Therapeutic effects of noble gases
- Authors: Kabiolskiy I.А.1, Simonenko S.D.1, Sarycheva N.U.1, Dubynin V.А.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 110, No 10 (2024)
- Pages: 1582-1601
- Section: Articles
- URL: https://rjmseer.com/0869-8139/article/view/651728
- DOI: https://doi.org/10.31857/S0869813924100033
- EDN: https://elibrary.ru/VRXCIA
- ID: 651728
Cite item
Abstract
Since the last century it has been known that inert gases can cause a range of physiological effects. The biological activity of inert gases is an extremely multifaceted phenomenon. Despite the similarity of most physical and chemical characteristics, they are able to affect many organs and tissues by interacting with a variety of protein targets. Currently, it is known that xenon, krypton and argon are capable of changing the functional state of the central nervous system and correcting some psychoemotional disorders. In addition, they influence the processes of apoptosis and cellular response to stress. Noble gases affect the state of the immune system and various parameters of homeostasis. The cytoprotective effects of helium on the cardiovascular and respiratory systems have also been convincingly demonstrated. Thus, noble gases are currently being considered as potential means of correcting various diseases.
This review is devoted to the analysis of literature data on the physiological effects of noble gases identified in biomedical studies on patients, as well as in cell culture and in vivo models. Each chapter of the review is devoted to a particular gas of this group, starting with the most studied ones. For each of the noble gases (helium, neon, argon, krypton, xenon and radon) their physiological activity, the possibility of using these substances in medicine and some known mechanisms of their action are considered. Moreover, in the review existing data were critically analyzed and key gaps that need to be filled in future research were identified.
Keywords
About the authors
I. А. Kabiolskiy
Lomonosov Moscow State University
Email: ilyakab1999@gmail.com
Russian Federation, Moscow
S. D. Simonenko
Lomonosov Moscow State University
Author for correspondence.
Email: ilyakab1999@gmail.com
Russian Federation, Moscow
N. U. Sarycheva
Lomonosov Moscow State University
Email: ilyakab1999@gmail.com
Russian Federation, Moscow
V. А. Dubynin
Lomonosov Moscow State University
Email: ilyakab1999@gmail.com
Russian Federation, Moscow
References
- Lazarev NV, Lyublina YI, Madorskaya RY (1948) Narcotic action of xenon. Fiziol Zh SSSR 34: 131–134.
- Lawrence JH, Loomis WF, Tobias CA, Turpin FH (1946) Preliminary observations on the narcotic effect of xenon with a review of values for solubilities of gases in water and oils. J Physiol 105(3): 197. https://doi.org/10.1113/jphysiol.1946.sp004164
- Koblin DD, Fang Z, Eger EI, Laster MJ, Gong D, Ionescu P, Halsey MJ, Trudell JR (1998) Minimum alveolar concentrations of noble gases, nitrogen, and sulfur hexafluoride in rats: helium and neon as nonimmobilizers (nonanesthetics). Anesthesia & Analgesia 87(2): 419–424. https://doi.org/10.1097/00000539-199808000-00035
- Rostain JC, Balon N (2006) Recent neurochemical basis of inert gas narcosis and pressure effects. Undersea Hyperbar Med 33(3): 197.
- Moskovitz Y, Yang H (2015) Modelling of noble anaesthetic gases and high hydrostatic pressure effects in lipid bilayers. Soft Matter 11(11): 2125–2138. https://doi.org/10.1039/c4sm02667e
- Prangé T, Schiltz M, Pernot L, Colloc'h N, Longhi S, Bourguet W, Fourme R (1998) Exploring hydrophobic sites in proteins with xenon or krypton. Proteins: Struct Funct Bioinform 30(1): 61–73.
- Winkler DA, Katz I, Farjot G, Warden AC, Thornton AW (2018) Decoding the Rich Biological Properties of Noble Gases: How Well Can We Predict Noble Gas Binding to Diverse Proteins? ChemMedChem 13(18): 1931–1938. https://doi.org/10.1002/cmdc.201800434
- Wiebelhaus N, Singh N, Zhang P, Craig SL, Beratan DN, Fitzgerald MC (2022) Discovery of the xenon–protein interactome using large-scale measurements of protein folding and stability. J Am Chem Soc 144(9): 3925–3938. https://doi.org/10.1021/jacs.1c11900
- Winkler DA, Thornton A, Farjot G, Katz I (2016) The diverse biological properties of the chemically inert noble gases. Pharmacol Therap 160: 44–64. https://doi.org/10.1016/j.pharmthera
- Лазарев НВ (1941) Биологическое действие газов под давлением. Л.; Медицина. [Lazarev NV (1941) Biological effect of gases under pressure. L. Medicina. (In Russ)].
