Neurosteroid hormone vitamin D: modern prospects
- Authors: Lebedev A.S.1,2,3, Shevlyakov A.D.2, Ilyin N.P.1,3, Galstyan D.S.1,3, Apukhtin K.V.2, Golushko N.I.3, Kaluev A.V.1,2,3
-
Affiliations:
- Almazov National Medical Research Center, Ministry of Health
- Sirius University of Science and Technology
- St. Petersburg State University
- Issue: Vol 110, No 11 (2024)
- Pages: 1801–1823
- Section: REVIEW
- URL: https://rjmseer.com/0869-8139/article/view/682325
- DOI: https://doi.org/10.31857/S0869813924110018
- EDN: https://elibrary.ru/VGMTAY
- ID: 682325
Cite item
Abstract
Vitamin D (calciferol) is a key vitamin, playing an important role in the regulation of the musculoskeletal, immune, cardiovascular and nervous systems. Vitamin D deficiency is a risk factor for multiple brain disorders. Data are also accumulating on the neuroprotective properties of vitamin D, its ability to improve neuronal function and reduce brain disorders. Here, we focus on the latest clinical and preclinical (rodents and zebrafish) data on the role of vitamin D as a neurosteroid hormone, its role in regulating the synthesis and functions of neurotransmitters and neurotrophic factors. A better understanding of the role of vitamin D in brain function may lead to new approaches to the treatment and prevention of vitamin D deficiency-related brain disorders.
Full Text

About the authors
A. S. Lebedev
Almazov National Medical Research Center, Ministry of Health; Sirius University of Science and Technology; St. Petersburg State University
Email: avkalueff@gmail.com
Neurobiology Department, Research Center for Genetics and Life Sciences, Institute of Translational Biomedicine
Russian Federation, St. Petersburg; Sirius Federal Territory; St. PetersburgA. D. Shevlyakov
Sirius University of Science and Technology
Email: avkalueff@gmail.com
Neurobiology Department, Research Center for Genetics and Life Sciences
Russian Federation, Sirius Federal TerritoryN. P. Ilyin
Almazov National Medical Research Center, Ministry of Health; St. Petersburg State University
Email: avkalueff@gmail.com
Institute of Translational Biomedicine
Russian Federation, St. Petersburg; St. PetersburgD. S. Galstyan
Almazov National Medical Research Center, Ministry of Health; St. Petersburg State University
Email: avkalueff@gmail.com
Institute of Translational Biomedicine
Russian Federation, St. Petersburg; St. PetersburgK. V. Apukhtin
Sirius University of Science and Technology
Email: avkalueff@gmail.com
Neurobiology Department, Research Center for Genetics and Life Sciences
Russian Federation, Sirius Federal TerritoryN. I. Golushko
St. Petersburg State University
Email: avkalueff@gmail.com
Institute of Translational Biomedicine
Russian Federation, St. PetersburgA. V. Kaluev
Almazov National Medical Research Center, Ministry of Health; Sirius University of Science and Technology; St. Petersburg State University
Author for correspondence.
Email: avkalueff@gmail.com
Neurobiology Department, Research Center for Genetics and Life Sciences, Institute of Translational Biomedicine
Russian Federation, St. Petersburg; Sirius Federal Territory; St. PetersburgReferences
- Delrue C, Speeckaert MM (2023) Vitamin D and Vitamin D-Binding Protein in Health and Disease. Int J Mol Sci 24: 4642. https://doi.org/10.3390/ijms24054642
- Carlberg C, Raczyk M, Zawrotna N (2023) Vitamin D: A master example of nutrigenomics. Redox Biol 62: 102695. https://doi.org/10.1016/j.redox.2023.102695
- Kalueff AV, Lou Y-R, Laaksi I, Tuohimaa P (2004) Increased anxiety in mice lacking vitamin D receptor gene. Neuroreport 15: 1271–1274. https://doi.org/10.1097/01.wnr.0000129370.04248.92
- Kalueff AV, Minasyan A, Keisala T, Kuuslahti M, Miettinen S, Tuohimaa P (2006) Increased severity of chemically induced seizures in mice with partially deleted Vitamin D receptor gene. Neurosci Lett 394: 69–73. https://doi.org/10.1016/j.neulet.2005.10.007
- Oliveri AN, Knuth M, Glazer L, Bailey J, Kullman SW, Levin ED (2020) Zebrafish show long-term behavioral impairments resulting from developmental vitamin D deficiency. Physiol Behav 224: 113016. https://doi.org/10.1016/j.physbeh.2020.113016
- Gracia-Marco L (2020) Calcium, Vitamin D, and Health. Nutrients 12: 416. https://doi.org/10.3390/nu12020416
- Fleet JC (2022) Vitamin D-Mediated Regulation of Intestinal Calcium Absorption. Nutrients 14: 3351. https://doi.org/10.3390/nu14163351
- Chen J, Tang Z, Slominski AT, Li W, Żmijewski MA, Liu Y, Chen J (2020) Vitamin D and its analogs as anticancer and anti-inflammatory agents. Eur J Med Chem 207: 112738. https://doi.org/10.1016/j.ejmech.2020.112738
- Patrick RP, Ames BN (2014) Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism. FASEB J 28: 2398–2413. https://doi.org/10.1096/fj.13-246546
- Ismailova A, White JH (2022) Vitamin D, infections and immunity. Rev Endocr Metab Disord 23: 265–277. https://doi.org/10.1007/s11154-021-09679-5
- Sassi F, Tamone C, D’Amelio P (2018) Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients 10: 1656. https://doi.org/10.3390/nu10111656
- Brinkley DM, Ali OM, Zalawadiya SK, Wang TJ (2017) Vitamin D and Heart Failure. Curr Heart Fail Rep 14: 410–420. https://doi.org/10.1007/s11897-017-0355-7
- Menéndez SG, Manucha W (2024) Vitamin D as a Modulator of Neuroinflammation: Implications for Brain Health. Curr Pharm Des 30: 323–332. https://doi.org/10.2174/0113816128281314231219113942
- Plantone D, Pardini M, Caneva S, De Stefano N (2024) Is There a Role of Vitamin D in Alzheimer’s Disease? CNS Neurol Disord Drug Targets 23: 545–553. https://doi.org/10.2174/1871527322666230526164421
- Plantone D, Primiano G, Manco C, Locci S, Servidei S, De Stefano N (2022) Vitamin D in Neurological Diseases. Int J Mol Sci 24: 87. https://doi.org/10.3390/ijms24010087
- Donati S, Palmini G, Aurilia C, Falsetti I, Marini F, Giusti F, Iantomasi T, Brandi ML (2023) Calcifediol: Mechanisms of Action. Nutrients 15: 4409. https://doi.org/10.3390/nu15204409
- Bikle DD (2000) Vitamin D: Production, Metabolism and Mechanisms of Action. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, de Herder WW, Dhatariya K, Dungan K, Hofland J, Kalra S, Kaltsas G, Kapoor N, Koch C, Kopp P, Korbonits M, Kovacs CS, Kuohung W, Laferrère B, Levy M, McGee EA, McLachlan R, New M, Purnell J, Sahay R, Shah AS, Singer F, Sperling MA, Stratakis CA, Trence DL, Wilson DP (eds) Endotext. MDText.com, Inc., South Dartmouth (MA).
