Structural and thermal insulation compositions based on polyethylene foams waste

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A structural and thermal insulation material was development with the simultaneous utilisation of two man–made materials – fluorohydrite (waste of hydrofluoric acid production) and polyethylene foam production waste. It is shown that the combination of these two wastes allows to create the material with the compressive strength of 4.2 MPa and the thermal conductivity of 0.131 W/m oC at the average density of 1560 kg/m3 at the polyethylene foam crumbs optimal consumption of 300 l/m3. In addition, given the presence of a kind of damper in the composition of the material in the form of polyethylene foam, the products acquire increased frost resistance in building structures. Application of this material will allow increasing fire safety of building structures, improving their vapour and gas permeability, reducing production costs and simultaneously solving the problems of fluorohydrite and polyethylene foam production waste disposal.

Full Text

Restricted Access

About the authors

G. I. Yakovlev

Kalashnikov Izhevsk State Technical University

Author for correspondence.
Email: gyakov@istu.ru

Doctor of Sciences (Engineering), Professor

Russian Federation, 7, Studencheskaya Street, Izhevsk, 426069

Z. S. Angelich

Kalashnikov Izhevsk State Technical University

Email: zarinasaidova@mail.ru

Candidate of Sciences (Engineering), Docent

Russian Federation, 7, Studencheskaya Street, Izhevsk, 426069

A. F. Buryanov

National Research Moscow State University of Civil Engineering

Email: rga-service@mail.ru

Doctor of Sciences (Engineering), Professor

Russian Federation, 26, Yaroslavskoe Highway, Moscow, 129337

Yu. N. Ginchitskaya

Kalashnikov Izhevsk State Technical University

Email: yula_yuka@mail.ru

Candidate of Sciences (Engineering), Docent

Russian Federation, 7, Studencheskaya Street, Izhevsk, 426069

V. M. Ukraintseva

Kalashnikov Izhevsk State Technical University

Email: venemara@mail.ru

Master, Postgraduate Student

Russian Federation, 7, Studencheskaya Street, Izhevsk, 426069

V. A. Yukhnin

Kalashnikov Izhevsk State Technical University

Email: vlad.yuhnin@yandex.ru

Student

Russian Federation, 7, Studencheskaya Street, Izhevsk, 426069

K. Yu. Bykov

Kalashnikov Izhevsk State Technical University

Email: bykov6a@yandex.ru

Student

Russian Federation, 7, Studencheskaya Street, Izhevsk, 426069

A. V. Budaev

East Siberia State University of Technology and Management

Email: 393-420@mail.ru

Postgraduate Student

Russian Federation, 40V, bldg. 1, Klyuchevskaya Street, Ulan-Ude, 670013, Republic of Buryatia