- Nakata Y, Goto T, Ishiguro Y, Terui K, Kawakami H, Santo M, Niimi Y, Morita S (2001) Minimum alveolar concentration (MAC) of xenon with sevoflurane in humans. J Am Soc Anesthesiol 94(4): 611–614. https://doi.org/10.1097/00000542-200104000-00014
- Pelentritou A, Kuhlmann L, Cormack J, Woods W, Sleigh J, Liley D (2018) Recording brain electromagnetic activity during the administration of the gaseous anesthetic agents xenon and nitrous oxide in healthy volunteers. J Visual Exp 131: e56881. https://doi.org/10.3791/56881
- Sarasso S, Boly M, Napolitani M, Gosseries O, Charland-Verville V, Casarotto S, Rosanova M, Casali AG, Brichant JF, Boveroux P, Rex S, Tononi G, Laureys S, Massimini M (2015). Consciousness and complexity during unresponsiveness induced by propofol, xenon, and ketamine. Current Biol 25(23): 3099–3105. https://doi.org/10.1016/j.cub.2015.10.014
- McGuigan S, Evered L, Scott DA, Silbert B, Zetterberg H, Blennow K (2022) Comparing the effect of xenon and sevoflurane anesthesia on postoperative neural injury biomarkers: a randomized controlled trial. Med Gas Res 12(1): 10–17. https://doi.org/10.4103/2045-9912.324591
- Yang S, Gu C, Mandeville ET, Dong Y, Esposito E, Zhang Y, Yang G, Shen Y, Fu X, Lo EH, Xie Z (2017) Anesthesia and Surgery Impair Blood-Brain Barrier and Cognitive Function in Mice. Front Immunol 8: 902. https://doi.org/10.3389/fimmu.2017.00902
- Nair AS, Christopher A, Pulipaka SK, Suvvari P, Kodisharapu PK, Rayani BK (2021) Efficacy of xenon anesthesia in preventing postoperative cognitive dysfunction after cardiac and major non-cardiac surgeries in elderly patients: a topical review. Med Gas Res 11(3): 110–113. https://doi.org/10.4103/2045-9912.314330
- Suzuki T, Koyama H, Sugimoto M, Uchida I, Mashimo T (2002) The diverse actions of volatile and gaseous anesthetics on human-cloned 5-hydroxytryptamine3 receptors expressed in Xenopus oocytes. Anesthesiology 96(3): 699–704. https://doi.org/10.1097/00000542-200203000-00028
- Franks NP, Dickinson R, de Sousa SL, Hall AC, Lieb WR (1998) How does xenon produce anaesthesia? Nature 396(6709): 324. https://doi.org/10.1038/24525
- Dickinson R, Peterson BK, Banks P, Simillis C, Martin JC, Valenzuela CA, Maze M, Franks NP (2007) Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor by the anesthetics xenon and isoflurane: evidence from molecular modeling and electrophysiology. Anesthesiology 107(5): 756–767. https://doi.org/10.1097/01.anes.0000287061.77674.71
- Andrijchenko NN, Ermilov AY, Khriachtchev L, Räsänen M, Nemukhin AV (2015) Toward molecular mechanism of xenon anesthesia: a link to studies of xenon complexes with small aromatic molecules. J Phys Chem 119(11): 2517–2521. https://doi.org/10.1021/jp508800k
- Sanejouand YH (2022) At least three xenon binding sites in the glycine binding domain of the N-methyl D-aspartate receptor. Archiv Biochem Biophys 724: 109265. https://doi.org/10.1016/j.abb.2022.109265
- Armstrong SP, Banks PJ, McKitrick TJ, Geldart CH, Edge CJ, Babla R, Simillis C, Franks NP, Dickinson R (2012) Identification of two mutations (F758W and F758Y) in the N-methyl-D-aspartate receptor glycine-binding site that selectively prevent competitive inhibition by xenon without affecting glycine binding. Anesthesiology 117(1): 38–47. https://doi.org/10.1097/ALN.0b013e31825ada2e
- Haseneder R, Kratzer S, Kochs E, Eckle VS, Zieglgänsberger W, Rammes G (2008) Xenon reduces N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated synaptic transmission in the amygdala. Anesthesiology 109(6): 998–1006. https://doi.org/10.1097/ALN.0b013e31818d6aee
- Nonaka K, Kotani N, Akaike H, Shin MC, Yamaga T, Nagam H, Akaike N (2019) Xenon modulates synaptic transmission to rat hippocampal CA3 neurons at both pre- and postsynaptic sites. J Physiol 597(24): 5915–5933. https://doi.org/10.1113/JP278762