- Książek A, Zagrodna A, Słowińska-Lisowska M (2019) Vitamin D, Skeletal Muscle Function and Athletic Performance in Athletes-A Narrative Review. Nutrients 11: 1800. https://doi.org/10.3390/nu11081800
- Wang T-T, Tavera-Mendoza LE, Laperriere D, Libby E, Burton MacLeod N, Nagai Y, Bourdeau V, Konstorum A, Lallemant B, Zhang R, Mader S, White JH (2005) Large-Scale in Silico and Microarray-Based Identification of Direct 1,25-Dihydroxyvitamin D3 Target Genes. Mol Endocrinol 19: 2685–2695. https://doi.org/10.1210/me.2005-0106
- Zhang Y, Fang F, Tang J, Jia L, Feng Y, Xu P, Faramand A (2019) Association between vitamin D supplementation and mortality: systematic review and meta-analysis. BMJ 366: l4673. https://doi.org/10.1136/bmj.l4673
- Lee PW, Selhorst A, Lampe SG, Liu Y, Yang Y, Lovett-Racke AE (2020) Neuron-Specific Vitamin D Signaling Attenuates Microglia Activation and CNS Autoimmunity. Front Neurol 11: 19. https://doi.org/10.3389/fneur.2020.00019
- Bhoora S, Punchoo R (2020) Policing Cancer: Vitamin D Arrests the Cell Cycle. Int J Mol Sci 21: 9296. https://doi.org/10.3390/ijms21239296
- Wan L-Y, Zhang Y-Q, Chen M-D, Liu C-B, Wu J-F (2015) Relationship of structure and function of DNA-binding domain in vitamin D receptor. Molecules 20: 12389–12399. https://doi.org/10.3390/molecules200712389
- Boyan BD, Dean DD, Sylvia VL, Schwartz Z (2003) Steroid hormone action in musculoskeletal cells involves membrane receptor and nuclear receptor mechanisms. Connect Tissue Res 44 Suppl 1: 130–135.
- Chen J, Doroudi M, Cheung J, Grozier AL, Schwartz Z, Boyan BD (2013) Plasma membrane Pdia3 and VDR interact to elicit rapid responses to 1α,25(OH)(2)D(3). Cell Signal 25: 2362–2373. https://doi.org/10.1016/j.cellsig.2013.07.020
- Marcinkowska E (2001) A run for a membrane vitamin D receptor. Biol Signals Recept 10: 341–349.https://doi.org/10.1159/000046902
- Zmijewski MA, Carlberg C (2020) Vitamin D receptor(s): In the nucleus but also at membranes? Exp Dermatol 29: 876–884. https://doi.org/10.1111/exd.14147
- Eyles DW, Liu PY, Josh P, Cui X (2014) Intracellular distribution of the vitamin D receptor in the brain: comparison with classic target tissues and redistribution with development. Neuroscience 268: 1–9. https://doi.org/10.1016/j.neuroscience.2014.02.042
- Landel V, Stephan D, Cui X, Eyles D, Feron F (2018) Differential expression of vitamin D-associated enzymes and receptors in brain cell subtypes. J Steroid Biochem Mol Biol 177: 129–134. https://doi.org/10.1016/j.jsbmb.2017.09.008
- Emanuelsson I, Almokhtar M, Wikvall K, Grönbladh A, Nylander E, Svensson A-L, Fex Svenningsen Å, Norlin M (2018) Expression and regulation of CYP17A1 and 3β-hydroxysteroid dehydrogenase in cells of the nervous system: Potential effects of vitamin D on brain steroidogenesis. Neurochem Int 113: 46–55. https://doi.org/10.1016/j.neuint.2017.11.007
- Brouwer-Brolsma EM, de Groot LCPGM (2015) Vitamin D and cognition in older adults: an update of recent findings. Curr Opin Clin Nutr Metab Care 18: 11–16. https://doi.org/10.1097/MCO.0000000000000114
- Fond G, Godin O, Schürhoff F, Berna F, Bulzacka E, Andrianarisoa M, Brunel L, Aouizerate B, Capdevielle D, Chereau I, Coulon N, D’Amato T, Dubertret C, Dubreucq J, Faget C, Lançon C, Leignier S, Mallet J, Misdrahi D, Passerieux C, Rey R, Schandrin A, Urbach M, Vidailhet P, Leboyer M, Boyer L, Llorca PM, FACE-SZ (FondaMental Academic Centers of Expertise for Schizophrenia) group (2018) Hypovitaminosis D is associated with depression and anxiety in schizophrenia: Results from the national FACE-SZ cohort. Psychiatr Res 270: 104–110. https://doi.org/10.1016/j.psychres.2018.09.024
- Kaviani M, Nikooyeh B, Zand H, Yaghmaei P, Neyestani TR (2020) Effects of vitamin D supplementation on depression and some involved neurotransmitters. J Affect Disord 269: 28–35. https://doi.org/10.1016/j.jad.2020.03.029
- Uthaiah CA, Beeraka NM, Rajalakshmi R, Ramya CM, Madhunapantula SV (2022) Role of Neural Stem Cells and Vitamin D Receptor (VDR)–Mediated Cellular Signaling in the Mitigation of Neurological Diseases. Mol Neurobiol 59: 4065–4105. https://doi.org/10.1007/s12035-022-02837-z
- Sutherland MK, Somerville MJ, Yoong LK, Bergeron C, Haussler MR, McLachlan DR (1992) Reduction of vitamin D hormone receptor mRNA levels in Alzheimer as compared to Huntington hippocampus: correlation with calbindin-28k mRNA levels. Brain Res Mol Brain Res 13: 239–255.https://doi.org/10.1016/0169-328x(92)90032-7
- Beydoun MA, Ding EL, Beydoun HA, Tanaka T, Ferrucci L, Zonderman AB (2012) Vitamin D receptor and megalin gene polymorphisms and their associations with longitudinal cognitive change in US adults. Am J Clin Nutr 95: 163–178. https://doi.org/10.3945/ajcn.111.017137
- Kim JS, Kim YI, Song C, Yoon I, Park JW, Choi YB et al (2005) Association of vitamin D receptor gene polymorphism and Parkinson’s disease in Koreans. J Korean Med Sci 20. https://doi.org/10.3346/jkms.2005.20.3.495
- Bizzaro G, Antico A, Fortunato A, Bizzaro N (2017) Vitamin D and Autoimmune Diseases: Is Vitamin D Receptor (VDR) Polymorphism the Culprit? Isr Med Assoc J 19: 438–443.