References

  1. Shmoilov E.E., Fedotov M.Yu., Sharutin I.A., Ilyukhin R.V., Stepanov S.A., Panina N.N., Gurenchuk L.I., Kapyrin P.D., Kabantsev O.V., Kornev O. Polymer composites for external reinforcement of building structures. International Journal for Computational Civil and Structural Engineering. 2024. Vol. 20. No. 1, pp. 21–34. EDN: IVBBPJ. https://doi.org/10.22337/2587-9618-2024-20-1-21-34
  2. Erofeev V.T., Kaznacheev S.V., Pankratova E.V., Seleznev V.A., Tyuryahina T.P. Physical and mechanical properties of pre-bound aggregate composites. Structural Mechanics of Engineering Constructions and Buildings. 2022. Vol. 18. No. 5, pp. 399–406. EDN: TUIESN. https://doi.org/10.22363/1815-5235-2022-18-5-399-406
  3. Tho Vu.D., Lam. T.V., Korol E.A., Bulgakov B.I., Aleksandrova O.V., Larsen О.А. Thermal insulation properties of efficient lightweight concretes for three-layer enclosing coverings of buildings. Promyshlennoye i grazhdanskoye stroitel’stvo. 2020. No. 5, pp. 36–44. (In Russian). EDN: THQLDP. https://doi.org/10.33622/0869-7019.2020.05.36-44
  4. Ezhov V.S., Semicheva N.E., Pakhomova E.G., Polivanova T.V. Technology of recycling polymer components of municipal and industrial waste to produce building structures. Ekologiya i promyshlennost’ Rossii. 2021. Vol. 25. No. 2, pp. 4–7. (In Russian). EDN: MFIABR. https://doi.org/10.18412/1816-0395-2021-2-4-7
  5. Akimova A.S., Pikalov E.S. Facing composite material based on mineral screenings and polymer waste. Ekologiya promyshlennogo proizvodstva. 2024. No. (127), pp. 2–7. (In Russian). EDN: NCERMT. https://doi.org/10.52190/2073-2589_2024_3_2
  6. Zhukov A.D., Ter-Zakaryan K.A., Bessonov I.V., Semenov V.S., Starostin A.V. Systems of construction insulation with the use of foam polyethylene. Stroitel’nye Materialy [Construction Materials]. 2018. No. 9, pp. 58–61. (In Russian). EDN: UZLDTD. https://doi.org/10.31659/0585-430X-2018-763-9-58-61
  7. Biswas M., Bhaskarwar A.N. Utilization of polyethylene and polypropylene wastes in construction materials: conventional and foam concretes. In: Arya R.K., Verros G.D., Verma O.P., Hussain C.M. (eds). Waste to Wealth. Springer, Singapore. 2024, pp. 1251–1265. https://doi.org/10.1007/978-981-99-7552-5_56
  8. Yartsev V.P., Monastyrev P.V., Mamontov A.A., Mamontov S.A. Durable thermal insulation polystyrene foam layered products. Izvestiya of higher educational institutions. Construction. 2021. No. 7 (751), pp. 50–63. (In Russian). EDN: QQSTLT. https://doi.org/10.32683/0536-1052-2021-751-7-50-63
  9. Steshenko A.B., Kudyakov A.I., Inozemtsev A.S., Inozemtsev S.S. Structural and thermal insulation foam concrete for individual monolithic housing construction. Nanotekhnologii v stroitel’stve: scientific online journal. 2024. Vol. 16. No. 4, pp. 320–328. (In Russian). EDN: JDOTUK. https://doi.org/10.15828/2075-8545-2024-16-4-320-328
  10. Efimov B.A., Ushakov A.Yu., Tyakina A.M., Minaeva A.M. Structure and thermophysical characteristics of gas-filled polymers. Stroitel’nye Materialy [Construction Materials]. 2022. No. 11, pp. 81–85. (In Russian). EDN: WLUBBR. https://doi.org/10.31659/0585-430X-2022-808-11-81-85
  11. Perevozchikov A., Yakovlev G., Kodolov V. Polyethylene foam waste utilization for light-weight concrete production. International Journal of Polymeric Materials and Polymeric Biomaterials. 2000. Vol. 47. Iss. 1.47, pp. 7–17. EDN: SMZYUI. https://doi.org/10.1080/00914030008033331
  12. Yavaş A., Kalkan Ş.O., Sütçü M., Gündüz L. Recycling waste polyethylene foam into fired clay bricks: A sustainable solution for lightweight and thermally efficient building materials. Construction and Building Materials. 2025. Vol. 473. 140967. https://doi.org/10.1016/j.conbuildmat.2025.140967
  13. Lyapidevskaya O., Rubtsov O., Bessonov I. Foam polyethylene made of recycled polyethylene. IOP Conference Series: Materials Science and Engineering. 2021. Vol. 1079. Ch. 3.042037. EDN: DHZJGC. https://doi.org/10.1088/1757-899X/1079/4/042037
  14. Ramesh N.S. Polyethylene foam extrusion. Ch. 20. Handbook of industrial polyethylene and technology: definitive guide to manufacturing, properties, processing, applications and markets. 2016, pp. 603–636. https://doi.org/10.1002/9781119159797.ch20
  15. Thomas S., Ter-Zakaryan K.A., Zhukov A.D., Bessonov I.V. Modified polyethylene foams for insulation systems. Polymers. 2023. Vol. 15(20). 4104. EDN:EDTWDH. https://doi.org/10.3390/polym15204104

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. External appearance: a – waste polyethylene foam; b – crushed polyethylene foam; c – pore size in polyethylene foam at 200× magnification

Download (139KB)
3. Fig. 2. General view of fluoroanhydrite (a) and macrostructure of fluoroanhydrite powder (b) at 200× magnification

Download (215KB)
4. Fig. 3. X-ray diffraction pattern of acid fluoride

Download (84KB)
5. Fig. 4. Микроструктура кристаллогидратных новообразований в фтоангидритовой матрице: игольчатые (a) и призматические (b) кристаллы двуводного гипса, (c) – пакетные кристаллы двуводного гипсав фторангидритовой матрице

Download (242KB)
6. Fig. 5. Microstructure of crystal hydrate columnar formations in a fluoroanhydrite matrix: (a) – general view, (b) – lamellar structure of dihydrate gypsum in columnar formations

Download (88KB)
7. Fig. 6. Macrostructure of a chip of heat-insulating material based on crushed waste of polyethylene foam and fluoroanhydrite containing polyethylene foam: a – 300 l/m3; b – 700 l/m3; c – a fragment of the interphase layer at the point of contact of the fluoroanhydrite matrix and crushed polyethylene foam at 50× magnification

Download (158KB)
8. Fig. 7. Samples 100×100×80, formed using a fluoroanhydrite matrix and crushed polyethylene foam

Download (82KB)

Copyright (c) 2025 ООО РИФ "СТРОЙМАТЕРИАЛЫ"