichon B.P., Facey S.J., van Aken P.A. // JBNB. 2016. V. 7. № 2. P. 72–77. https://doi.org/10.4236/jbnb.2016.72009
- Salivar W.O., Tzagoloff H., Pratt D. // Virology. 1964. V. 24. P. 359–371. https://doi.org/10.1016/0042-6822(64)90173-4
- Seo H., Cho S., Vo T.T.B., Lee A., Cho S., Kang S. et al. // Microbiol Spectr. 2023. V. 11. e01446-23. https://doi.org/10.1128/spectrum.01446-23
- Smith G.P., Scott J.K. // Methods Enzymol. 1993. V. 217. P. 228–257. https://doi.org/10.1016/0076-6879(93)17065-d
- Zaitsev B.D., Borodina I.A., Teplykh A.A. // Ultrasonics. 2022. V. 126. P. 106814. https://doi.org/10.1016/j.ultras.2022.106814
- Rakhuba, D.V., Kolomiets, E.I., Dey, E.S., Novik G.I. // Pol J Microbiol. 2010. V. 59. № 3. P. 145–155.
- Fraser J.S., Maxwell K.L., Davidson A.R. // J. Mol. Biol. 2006. V. 359. P. 496–507. https://doi.org/10.1016/j.jmb.2006.03.043
- Fraser J.S., Maxwell K.L., Davidson A.R. // Curr. Opin. Microbiol. 2007. V. 10. P. 382–387. https://doi.org/10.1016/j.mib.2007.05.018
- Lukose J., Barik A.K., Mithun N., Sanoop Pavithran M., George S.D., Murukeshan V.M., Chidangil S. // Biophys Rev. 2023. V. 15. № 2. P. 199–221. https://doi.org/10.1007/s12551-023-01059-4
- Defilippis V.R., Villarreal L.P. // Introduction to the Evolutionary Ecology of Viruses. Viral Ecology. 2000. Р. 125–208. https://doi.org/10.1016/B978-012362675-2/50005-7
- Strathdee S.A., Hatfull G.F., Mutalik V.K., Schooley R.T. // Cell. 2023. V. 186. № 1. P. 17–31. https://doi.org/10.1016/j.cell.2022.11.017
- Grabowski Ł., Łepek K., Stasiłojć M., Kosznik-Kwaśnicka K., Zdrojewska K., Maciąg-Dorszyńska M. et al. // Microbiol Res. 2021. V. 248. P. 126746. https://doi.org/10.1016/j.micres.2021.126746.
- Suh G.A., Patel R. // Clin. Microbiol. Infect. 2023. V. 29. № 6. P. 710-713. https://doi.org/10.1016/j.cmi.2023.02.006.
- Daubie V., Chalhoub H., Blasdel B., Dahma H., Merabishvili M., Glonti T. et al. // Front. Cell. Infect. Microbiol. 2022. V. 12. Р. 1000721. https://doi.org/10.3389/fcimb.2022.1000721
- Patpatia S., Schaedig E., Dirks A., Paasonen L., Skurnik M., Kiljunen S. // Front. Cell. Infect. Microbiol. 2022. V. 12. Р. 1032052. https://doi.org/10.3389/fcimb.2022.1032052
- Perlemoine P., Marcoux P.R., Picard E., Hadji E., Zelsmann M., Mugnier G. et al. // PLoS ONE 2021. V. 16. № 3. e0248917. https://doi.org/10.1371/journal.pone.0248917
Arquivos suplementares