- Keisala T, Minasyan A, Lou Y-R, Zou J, Kalueff AV, Pyykkö I, Tuohimaa P (2009) Premature aging in vitamin D receptor mutant mice. J Steroid Biochem Mol Biol 115: 91–97. https://doi.org/10.1016/j.jsbmb.2009.03.007
- Gezen-Ak D, Alaylıoğlu M, Genç G, Gündüz A, Candaş E, Bilgiç B, Atasoy İL, Apaydın H, Kızıltan G, Gürvit H, Hanağası H, Ertan S, Yılmazer S, Dursun E (2017) GC and VDR SNPs and Vitamin D Levels in Parkinson’s Disease: The Relevance to Clinical Features. Neuromol Med 19: 24–40. https://doi.org/10.1007/s12017-016-8415-9
- Dursun E, Gezen-Ak D (2019) Vitamin D basis of Alzheimer’s disease: From genetics to biomarkers. Hormones (Athens) 18: 7–15. https://doi.org/10.1007/s42000-018-0086-5
- Matías-Guíu J, Oreja-Guevara C, Matias-Guiu JA, Gomez-Pinedo U (2018) Vitamin D and remyelination in multiple sclerosis. Neurologia (Engl Ed) 33: 177–186. https://doi.org/10.1016/j.nrl.2016.05.001
- Min J-H, Waters P, Vincent A, Cho H-J, Joo B-E, Woo S-Y, Lee S-Y, Shin H-Y, Lee KH, Kim BJ (2014) Low levels of vitamin D in neuromyelitis optica spectrum disorder: association with disease disability. PLoS One 9: e107274. https://doi.org/10.1371/journal.pone.0107274
- Akpınar Ş, Karadağ MG (2022) Is Vitamin D Important in Anxiety or Depression? What Is the Truth? Curr Nutr Rep 11: 675–681. https://doi.org/10.1007/s13668-022-00441-0
- Späth Z, Tmava-Berisha A, Fellendorf FT, Stross T, Maget A, Platzer M, Bengesser SA, Häussl A, Zwigl I, Birner A, Queissner R, Stix K, Wels L, Lenger M, Dalkner N, Zelzer S, Herrmann M, Reininghaus EZ (2023) Vitamin D Status in Bipolar Disorder. Nutrients 15: 4752. https://doi.org/10.3390/nu15224752
- Roy NM, Al-Harthi L, Sampat N, Al-Mujaini R, Mahadevan S, Al Adawi S, Essa MM, Al Subhi L, Al-Balushi B, Qoronfleh MW (2021) Impact of vitamin D on neurocognitive function in dementia, depression, schizophrenia and ADHD. Front Biosci (Landmark Ed) 26: 566–611. https://doi.org/10.2741/4908
- Wang Z, Ding R, Wang J (2020) The Association between Vitamin D Status and Autism Spectrum Disorder (ASD): A Systematic Review and Meta-Analysis. Nutrients 13: 86. https://doi.org/10.3390/nu13010086
- Miratashi Yazdi SA, Abbasi M, Miratashi Yazdi SM (2017) Epilepsy and vitamin D: A comprehensive review of current knowledge. Rev Neurosci 28: 185–201. https://doi.org/10.1515/revneuro-2016-0044
- Can MŞ, Baykan H, Baykan Ö, Erensoy N, Karlıdere T (2017) Vitamin D Levels and Vitamin D Receptor Gene Polymorphism in Major Depression. Psychiatr Danub 29: 179–185. https://doi.org/10.24869/psyd.2017.179
- Dimitrakis E, Katsarou M-S, Lagiou M, Papastefanopoulou V, Stanitsa E, Spandidos DA, Tsatsakis A, Papageorgiou S, Moutsatsou P, Antoniou K, Kroupis C, Drakoulis N (2022) Association of vitamin D receptor gene TaqI polymorphism with Alzheimer’s disease in a Southeastern European Caucasian population. Exp Ther Med 23: 341. https://doi.org/10.3892/etm.2022.11271
- Shboul M, Darweesh R, Abu Zahraa A, Bani Domi A, Khasawneh AG (2024) Association between vitamin D metabolism gene polymorphisms and schizophrenia. Biomed Rep 21: 134. https://doi.org/10.3892/br.2024.1822
- Guerini FR, Agliardi C, Oreni L, Groppo E, Bolognesi E, Zanzottera M, Caputo D, Rovaris M, Clerici M (2023) Vitamin D Receptor Gene Polymorphism Predicts the Outcome of Multidisciplinary Rehabilitation in Multiple Sclerosis Patients. Int J Mol Sci 24: 13379. https://doi.org/10.3390/ijms241713379
- Zhang Z, Liu J, Jiang G, Yu H (2022) Vitamin D receptor gene variants and serum vitamin D in childhood autism spectrum disorder. Mol Biol Rep 49: 9481–9488. https://doi.org/10.1007/s11033-022-07829-9
- Christou N, Mathonnet M (2013) Complications after total thyroidectomy. J Visc Surg 150: 249–256. https://doi.org/10.1016/j.jviscsurg.2013.04.003
- Gáll Z, Székely O (2021) Role of Vitamin D in Cognitive Dysfunction: New Molecular Concepts and Discrepancies between Animal and Human Findings. Nutrients 13: 3672. https://doi.org/10.3390/nu13113672
- Harms LR, Eyles DW, McGrath JJ, Mackay-Sim A, Burne THJ (2008) Developmental vitamin D deficiency alters adult behaviour in 129/SvJ and C57BL/6J mice. Behav Brain Res 187: 343–350.https://doi.org/10.1016/j.bbr.2007.09.032
- Burne THJ, McGrath JJ, Eyles DW, Mackay-Sim A (2005) Behavioural characterization of Vitamin D receptor knockout mice. Behav Brain Res 157: 299–308. https://doi.org/10.1016/j.bbr.2004.07.008
- Oliveri AN, Glazer L, Mahapatra D, Kullman SW, Levin ED (2020) Developmental exposure of zebrafish to vitamin D receptor acting drugs and environmental toxicants disrupts behavioral function. Neurotoxicol Teratol 81: 106902. https://doi.org/10.1016/j.ntt.2020.106902