- Yamakura T, Harris RA (2000) Effects of gaseous anesthetics nitrous oxide and xenon on ligand-gated ion channels. Comparison with isoflurane and ethanol. Anesthesiology 93(4): 1095–1101. https://doi.org/10.1097/00000542-200010000-00034
- Franks JJ, Horn JL, Janicki PK, Singh G (1995) Halothane, isoflurane, xenon, and nitrous oxide inhibit calcium ATPase pump activity in rat brain synaptic plasma membranes. Anesthesiology 82(1): 108–117. https://doi.org/10.1097/00000542-199501000-00015
- Franks JJ, Wamil AW, Janicki PK, Horn JL, Franks WT, Janson VE, Vanaman TC, Brandt PC (1998) Anesthetic-induced alteration of Ca2+ homeostasis in neural cells: a temperature-sensitive process that is enhanced by blockade of plasma membrane Ca2+ATPase isoforms. Anesthesiology 89(1): 149–164. https://doi.org/10.1097/00000542-199807000-00022
- Kratzer S, Mattusch C, Kochs E, Eder M, Haseneder R, Rammes G (2012) Xenon attenuates hippocampal long-term potentiation by diminishing synaptic and extrasynaptic N-methyl-D-aspartate receptor currents. Anesthesiology 116(3): 673–682. https://doi.org/10.1097/ALN.0b013e3182475d66
- Alam A, Suen KC, Hana Z, Sanders RD, Maze M, Ma D (2017) Neuroprotection and neurotoxicity in the developing brain: an update on the effects of dexmedetomidine and xenon. Neurotoxicol Teratol 60: 102–116. https://doi.org/10.1016/j.ntt.2017.01.001
- Harris K, Armstrong SP, Campos-Pires R, Kiru L, Franks NP, Dickinson R (2013) Neuroprotection against traumatic brain injury by xenon, but not argon, is mediated by inhibition at the N-methyl-D-aspartate receptor glycine site. Anesthesiology 119(5): 1137–1148. https://doi.org/10.1097/ALN.0b013e3182a2a265
- Koziakova M, Harris K, Edge CJ, Franks NP, White IL, Dickinson R (2019) Noble gas neuroprotection: xenon and argon protect against hypoxic-ischaemic injury in rat hippocampus in vitro via distinct mechanisms. Br J Anaesthesia 123(5): 601–609. https://doi.org/10.1016/j.bja.2019.07.010
- Campos-Pires R, Hirnet T, Valeo F, Ong BE, Radyushkin K, Aldhoun J, Saville J, Edge CJ, Franks NP, Thal SC, Dickinson R (2019) Xenon improves long-term cognitive function, reduces neuronal loss and chronic neuroinflammation, and improves survival after traumatic brain injury in mice. Br J Anaesthesia 123(1): 60–73. https://doi.org/10.1016/j.bja.2019.02.032
- Lavaur J, Lemaire M, Pype J, Le Nogue D, Hirsch EC, Michel PP (2016) Xenon-mediated neuroprotection in response to sustained, low-level excitotoxic stress. Cell Death Discov 2: 16018. https://doi.org/10.1038/cddiscovery.2016.18
- Cheng Y, Zhai Y, Yuan Y, Li H, Zhao W, Fan Z, Zhou L, Gao X, Zhan Y, Sun H (2023) Xenon inhalation attenuates neuronal injury and prevents epilepsy in febrile seizure Sprague-Dawley pups. Front Cell Neurosci 17: 1155303. https://doi.org/10.3389/fncel.2023.1155303
- Azzopardi D, Robertson NJ, Kapetanakis A, Griffiths J, Rennie JM, Mathieson SR, Edwards AD (2013) Anticonvulsant effect of xenon on neonatal asphyxial seizures. Archives of disease in childhood. Fetal Neonatal Edit 98(5): F437–F439. https://doi.org/10.1136/archdischild-2013-303786
- Kaufman MJ, Meloni EG, Qrareya AN, Paronis CA, Bogin V (2024) Effects of inhaled low-concentration xenon gas on naltrexone-precipitated withdrawal symptoms in morphine-dependent mice. Drug Alcohol Depend 255: 110967. https://doi.org/10.1016/j.drugalcdep.2023.110967
- Vengeliene V, Bessiere B, Pype J, Spanagel R (2014) The effects of xenon and nitrous oxide gases on alcohol relapse. Alcoholism, Clin Exp Res 38(2): 557–563. https://doi.org/10.1111/acer.12264
- Dobrovolsky A, Ichim TE, Ma D, Kesari S, Bogin V (2017) Xenon in the treatment of panic disorder: an open label study. J Translat Med 15(1): 137. https://doi.org/10.1186/s12967-017-1237-1