- Geng C, Shaikh AS, Han W, Chen D, Guo Y, Jiang P (2019) Vitamin D and depression: mechanisms, determination and application. Asia Pac J Clin Nutr 28: 689–694. https://doi.org/10.6133/apjcn.201912_28(4).0003
- Pignolo A, Mastrilli S, Davì C, Arnao V, Aridon P, Dos Santos Mendes FA, Gagliardo C, D’Amelio M (2022) Vitamin D and Parkinson’s Disease. Nutrients 14: 1220. https://doi.org/10.3390/nu14061220
- Jamilian H, Amirani E, Milajerdi A, Kolahdooz F, Mirzaei H, Zaroudi M, Ghaderi A, Asemi Z (2019) The effects of vitamin D supplementation on mental health, and biomarkers of inflammation and oxidative stress in patients with psychiatric disorders: A systematic review and meta-analysis of randomized controlled trials. Progr Neuro-Psychopharmacol Biol Psychiatry 94: 109651. https://doi.org/10.1016/j.pnpbp.2019.109651
- Menon V, Kar SK, Suthar N, Nebhinani N (2020) Vitamin D and Depression: A Critical Appraisal of the Evidence and Future Directions. Indian J Psychol Med 42: 11–21. https://doi.org/10.4103/IJPSYM.IJPSYM_160_19
- Van der Schaft J, Koek HL, Dijkstra E, Verhaar HJJ, van der Schouw YT, Emmelot-Vonk MH (2013) The association between vitamin D and cognition: A systematic review. Ageing Res Rev 12: 1013–1023. https://doi.org/10.1016/j.arr.2013.05.004
- Levin ED (2006) Neurotransmitter Interactions and Cognitive Function. Birkhäuser. Basel.
- Renke G, Starling-Soares B, Baesso T, Petronio R, Aguiar D, Paes R (2023) Effects of Vitamin D on Cardiovascular Risk and Oxidative Stress. Nutrients 15: 769. https://doi.org/10.3390/nu15030769
- Quialheiro A, D' Orsi E, Moreira JD, Xavier AJ, Peres MA (2023) The association between vitamin D and BDNF on cognition in older adults in Southern Brazil. Rev Saude Publica 56: 109. https://doi.org/10.11606/s1518-8787.2022056004134
- Peitl V, Silić A, Orlović I, Vidrih B, Crnković D, Karlović D (2020) Vitamin D and Neurotrophin Levels and Their Impact on the Symptoms of Schizophrenia. Neuropsychobiology 79: 179–185. https://doi.org/10.1159/000504577
- Hoyng SA, De Winter F, Gnavi S, de Boer R, Boon LI, Korvers LM, Tannemaat MR, Malessy MJA, Verhaagen J (2014) A comparative morphological, electrophysiological and functional analysis of axon regeneration through peripheral nerve autografts genetically modified to overexpress BDNF, CNTF, GDNF, NGF, NT3 or VEGF. Exp Neurol 261: 578–593. https://doi.org/10.1016/j.expneurol.2014.08.002
- Hidalgo C, Carrasco MA (2011) Redox control of brain calcium in health and disease. Antioxid Redox Signal 14: 1203–1207. https://doi.org/10.1089/ars.2010.3711
- Gleichmann M, Mattson MP (2011) Neuronal calcium homeostasis and dysregulation. Antioxid Redox Signal 14: 1261–1273. https://doi.org/10.1089/ars.2010.3386
- Jiao K-P, Li S-M, Lv W-Y, Jv M-L, He H-Y (2017) Vitamin D3 repressed astrocyte activation following lipopolysaccharide stimulation in vitro and in neonatal rats. NeuroReport 28: 492. https://doi.org/10.1097/WNR.0000000000000782
- Chowdhury R, Stevens S, Ward H, Chowdhury S, Sajjad A, Franco OH (2012) Circulating vitamin D, calcium and risk of cerebrovascular disease: a systematic review and meta-analysis. Eur J Epidemiol 27: 581–591. https://doi.org/10.1007/s10654-012-9729-z
- Norlin M (2020) Effects of vitamin D in the nervous system: Special focus on interaction with steroid hormone signalling and a possible role in the treatment of brain cancer. J Neuroendocrinol 32: e12799. https://doi.org/10.1111/jne.12799
- Verma R, Kim JY (2016) 1,25-Dihydroxyvitamin D3 Facilitates M2 Polarization and Upregulates TLR10 Expression on Human Microglial Cells. Neuroimmunomodulation 23: 75–80. https://doi.org/10.1159/000444300
- Kesby JP, Cui X, Burne THJ, Eyles DW (2013) Altered dopamine ontogeny in the developmentally vitamin D deficient rat and its relevance to schizophrenia. Front Cell Neurosci 7: 111. https://doi.org/10.3389/fncel.2013.00111
- Harms LR, Burne THJ, Eyles DW, McGrath JJ (2011) Vitamin D and the brain. Best Pract Res Clin Endocrinol Metab 25: 657–669. https://doi.org/10.1016/j.beem.2011.05.009
- Tang H, Hua F, Wang J, Yousuf S, Atif F, Sayeed I, Stein DG (2015) Progesterone and vitamin D combination therapy modulates inflammatory response after traumatic brain injury. Brain Inj 29: 1165–1174. https://doi.org/10.3109/02699052.2015.1035330
- Ciobanu AM, Petrescu C, Anghele C, Manea MC, Ciobanu CA, Petrescu DM, Antonia MO, Riga S (2023) Severe Vitamin D Deficiency-A Possible Cause of Resistance to Treatment in Psychiatric Pathology. Medicina (Kaunas) 59: 2056. https://doi.org/10.3390/medicina59122056
- Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. European Journal of Neurology 25: 59–70. https://doi.org/10.1111/ene.13439
- Weller J, Budson A (2018) Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Res 7: F1000 Faculty Rev-1161. https://doi.org/10.12688/f1000research.14506.1
- Zhang X-X, Tian Y, Wang Z-T, Ma Y-H, Tan L, Yu J-T (2021) The Epidemiology of Alzheimer’s Disease Modifiable Risk Factors and Prevention. J Prev Alzheimers Dis 8: 313–321. https://doi.org/10.14283/jpad.2021.15
- Lai R-H, Hsu C-C, Yu B-H, Lo Y-R, Hsu Y-Y, Chen M-H, Juang J-L (2022) Vitamin D supplementation worsens Alzheimer’s progression: Animal model and human cohort studies. Aging Cell 21: e13670. https://doi.org/10.1111/acel.13670
- Gezen-Ak D, Atasoy IL, Candaş E, Alaylioglu M, Yılmazer S, Dursun E (2017) Vitamin D Receptor Regulates Amyloid Beta 1-42 Production with Protein Disulfide Isomerase A3. ACS Chem Neurosci 8: 2335–2346. https://doi.org/10.1021/acschemneuro.7b00245
- Kuningas M, Mooijaart SP, Jolles J, Slagboom PE, Westendorp RGJ, van Heemst D (2009) VDR gene variants associate with cognitive function and depressive symptoms in old age. Neurobiol Aging 30: 466–473. https://doi.org/10.1016/j.neurobiolaging.2007.07.001
- Cao L, Tan L, Wang H-F, Jiang T, Zhu X-C, Lu H, Tan M-S, Yu J-T (2016) Dietary Patterns and Risk of Dementia: A Systematic Review and Meta-Analysis of Cohort Studies. Mol Neurobiol 53: 6144–6154. https://doi.org/10.1007/s12035-015-9516-4
- Llewellyn DJ, Lang IA, Langa KM, Melzer D (2011) Vitamin D and cognitive impairment in the elderly U.S. population. J Gerontol A Biol Sci Med Sci 66: 59–65. https://doi.org/10.1093/gerona/glq185
- Choi KW, Kim Y-K, Jeon HJ (2020) Comorbid Anxiety and Depression: Clinical and Conceptual Consideration and Transdiagnostic Treatment. Adv Exp Med Biol 1191: 219–235. https://doi.org/10.1007/978-981-32-9705-0_14
- Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE (2005) Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 62: 593–602. https://doi.org/10.1001/archpsyc.62.6.593
- Salk RH, Hyde JS, Abramson LY (2017) Gender differences in depression in representative national samples: Meta-analyses of diagnoses and symptoms. Psychol Bull 143: 783–822. https://doi.org/10.1037/bul0000102
- Liu H, He Y, Beck J, da Silva Teixeira S, Harrison K, Xu Y, Sisley S (2021) Defining vitamin D receptor expression in the brain using a novel VDRCre mouse. J Comp Neurol 529: 2362–2375. https://doi.org/10.1002/cne.25100
- Duman RS, Sanacora G, Krystal JH (2019) Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments. Neuron 102: 75–90. https://doi.org/10.1016/j.neuron.2019.03.013
- Wang J, Guo M-N, Liu Z-Z, Ma S-F, Liu W-J, Qian J-J, Zhang W-N (2021) PGC-1α reduces Amyloid-β deposition in Alzheimer’s disease: Effect of increased VDR expression. Neurosci Lett 744: 135598. https://doi.org/10.1016/j.neulet.2020.135598
- Sultan S (2022) Neuroimaging changes associated with vitamin D Deficiency – a narrative review. Nutr Neurosci 25: 1650–1658. https://doi.org/10.1080/1028415X.2021.1888206
- Haenisch B, Bönisch H (2011) Depression and antidepressants: Insights from knockout of dopamine, serotonin or noradrenaline re-uptake transporters. Pharmacol Ther 129: 352–368. https://doi.org/10.1016/j.pharmthera.2010.12.002
- Jaumotte JD, Wyrostek SL, Zigmond MJ (2016) Protection of cultured dopamine neurons from MPP(+) requires a combination of neurotrophic factors. Eur J Neurosci 44: 1691–1699. https://doi.org/10.1111/ejn.13252
- Cereda G, Enrico P, Ciappolino V, Delvecchio G, Brambilla P (2021) The role of vitamin D in bipolar disorder: Epidemiology and influence on disease activity. J Affect Disord 278: 209–217. https://doi.org/10.1016/j.jad.2020.09.039
- Patrick RP, Ames BN (2015) Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB J 29: 2207–2222. https://doi.org/10.1096/fj.14-268342
- Goldsmith HH, Lemery KS (2000) Linking temperamental fearfulness and anxiety symptoms: a behavior–genetic perspective. Biol Psychiatry 48: 1199–1209. https://doi.org/10.1016/S0006-3223(00)01003-9
- Juruena MF, Eror F, Cleare AJ, Young AH (2020) The Role of Early Life Stress in HPA Axis and Anxiety. Adv Exp Med Biol 1191: 141–153. https://doi.org/10.1007/978-981-32-9705-0_9
- Doshi A, Chataway J (2016) Multiple sclerosis, a treatable disease. Clin Med (Lond) 16: s53–s59.https://doi.org/10.7861/clinmedicine.16-6s-s53
- Garg N, Smith TW (2015) An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain Behav 5: e00362. https://doi.org/10.1002/brb3.362
- Oh J, Vidal-Jordana A, Montalban X (2018) Multiple sclerosis: clinical aspects. Curr Opin Neurol 31: 752–759. https://doi.org/10.1097/WCO.0000000000000622