- Shao J, Meng L, Yang Z, Yu P, Song L, Gao Y, Gong M, Meng C, Shi H (2020) Xenon produces rapid antidepressant- and anxiolytic-like effects in lipopolysaccharide-induced depression mice model. Neuroreport 31(5): 387–393. https://doi.org/10.1097/WNR.0000000000001415
- Meloni EG, Gillis TE, Manoukian J, Kaufman MJ (2014) Xenon impairs reconsolidation of fear memories in a rat model of post-traumatic stress disorder (PTSD). PLoS One 9(8): e106189. https://doi.org/10.1371/journal.pone.0106189
- Dobrovolsky AP, Gedzun VR, Bogin VI, Ma D, Ichim TE, Sukhanova IA, Malyshev AV, Dubynin VA (2019) Beneficial effects of xenon inhalation on behavioral changes in a valproic acid-induced model of autism in rats. J Translat Med 17(1): 400. https://doi.org/10.1186/s12967-019-02161-6
- Weber NC, Toma O, Wolter JI, Obal D, Müllenheim J, Preckel B, Schlack W (2005) The noble gas xenon induces pharmacological preconditioning in the rat heart in vivo via induction of PKC-epsilon and p38 MAPK. Br J Pharmacol 144(1): 123–132. https://doi.org/10.1038/sj.bjp.0706063
- Arola O, Saraste A, Laitio R, Airaksinen J, Hynninen M, Bäcklund M, Ylikoski E, Wennervirta J, Pietilä M, Roine RO, Harjola VP, Niiranen J, Korpi K, Varpula M, Scheinin H, Maze M, Vahlberg T, Laitio T, Xe-HYPOTHECA Study Group (2017) Inhaled Xenon Attenuates Myocardial Damage in Comatose Survivors of Out-of-Hospital Cardiac Arrest: The Xe-Hypotheca Trial. J Am Colleg Cardiol 70(21): 2652–2660. https://doi.org/10.1016/j.jacc.2017.09.1088
- Saraste A, Ballo H, Arola O, Laitio R, Airaksinen J, Hynninen M, Bäcklund M, Ylikoski E, Wennervirta J, Pietilä M, Roine RO, Harjola VP, Niiranen J, Korpi K, Varpula M, Scheinin H, Maze M, Vahlberg T, Laitio T (2021) Effect of Inhaled Xenon on Cardiac Function in Comatose Survivors of Out-of-Hospital Cardiac Arrest-A Substudy of the Xenon in Combination With Hypothermia After Cardiac Arrest Trial. Crit Care Explor 3(8): e0502. https://doi.org/10.1097/CCE.0000000000000502
- Rizvi M, Jawad N, Li Y, Vizcaychipi MP, Maze M, Ma D (2010) Effect of noble gases on oxygen and glucose deprived injury in human tubular kidney cells. Exp Biol Med (Maywood, NJ) 235(7): 886–891. https://doi.org/10.1258/ebm.2010.009366
- Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148(3): 399–408. https://doi.org/10.1016/j.cell.2012.01.021
- Stoppe C, Coburn M, Fahlenkamp A, Ney J, Kraemer S, Rossaint R, Goetzenich A (2015) Elevated serum concentrations of erythropoietin after xenon anaesthesia in cardiac surgery: secondary analysis of a randomized controlled trial. Br J Anaesth 114(4): 701–703. https://doi.org/10.1093/bja/aev060
- Dias KA, Lawley JS, Gatterer H, Howden EJ, Sarma S, Cornwell WK 3rd, Hearon CM Jr, Samels M, Everding B, Liang AS, Hendrix M, Piper T, Thevis M, Bruick RK, Levine BD (2019) Effect of acute and chronic xenon inhalation on erythropoietin, hematological parameters, and athletic performance. J Appl Physiol (Bethesda, Md. 1985) 127(6): 1503–1510. https://doi.org/10.1152/japplphysiol.00289.2019
- Jawad N, Rizvi M, Gu J, Adeyi O, Tao G, Maze M, Ma D (2009) Neuroprotection (and lack of neuroprotection) afforded by a series of noble gases in an in vitro model of neuronal injury. Neurosci Lett 460(3): 232–236. https://doi.org/10.1016/j.neulet.2009.05.069
- David HN, Haelewyn B, Degoulet M, Colomb DG Jr, Risso JJ, Abraini JH (2012) Ex vivo and in vivo neuroprotection induced by argon when given after an excitotoxic or ischemic insult. PloS One 7(2): e30934. https://doi.org/10.1371/journal.pone.0030934
- Zhao H, Mitchel S, Ciechanowicz S, Savage S, Wang T, Ji X, Ma D (2016) Argon protects against hypoxic-ischemic brain injury in neonatal rats through activation of nuclear factor (erythroid-derived 2)-like 2. Oncotarget 7(18): 25640–25651. https://doi.org/10.18632/oncotarget.8241