- Pierrot-Deseilligny C, Souberbielle J-C (2017) Vitamin D and multiple sclerosis: An update. Multiple Sclerosis and Related Disorders 14: 35–45. https://doi.org/10.1016/j.msard.2017.03.014
- Zhang Y-J, Zhang L, Chen S-Y, Yang G-J, Huang X-L, Duan Y, Yang L-J, Ye D-Q, Wang J (2018) Association between VDR polymorphisms and multiple sclerosis: Systematic review and updated meta-analysis of case-control studies. Neurol Sci 39: 225–234. https://doi.org/10.1007/s10072-017-3175-3
- Al-Temaimi RA, Al-Enezi A, Al-Serri A, Alroughani R, Al-Mulla F (2015) The Association of Vitamin D Receptor Polymorphisms with Multiple Sclerosis in a Case-Control Study from Kuwait. PLoS One 10: e0142265. https://doi.org/10.1371/journal.pone.0142265
- Baird G, Cass H, Slonims V (2003) Diagnosis of autism. BMJ 327: 488–493. https://doi.org/10.1136/bmj.327.7413.488
- Máčová L, Bičíková M, Ostatníková D, Hill M, Stárka L (2017) Vitamin D, neurosteroids and autism. Physiol Res 66: S333–S340. https://doi.org/10.33549/physiolres.933721
- Saad K, Abdel-Rahman AA, Elserogy YM, Al-Atram AA, El-Houfey AA, Othman HA-K, Bjørklund G, Jia F, Urbina MA, Abo-Elela MGM, Ahmad F-A, Abd El-Baseer KA, Ahmed AE, Abdel-Salam AM (2018) Retracted: Randomized controlled trial of vitamin D supplementation in children with autism spectrum disorder. J Child Psychol Psychiatry 59: 20–29. https://doi.org/10.1111/jcpp.12652
- Winship IR, Dursun SM, Baker GB, Balista PA, Kandratavicius L, Maia-de-Oliveira JP, Hallak J, Howland JG (2019) An Overview of Animal Models Related to Schizophrenia. Can J Psychiatry 64: 5–17. https://doi.org/10.1177/0706743718773728
- Valipour G, Saneei P, Esmaillzadeh A (2014) Serum vitamin D levels in relation to schizophrenia: a systematic review and meta-analysis of observational studies. J Clin Endocrinol Metab 99: 3863–3872. https://doi.org/10.1210/jc.2014-1887
- Zhu J-L, Luo W-W, Cheng X, Li Y, Zhang Q-Z, Peng W-X (2020) Vitamin D deficiency and Schizophrenia in Adults: A Systematic Review and Meta-analysis of Observational Studies. Psychiatry Res 288: 112959. https://doi.org/10.1016/j.psychres.2020.112959
- Caye A, Swanson JM, Coghill D, Rohde LA (2019) Treatment strategies for ADHD: An evidence-based guide to select optimal treatment. Mol Psychiatry 24: 390–408. https://doi.org/10.1038/s41380-018-0116-3
- Yan J, Feng J, Craddock N, Jones IR, Cook EH, Goldman D, Heston LL, Chen J, Burkhart P, Li W, Shibayama A, Sommer SS (2005) Vitamin D receptor variants in 192 patients with schizophrenia and other psychiatric diseases. Neurosci Lett 380: 37–41. https://doi.org/10.1016/j.neulet.2005.01.018
- Rucklidge JJ, Frampton CM, Gorman B, Boggis A (2014) Vitamin-mineral treatment of attention-deficit hyperactivity disorder in adults: double-blind randomised placebo-controlled trial. Br J Psychiatry 204: 306–315. https://doi.org/10.1192/bjp.bp.113.132126
- Thijs RD, Surges R, O’Brien TJ, Sander JW (2019) Epilepsy in adults. Lancet 393: 689–701. https://doi.org/10.1016/S0140-6736(18)32596-0
- Procopio M, Marriott PK (1998) Seasonality of birth in epilepsy: a Danish study. Acta Neurol Scand 98: 297–301. https://doi.org/10.1111/j.1600-0404.1998.tb01737.x
- Holló A, Clemens Z, Kamondi A, Lakatos P, Szűcs A (2012) Correction of vitamin D deficiency improves seizure control in epilepsy: A pilot study. Epilepsy & Behav 24: 131–133. https://doi.org/10.1016/j.yebeh.2012.03.011
- Kalueff AV, Minasyan A, Tuohimaa P (2005) Anticonvulsant effects of 1,25-dihydroxyvitamin D in chemically induced seizures in mice. Brain Res Bull 67: 156–160. https://doi.org/10.1016/j.brainresbull.2005.06.022
- Kalueff AV, Keisala T, Minasyan A, Kuuslahti M, Miettinen S, Tuohimaa P (2006) Behavioural anomalies in mice evoked by “Tokyo” disruption of the Vitamin D receptor gene. Neurosci Res 54: 254–260. https://doi.org/10.1016/j.neures.2005.12.008
- Jiang P, Zhu W-Y, He X, Tang M-M, Dang R-L, Li H-D, Xue Y, Zhang L-H, Wu Y-Q, Cao L-J (2015) Association between Vitamin D Receptor Gene Polymorphisms with Childhood Temporal Lobe Epilepsy. Int J Environ Res Public Health 12: 13913–13922. https://doi.org/10.3390/ijerph121113913
- Alshahrani F, Aljohani N (2013) Vitamin D: Deficiency, Sufficiency and Toxicity. Nutrients 5: 3605–3616. https://doi.org/10.3390/nu5093605
- Holick MF (2007) Vitamin D deficiency. N Engl J Med 357: 266–281. https://doi.org/10.1056/NEJMra070553
- Cannell JJ, Hollis BW, Zasloff M, Heaney RP (2008) Diagnosis and treatment of vitamin D deficiency. Expert Opin Pharmacother 9: 107–118. https://doi.org/10.1517/14656566.9.1.107