- Loetscher PD, Rossaint J, Rossaint R, Weis J, Fries M, Fahlenkamp A, Ryang YM, Grottke O, Coburn M (2009) Argon: neuroprotection in in vitro models of cerebral ischemia and traumatic brain injury. Crit Care (London, England) 13(6): R206. https://doi.org/10.1186/cc8214
- Ryang YM, Fahlenkamp AV, Rossaint R, Wesp D, Loetscher PD, Beyer C, Coburn M (2011) Neuroprotective effects of argon in an in vivo model of transient middle cerebral artery occlusion in rats. Crit Care Med 39(6): 1448–1453. https://doi.org/10.1097/CCM.0b013e31821209be
- Fahlenkamp AV, Coburn M, de Prada A, Gereitzig N, Beyer C, Haase H, Rossaint R, Gempt J, Ryang YM (2014) Expression analysis following argon treatment in an in vivo model of transient middle cerebral artery occlusion in rats. Med Gas Res 4: 11. https://doi.org/10.1186/2045-9912-4-11
- Zhuang L, Yang T, Zhao H, Fidalgo AR, Vizcaychipi MP, Sanders RD, Yu B, Takata M, Johnson MR, Ma D (2012) The protective profile of argon, helium, and xenon in a model of neonatal asphyxia in rats. Crit Care Med 40(6): 1724–1730. https://doi.org/10.1097/CCM.0b013e3182452164
- Höllig A, Weinandy A, Liu J, Clusmann H, Rossaint R, Coburn M (2016) Beneficial Properties of Argon After Experimental Subarachnoid Hemorrhage: Early Treatment Reduces Mortality and Influences Hippocampal Protein Expression. Crit Care Med 44(7): e520–e529. https://doi.org/10.1097/CCM.0000000000001561
- Antonova VV, Silachev DN, Ryzhkov IA, Lapin KN, Kalabushev SN, Ostrova IV, Varnakova LA, Grebenchikov OA (2022) Three-Hour Argon Inhalation Has No Neuroprotective Effect after Open Traumatic Brain Injury in Rats. Brain Sci 12(7): 920. https://doi.org/10.3390/brainsci12070920
- Ulbrich F, Kaufmann K, Roesslein M, Wellner F, Auwärter V, Kempf J, Loop T, Buerkle H, Goebel U (2015) Argon Mediates Anti-Apoptotic Signaling and Neuroprotection via Inhibition of Toll-Like Receptor 2 and 4. PloS One 10(12): e0143887. https://doi.org/10.1371/journal.pone.0143887
- Ulbrich F, Lerach T, Biermann J, Kaufmann KB, Lagreze WA, Buerkle H, Loop T, Goebel U (2016) Argon mediates protection by interleukin-8 suppression via a TLR2/TLR4/STAT3/NF-κB pathway in a model of apoptosis in neuroblastoma cells in vitro and following ischemia-reperfusion injury in rat retina in vivo. J Neurochem 138(6): 859–873. https://doi.org/10.1111/jnc.13662
- Goebel U, Scheid S, Spassov S, Schallner N, Wollborn J, Buerkle H, Ulbrich F (2021) Argon reduces microglial activation and inflammatory cytokine expression in retinal ischemia/reperfusion injury. Neural Regener Res 16(1): 192–198. https://doi.org/10.4103/1673-5374.290098
- Ulbrich F, Schallner N, Coburn M, Loop T, Lagrèze WA, Biermann J, Goebel U (2014) Argon inhalation attenuates retinal apoptosis after ischemia/reperfusion injury in a time- and dose-dependent manner in rats. PloS One 9(12): e115984. https://doi.org/10.1371/journal.pone.0115984
- Scheid S, Lejarre A, Wollborn J, Buerkle H, Goebel U, Ulbrich F (2023) Argon preconditioning protects neuronal cells with a Toll-like receptor-mediated effect. Neural Regener Res 18(6): 1371–1377. https://doi.org/10.4103/1673-5374.355978
- Rubin SM, Lee SY, Ruiz EJ, Pines A, Wemmer DE (2002) Detection and characterization of xenon-binding sites in proteins by 129Xe NMR spectroscopy. J Mol Biol 322(2): 425–440. https://doi.org/10.1016/s0022-2836(02)00739-8
- Squillace S, Salvemini D (2022) Toll-like receptor-mediated neuroinflammation: relevance for cognitive dysfunctions. Trends Pharmacol Sci 43(9): 726–739. https://doi.org/10.1016/j.tips.2022.05.004
- Hu Y, Sun X, Wang S, Zhou C, Lin L, Ding X, Han J, Zhou Y, Jin G, Wang Y, Zhang W, Shi H, Zhang Z, Yang X, Hua F (2021) Toll-like receptor-2 gene knockout results in neurobehavioral dysfunctions and multiple brain structural and functional abnormalities in mice. Brain Behav Immun 91: 257–266. https://doi.org/10.1016/j.bbi.2020.10.004
- Airapetov MI, Eresko SO, Lebedev AA, Bychkov ER, Shabanov PD (2020) Involvement of TOLL-like receptors in the neuroimmunology of alcoholism. Biomed Khim 66(3): 208–215. https://doi.org/10.18097/PBMC20206603208
- De Deken J, Rex S, Lerut E, Martinet W, Monbaliu D, Pirenne J, Jochmans I (2018) Postconditioning effects of argon or xenon on early graft function in a porcine model of kidney autotransplantation. Br J Surgery 105(8): 1051–1060. https://doi.org/10.1002/bjs.10796
- Yarin YM, Amarjargal N, Fuchs J, Haupt H, Mazurek B, Morozova SV, Gross J (2005) Argon protects hypoxia-, cisplatin- and gentamycin-exposed hair cells in the newborn rat's organ of Corti. Hearing Res 201(1-2): 1–9. https://doi.org/10.1016/j.heares.2004.09.015
- Zhong W, Cheng J, Yang X, Liu W, Li Y (2023) Heliox Preconditioning Exerts Neuroprotective Effects on Neonatal Ischemia/Hypoxia Injury by Inhibiting Necroptosis Induced by Ca2+ Elevation. Translat Stroke Res 14(3): 409–424. https://doi.org/10.1007/s12975-022-01021-8
- Yan J, Wan P, Choksi S, Liu ZG (2022) Necroptosis and tumor progression. Trends Cancer 8(1): 21–27. https://doi.org/10.1016/j.trecan.2021.09.003
- Nomura M, Ueno A, Saga K, Fukuzawa M, Kaneda Y (2014) Accumulation of cytosolic calcium induces necroptotic cell death in human neuroblastoma. Cancer Res 74(4): 1056–1066. https://doi.org/10.1158/0008-5472.CAN-13-1283
- Li Y, Liu K, Kang ZM, Sun XJ, Liu WW, Mao YF (2016) Helium preconditioning protects against neonatal hypoxia-ischemia via nitric oxide mediated up-regulation of antioxidases in a rat model. Behav Brain Res 300: 31–37. https://doi.org/10.1016/j.bbr.2015.12.001
- Saha S, Buttari B, Panieri E, Profumo E, Saso L (2020) An Overview of Nrf2 Signaling Pathway and Its Role in Inflammation. Molecules (Basel, Switzerland) 25(22): 5474. https://doi.org/10.3390/molecules25225474
- Li Y, Zhang P, Liu Y, Liu W, Yin N (2016) Helium preconditioning protects the brain against hypoxia/ischemia injury via improving the neurovascular niche in a neonatal rat model. Behav Brain Res 314: 165–172. https://doi.org/10.1016/j.bbr.2016.08.015
- Smit KF, Oei GTML, Brevoord D, Stroes ES, Nieuwland R, Schlack WS, Hollmann MW, Weber NC, Preckel B (2013) Helium induces preconditioning in human endothelium in vivo. Anesthesiology 118(1): 95–104. https://doi.org/10.1097/ALN.0b013e3182751300
- Smit KF, Konkel M, Kerindongo R, Landau MA, Zuurbier CJ, Hollmann MW, Preckel B, Nieuwland R, Albrecht M, Weber NC (2018) Helium alters the cytoskeleton and decreases permeability in endothelial cells cultured in vitro through a pathway involving Caveolin-1. Scient Rep 8(1): 4768. https://doi.org/10.1038/s41598-018-23030-0
- Weber NC, Preckel B (2019) Gaseous mediators: an updated review on the effects of helium beyond blowing up balloons. Intens Care Med Exp 7(1): 73. https://doi.org/10.1186/s40635-019-0288-4
- Aehling C, Weber NC, Zuurbier CJ, Preckel B, Galmbacher R, Stefan K, Hollmann MW, Popp E, Knapp J (2018) Effects of combined helium pre/post-conditioning on the brain and heart in a rat resuscitation model. Acta Anaesthesiol Scandinav 62(1): 63–74. https://doi.org/10.1111/aas.13041
- Flick M, Albrecht M, Oei GTML, Steenstra R, Kerindongo RP, Zuurbier CJ, Patel HH, Hollmann MW, Preckel B, Weber NC (2016) Helium postconditioning regulates expression of caveolin-1 and -3 and induces RISK pathway activation after ischaemia/reperfusion in cardiac tissue of rats. Eur J Pharmacol 791: 718–725. https://doi.org/10.1016/j.ejphar.2016.10.012
- Heinen A, Huhn R, Smeele KM, Zuurbier CJ, Schlack W, Preckel B, Weber NC, Hollmann MW (2008) Helium-induced preconditioning in young and old rat heart: impact of mitochondrial Ca(2+)-sensitive potassium channel activation. Anesthesiology 109(5): 830–836. https://doi.org/10.1097/ALN.0b013e3181895aa0