- Bischoff-Ferrari HA, Dietrich T, Orav EJ, Hu FB, Zhang Y, Karlson EW, Dawson-Hughes B (2004) Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged > or = 60 y. Am J Clin Nutr 80: 752–758. https://doi.org/10.1093/ajcn/80.3.752
- Heaney RP (2004) Functional indices of vitamin D status and ramifications of vitamin D deficiency. Am J Clin Nutr 80: 1706S–1709S. https://doi.org/10.1093/ajcn/80.6.1706S
- Hanley DA, Davison KS (2005) Vitamin D insufficiency in North America. J Nutr 135: 332–337. https://doi.org/10.1093/jn/135.2.332
- Pludowski P, Holick MF, Pilz S, Wagner CL, Hollis BW, Grant WB, Shoenfeld Y, Lerchbaum E, Llewellyn DJ, Kienreich K, Soni M (2013) Vitamin D effects on musculoskeletal health, immunity, autoimmunity, cardiovascular disease, cancer, fertility, pregnancy, dementia and mortality-a review of recent evidence. Autoimmun Rev 12: 976–989. https://doi.org/10.1016/j.autrev.2013.02.004
- Holick MF (2017) The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord 18: 153–165. https://doi.org/10.1007/s11154-017-9424-1
- Kumar J, Muntner P, Kaskel FJ, Hailpern SM, Melamed ML (2009) Prevalence and associations of 25-hydroxyvitamin D deficiency in US children: NHANES 2001-2004. Pediatrics 124: e362-370. https://doi.org/10.1542/peds.2009-0051
- Daly RM, Gagnon C, Lu ZX, Magliano DJ, Dunstan DW, Sikaris KA, Zimmet PZ, Ebeling PR, Shaw JE (2012) Prevalence of vitamin D deficiency and its determinants in Australian adults aged 25 years and older: A national, population-based study. Clin Endocrinol (Oxf) 77: 26–35. https://doi.org/10.1111/j.1365-2265.2011.04320.x
- Wrzosek M, Łukaszkiewicz J, Wrzosek M, Jakubczyk A, Matsumoto H, Piątkiewicz P, Radziwoń-Zaleska M, Wojnar M, Nowicka G (2013) Vitamin D and the central nervous system. Pharmacol Rep 65: 271–278. https://doi.org/10.1016/S1734-1140(13)71003-X
- Harms LR, Turner KM, Eyles DW, Young JW, McGrath JJ, Burne THJ (2012) Attentional processing in C57BL/6J mice exposed to developmental vitamin D deficiency. PLoS One 7: e35896. https://doi.org/10.1371/journal.pone.0035896
- Fernandes de Abreu DA, Nivet E, Baril N, Khrestchatisky M, Roman F, Féron F (2010) Developmental vitamin D deficiency alters learning in C57Bl/6J mice. Behav Brain Res 208: 603–608. https://doi.org/10.1016/j.bbr.2010.01.005
- Key B, Devine CA (2003) Zebrafish as an experimental model: strategies for developmental and molecular neurobiology studies. Methods Cell Sci 25: 1–6. https://doi.org/10.1023/B:MICS.0000006849.98007.03
- Hill AJ, Teraoka H, Heideman W, Peterson RE (2005) Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci 86: 6–19. https://doi.org/10.1093/toxsci/kfi110
- Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203: 253–310. https://doi.org/10.1002/aja.1002030302
- Choe S-K, Kim C-H (2023) Zebrafish: A Powerful Model for Genetics and Genomics. Int J Mol Sci 24: 8169. https://doi.org/10.3390/ijms24098169
- Uthaiah CA, Devaru NC, Shivakumar NH, R R, Madhunapantula SV (2022) Vitamin D Mitigates Hyperglycemia-Induced Cognition Decline in Danio rerio (Zebrafish) through the Activation of Antioxidant Mechanisms. Antioxidants (Basel) 11: 2114. https://doi.org/10.3390/antiox11112114
- Mayne PE, Burne THJ (2019) Vitamin D in Synaptic Plasticity, Cognitive Function, and Neuropsychiatric Illness. Trends Neurosci 42: 293–306. https://doi.org/10.1016/j.tins.2019.01.003
- Prono F, Bernardi K, Ferri R, Bruni O (2022) The Role of Vitamin D in Sleep Disorders of Children and Adolescents: A Systematic Review. Int J Mol Sci 23: 1430. https://doi.org/10.3390/ijms23031430
- Becker A, Eyles DW, McGrath JJ, Grecksch G (2005) Transient prenatal vitamin D deficiency is associated with subtle alterations in learning and memory functions in adult rats. Behav Brain Res 161: 306–312. https://doi.org/10.1016/j.bbr.2005.02.015
- Morales E, Guxens M, Llop S, Rodríguez-Bernal CL, Tardón A, Riaño I, Ibarluzea J, Lertxundi N, Espada M, Rodriguez A, Sunyer J, INMA Project (2012) Circulating 25-hydroxyvitamin D3 in pregnancy and infant neuropsychological development. Pediatrics 130: e913-920. https://doi.org/10.1542/peds.2011-3289
- Hanieh S, Ha TT, Simpson JA, Thuy TT, Khuong NC, Thoang DD, Tran TD, Tuan T, Fisher J, Biggs B-A (2014) Maternal vitamin D status and infant outcomes in rural Vietnam: A prospective cohort study. PLoS One 9: e99005. https://doi.org/10.1371/journal.pone.0099005
- Tylavsky FA, Kocak M, Murphy LE, Graff JC, Palmer FB, Völgyi E, Diaz-Thomas AM, Ferry RJ (2015) Gestational Vitamin 25(OH)D Status as a Risk Factor for Receptive Language Development: A 24-Month, Longitudinal, Observational Study. Nutrients 7: 9918–9930. https://doi.org/10.3390/nu7125499