- Pagel PS, Krolikowski JG, Shim YH, Venkatapuram S, Kersten JR, Weihrauch D, Warltier DC, Pratt PF Jr (2007) Noble gases without anesthetic properties protect myocardium against infarction by activating prosurvival signaling kinases and inhibiting mitochondrial permeability transition in vivo. Anesthesia and Analgesia 105(3): 562–569. https://doi.org/10.1213/01.ane.0000278083.31991.36
- Jelemenský M, Kovácsházi C, Ferenczyová K, Hofbauerová M, Kiss B, Pállinger É, Kittel Á, Sayour VN, Görbe A, Pelyhe C, Hambalkó S, Kindernay L, Barančík M, Ferdinandy P, Barteková M, Giricz Z (2021) Helium Conditioning Increases Cardiac Fibroblast Migration Which Effect Is Not Propagated via Soluble Factors or Extracellular Vesicles. Int J Mol Sci 22(19): 10504. https://doi.org/10.3390/ijms221910504
- Smit KF, Brevoord D, De Hert S, de Mol BA, Kerindongo RP, van Dieren S, Schlack WS, Hollmann MW, Weber NC, Preckel B (2016) Effect of helium pre- or postconditioning on signal transduction kinases in patients undergoing coronary artery bypass graft surgery. J Transl Med 14(1): 294. https://doi.org/10.1186/s12967-016-1045-z
- Motamed H, Forouzan A, Masoumi K, Sajadi R (2022) The effect of albuterol with heliox versus albuterol nebulization in acute asthma exacerbation: a randomized controlled clinical trial. Advanc Respirat Med 90(1): 86–93. https://doi.org/10.5603/ARM.a2022.0009
- Nascimento MS, Santos É, Prado CD (2018) Helium-oxygen mixture: clinical applicability in an intensive care unit. Einstein (Sao Paulo, Brazil) 16(4): eAO4199. https://doi.org/10.31744/einstein_journal/2018AO4199
- Collins EG, Jelinek C, O'Connell S, Butler J, McBurney C, Gozali C, Reda D, Laghi F (2014) Contrasting breathing retraining and helium-oxygen during pulmonary rehabilitation in COPD: a randomized clinical trial. Respirat Med 108(2): 297–306. https://doi.org/10.1016/j.rmed.2013.10.023
- Zuercher P, Springe D, Grandgirard D, Leib SL, Grossholz M, Jakob S, Takala J, Haenggi M (2016) A randomized trial of the effects of the noble gases helium and argon on neuroprotection in a rodent cardiac arrest model. BMC Neurol 16: 43. https://doi.org/10.1186/s12883-016-0565-8
- Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(7): 829–837d. https://doi.org/10.1093/eurheartj/ehr304
- Maier A, Wiedemann J, Rapp F, Papenfuß F, Rödel F, Hehlgans S, Gaipl US, Kraft G, Fournier C, Frey B (2020) Radon Exposure-Therapeutic Effect and Cancer Risk. Int J Mol Sci 22(1): 316. https://doi.org/10.3390/ijms22010316
- Annegret F, Thomas F (2013) Long-term benefits of radon spa therapy in rheumatic diseases: results of the randomised, multi-centre IMuRa trial. Rheumatol Int 33(11): 2839–2850. https://doi.org/10.1007/s00296-013-2819-8
- Shehata M, Schwarzmeier JD, Hilgarth M, Demirtas D, Richter D, Hubmann R, Boeck P, Leiner G, Falkenbach A (2006) Effect of combined spa-exercise therapy on circulating TGF-beta1 levels in patients with ankylosing spondylitis. Wiener Klin Wochenschrift 118(9-10): 266–272. https://doi.org/10.1007/s00508-006-0560-y
- Yamaoka K, Mitsunobu F, Hanamoto K, Mori S, Tanizaki Y, Sugita K (2004) Study on biologic effects of radon and thermal therapy on osteoarthritis. J Pain 5(1): 20–25. https://doi.org/10.1016/j.jpain.2003.09.005
- Dischereit G, Neumann N, Müller-Ladner U, Kürten B, Lange U (2014) The impact of serial low-dose radon hyperthermia exposure on pain, disease activity and pivotal cytokines of bone metabolism in ankylosing spondylitis – a prospective study. Aktuelle Rheumatol 39(05): 304–309. https://doi.org/10.1055/s-0034-1384554
- Lange U, Dischereit G, Tarner I, Frommer K, Neumann E, Müller-Ladner U, Kürten B (2016) The impact of serial radon and hyperthermia exposure in a therapeutic adit on pivotal cytokines of bone metabolism in rheumatoid arthritis and osteoarthritis. Clin Rheumatol 35(11): 2783–2788. https://doi.org/10.1007/s10067-016-3236-7