- Rastegar-Moghaddam SH, Alipour F, Hosseini M, Ebrahimzadeh-Bideskan A (2023) Anti-apoptotic and neurogenic properties in the hippocampus as possible mechanisms for learning and memory improving impacts of vitamin D in hypothyroid rats during the growth period. Life Sci 312: 121209. https://doi.org/10.1016/j.lfs.2022.121209
- Lapmanee S, Bhubhanil S, Sriwong S, Yuajit C, Wongchitrat P, Teerapornpuntakit J, Suntornsaratoon P, Charoenphandhu J, Charoenphandhu N (2023) Oral calcium and vitamin D supplements differentially alter exploratory, anxiety-like behaviors and memory in male rats. PLoS One 18: e0290106. https://doi.org/10.1371/journal.pone.0290106
- Abdel-Wahab AF, Afify MA, Mahfouz AM, Shahzad N, Bamagous GA, Al Ghamdi SS (2017) Vitamin D enhances antiepileptic and cognitive effects of lamotrigine in pentylenetetrazole-kindled rats. Brain Res 1673: 78–85. https://doi.org/10.1016/j.brainres.2017.08.011
- Lambert JJ, Cooper MA, Simmons RDJ, Weir CJ, Belelli D (2009) Neurosteroids: Endogenous allosteric modulators of GABAA receptors. Psychoneuroendocrinology 34: S48–S58. https://doi.org/10.1016/j.psyneuen.2009.08.009
- Nonaka K, Akiyama J, Yoshikawa Y, Une S, Ito K (2020) 1,25-Dihydroxyvitamin D3 Inhibits Lipopolysaccharide-Induced Interleukin-6 Production by C2C12 Myotubes. Medicina (Kaunas) 56: 450. https://doi.org/10.3390/medicina56090450
- Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskii DS, Pogodin PV, Poroikov VV (2014) Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chem Heterocycl Comp 50: 444–457. https://doi.org/10.1007/s10593-014-1496-1
- Hu X-B, Duan T-T, Liu J, Zhu G-L, Cao Z-H, Feng S-L (2020) Effect of vitamin D supplementation on pancreatic β-cell destruction and type 1 diabetes. Chin Med J (Engl) 134: 41–43. https://doi.org/10.1097/CM9.0000000000001239
- Carlberg C, Muñoz A (2022) An update on vitamin D signaling and cancer. Semin Cancer Biol 79: 217–230. https://doi.org/10.1016/j.semcancer.2020.05.018
- Peng J, Liu Y, Xie J, Yang G, Huang Z (2020) Effects of vitamin D on drugs: Response and disposal. Nutrition 74: 110734. https://doi.org/10.1016/j.nut.2020.110734
- Tiller JWG (2013) Depression and anxiety. Med J Aust 199: S28-S31. https://doi.org/10.5694/mja12.10628
- Huang Y-Y, Gan Y-H, Yang L, Cheng W, Yu J-T (2024) Depression in Alzheimer’s Disease: Epidemiology, Mechanisms, and Treatment. Biol Psychiatry 95: 992–1005. https://doi.org/10.1016/j.biopsych.2023.10.008
- Krynicki CR, Upthegrove R, Deakin JFW, Barnes TRE (2018) The relationship between negative symptoms and depression in schizophrenia: A systematic review. Acta Psychiatr Scand 137: 380–390. https://doi.org/10.1111/acps.12873
- Sangha A, Quon M, Pfeffer G, Orton S-M (2023) The Role of Vitamin D in Neuroprotection in Multiple Sclerosis: An Update. Nutrients 15: 2978. https://doi.org/10.3390/nu15132978
- Gatera VA, Lesmana R, Musfiroh I, Judistiani RTD, Setiabudiawan B, Abdulah R (2021) Vitamin D Inhibits Lipopolysaccharide (LPS)-Induced Inflammation in A549 Cells by Downregulating Inflammatory Cytokines. Med Sci Monit Basic Res 27: e931481.
- Sarris J, Ravindran A, Yatham LN, Marx W, Rucklidge JJ, McIntyre RS, Akhondzadeh S, Benedetti F, Caneo C, Cramer H, Cribb L, de Manincor M, Dean O, Deslandes AC, Freeman MP, Gangadhar B, Harvey BH, Kasper S, Lake J, Lopresti A, Lu L, Metri N-J, Mischoulon D, Ng CH, Nishi D, Rahimi R, Seedat S, Sinclair J, Su K-P, Zhang Z-J, Berk M (2022) Clinician guidelines for the treatment of psychiatric disorders with nutraceuticals and phytoceuticals: The World Federation of Societies of Biological Psychiatry (WFSBP) and Canadian Network for Mood and Anxiety Treatments (CANMAT) Taskforce. World J Biol Psychiatry 23: 424–455. https://doi.org/10.1080/15622975.2021.2013041
- Marcinowska-Suchowierska E, Kupisz-Urbańska M, Łukaszkiewicz J, Płudowski P, Jones G (2018) Vitamin D Toxicity-A Clinical Perspective. Front Endocrinol (Lausanne) 9: 550. https://doi.org/10.3389/fendo.2018.00550
- Carlberg C, Haq A (2018) The concept of the personal vitamin D response index. J Steroid Biochem Mol Biol 175: 12–17. https://doi.org/10.1016/j.jsbmb.2016.12.011
- Carlberg C (2019) Nutrigenomics of Vitamin D. Nutrients 11: 676. https://doi.org/10.3390/nu11030676
- Beck J, da Silva Teixeira S, Harrison K, Phillips G, He Y, Sisley S (2022) Paraventricular Vitamin D Receptors are required for glucose tolerance in males but not females. Front Endocrinol 13: 869678. https://doi.org/10.3389/fendo.2022.869678
- Liang Q, Cai C, Duan D, Hu X, Hua W, Jiang P, Zhang L, Xu J, Gao Z (2018) Postnatal Vitamin D intake modulates hippocampal learning and memory in adult mice. Front Neurosci 12: 141. https://doi.org/10.3389/fnins.2018.00141
Supplementary files