- Kullmann M, Rühle PF, Harrer A, Donaubauer A, Becker I, Sieber R, Klein G, Fournier C, Fietkau R, Gaipl US, Frey B (2019) Temporarily increased TGFβ following radon spa correlates with reduced pain while serum IL-18 is a general predictive marker for pain sensitivity. Radiat Environment Biophys 58(1): 129–135. https://doi.org/10.1007/s00411-018-0768-z
- Rühle PF, Wunderlich R, Deloch L, Fournier C, Maier A, Klein G, Fietkau R, Gaipl US, Frey B (2017) Modulation of the peripheral immune system after low-dose radon spa therapy: Detailed longitudinal immune monitoring of patients within the RAD-ON01 study. Autoimmunity 50(2): 133–140. https://doi.org/10.1080/08916934.2017.1284819
- Cucu A, Shreder K, Kraft D, Rühle PF, Klein G, Thiel G, Frey B, Gaipl US, Fournier C (2017) Decrease of Markers Related to Bone Erosion in Serum of Patients with Musculoskeletal Disorders after Serial Low-Dose Radon Spa Therapy. Front Immunol 8: 882. https://doi.org/10.3389/fimmu.2017.00882
- Winklmayr M, Kluge C, Winklmayr W, Küchenhoff H, Steiner M, Ritter M, Hartl A (2015) Radon balneotherapy and physical activity for osteoporosis prevention: a randomized, placebo-controlled intervention study. Radiat Environment Biophys 54(1): 123–136. https://doi.org/10.1007/s00411-014-0568-z
- Rühle PF, Klein G, Rung T, Tiep Phan H, Fournier C, Fietkau R, Gaipl US, Frey B (2019) Impact of radon and combinatory radon/carbon dioxide spa on pain and hypertension: Results from the explorative RAD-ON01 study. Modern Rheumatol 29(1): 165–172. https://doi.org/10.1080/14397595.2018.1442640
- Yamaoka K, Mitsunobu F, Hanamoto K, Shibuya K, Mori S, Tanizaki Y, Sugita K (2004) Biochemical comparison between radon effects and thermal effects on humans in radon hot spring therapy. J Radiat Res 45(1): 83–88. https://doi.org/10.1269/jrr.45.83
- Kataoka T, Nishiyama Y, Yamato K, Teraoka J, Morii Y, Sakoda A, Ishimori Y, Taguchi T, Yamaoka K (2012) Comparative study on the inhibitory effects of antioxidant vitamins and radon on carbon tetrachloride-induced hepatopathy. J Radiat Res 53(6): 830–839. https://doi.org/10.1093/jrr/rrs057
- Kataoka T, Etani R, Kanzaki N, Kobashi Y, Yunoki Y, Ishida T, Sakoda A, Ishimori Y, Yamaoka K (2017) Radon inhalation induces manganese-superoxide dismutase in mouse brain via nuclear factor-κB activation. J Radiat Res 58(6): 887–893. https://doi.org/10.1093/jrr/rrx048
- Куссмауль АР, Богачева МА, Шкурат ТП, Павлов БН (2007) Влияние дыхательных сред, содержащих ксенон и криптон, на клинико-биохимические показатели крови животных. Авиакосм экол мед 41(2): 60–63. [Kussmaul AR, Bogacheva MA, Shkurat TP, Pavlov BN (2007) Effects of xenon and krypton-containing breathing mixtures on clinical and biochemical blood indices in animals. Aviakosm Ekol Med 41(2): 60–64. (In Russ)].
- Куссмауль АР, Гурьева ТС, Дадашева ОА, Павлов НБ, Павлов БН (2008) Влияние газовой среды, содержащей криптон, на эмбриональное развитие японского перепела. Авиакосм экол мед 42(1): 41–43. [Kussmaul AR, Gur'eva TS, Dadasheva OA, Pavlov NB, Pavlov BN (2008) Effect of krypton-containing gas mixture on Japanese quail embryo development. Aviakosm Ekol Med 42(1): 41–44. (In Russ)].
- Antonova VV, Silachev DN, Plotnikov EY, Pevzner IB, Yakupova EI, Pisarev MV, Boeva EA, Tsokolaeva ZI, Lyubomudrov MA, Shumov IV, Grechko AV, Grebenchikov OA (2024) Neuroprotective Effects of Krypton Inhalation on Photothrombotic Ischemic Stroke. Biomedicines 12(3): 635. https://doi.org/10.3390/biomedicines12030635
- Trudell JR, Koblin DD, Eger EI 2nd (1998) A molecular description of how noble gases and nitrogen bind to a model site of anesthetic action. Anesthesia and analgesia 87(2): 411–418. https://doi.org/10.1097/00000539-199808000-00034
Supplementary files
