PBPK Modeling as an Alternative Method of Interspecies Extrapolation that Reduces the Use of Animals: A Systematic Review


Дәйексөз келтіру

Толық мәтін

Аннотация

Introduction:Physiologically based pharmacokinetic (PBPK) modeling is a computational approach that simulates the anatomical structure of the studied species and presents the organs and tissues as compartments interconnected by arterial and venous blood flows.

Aim:The aim of this systematic review was to analyze the published articles focused on the development of PBPK models for interspecies extrapolation in the disposition of drugs and health risk assessment, presenting to this modeling an alternative to reduce the use of animals.

Methods:For this purpose, a systematic search was performed in PubMed using the following search terms: "PBPK" and "Interspecies extrapolation". The revision was performed according to PRISMA guidelines.

Results:In the analysis of the articles, it was found that rats and mice are the most commonly used animal models in the PBPK models; however, most of the physiological and physicochemical information used in the reviewed studies were obtained from previous publications. Additionally, most of the PBPK models were developed to extrapolate pharmacokinetic parameters to humans and the main application of the models was for toxicity testing.

Conclusion:PBPK modeling is an alternative that allows the integration of in vitro and in silico data as well as parameters reported in the literature to predict the pharmacokinetics of chemical substances, reducing in large quantity the use of animals that are required in traditional studies.

Авторлар туралы

Karen Lancheros Porras

Departamento de Farmacia, Universidad Nacional de Colombia

Email: info@benthamscience.net

Izabel Alves

Department of Pharmacy, Federal University of Bahia

Email: info@benthamscience.net

Diana Novoa

Departamento de Farmacia, Universidad Nacional de Colombia

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Baumans, V. Use of animals in experimental research: An ethical dilemma? Gene Ther., 2004, 11(Suppl. 1), S64-S66. doi: 10.1038/sj.gt.3302371 PMID: 15454959
  2. Michael Conn, P. Sourcebook of Models for Biomedical Research; Humana: London: Totowa, N.J., 2008.
  3. Calabrese, E. Principles of Animal Extrapolation; Lewis Publishers, Inc: Chelsea, Mi, 1991.
  4. Hubrecht, R.C.; Carter, E. The 3Rs and Humane experimental technique: Implementing change. Animals, 2019, 9(10), 754. doi: 10.3390/ani9100754 PMID: 31575048
  5. Akhtar, A. The flaws and human harms of animal experimentation. Camb. Q. Healthc. Ethics, 2015, 24(4), 407-419. doi: 10.1017/S0963180115000079 PMID: 26364776
  6. Van Norman, G.A. Limitations of animal studies for predicting toxicity in clinical trials. JACC Basic Transl. Sci., 2020, 5(4), 387-397. doi: 10.1016/j.jacbts.2020.03.010 PMID: 32363250
  7. Knudsen, T.B.; Keller, D.A.; Sander, M.; Carney, E.W.; Doerrer, N.G.; Eaton, D.L.; Fitzpatrick, S.C.; Hastings, K.L.; Mendrick, D.L.; Tice, R.R.; Watkins, P.B.; Whelan, M. FutureTox II: In vitro data and in silico models for predictive toxicology. Toxicol. Sci., 2015, 143(2), 256-267. doi: 10.1093/toxsci/kfu234 PMID: 25628403
  8. Reddy, M.B.; Yang, R.S.H. Harvey. Physiologically Based Pharmacokinetic Modeling: Science and Applications; John Wiley & Sons, Inc: Hoboken, New Jersey, 2005. doi: 10.1002/0471478768
  9. Thompson, C.V.; Firman, J.W.; Goldsmith, M.R.; Grulke, C.M.; Tan, Y.M.; Paini, A.; Penson, P.E.; Sayre, R.R.; Webb, S.; Madden, J.C. A systematic review of published physiologically-based kinetic models and an assessment of their chemical space coverage. Altern. Lab. Anim., 2021, 49(5), 197-208. doi: 10.1177/02611929211060264 PMID: 34836462
  10. Fisher, J.W.; Gearhart, J.M.; Lin, Z. Physiologically Based Pharmacokinetic (PBPK) Modeling: Methods and Applications in Toxicology and Risk Assessment; Academic Press: Amsterdam, 2020.
  11. Tsamandouras, N.; Rostami-Hodjegan, A.; Aarons, L. Combining the ‘bottom up’ and ‘top down’ approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br. J. Clin. Pharmacol., 2015, 79(1), 48-55. doi: 10.1111/bcp.12234 PMID: 24033787
  12. Research, C. for D. E. and. physiologically based pharmacokinetic analyses-format and content guidance for industry. Available From: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/physiologically-based-pharmacokinetic-analyses-format-and-content-guidance-industry
  13. EMA. Reporting of physiologically based pharmacokinetic (PBPK) modelling and simulation-European Medicines Agency. Available From: https://www.ema.europa.eu/en/reporting-physiologically-based-pharmacokinetic-pbpkmodelling-simulation
  14. Jamei, M.; Abrahamsson, B.; Brown, J.; Bevernage, J.; Bolger, M.B.; Heimbach, T.; Karlsson, E.; Kotzagiorgis, E.; Lindahl, A.; McAllister, M.; Mullin, J.M.; Pepin, X.; Tistaert, C.; Turner, D.B.; Kesisoglou, F. Current status and future opportunities for incorporation of dissolution data in PBPK modeling for pharmaceutical development and regulatory applications: OrBiTo consortium commentary. Eur. J. Pharm. Biopharm., 2020, 155, 55-68. doi: 10.1016/j.ejpb.2020.08.005 PMID: 32781025
  15. Zhang, X.; Yang, Y.; Grimstein, M.; Fan, J.; Grillo, J.A.; Huang, S.M.; Zhu, H.; Wang, Y. Application of PBPK modeling and simulation for regulatory decision making and its impact on US prescribing information: An update on the 2018‐2019 submissions to the US FDA’s office of Clinical Pharmacology. J. Clin. Pharmacol., 2020, 60(Suppl. 1), S160-S178. doi: 10.1002/jcph.1767 PMID: 33205429
  16. Oecd. Guidance Document on Good in Vitro Method Practices (GIVIMP); Oecd Publishing, 2018. Available From: Guidance Document on Good In Vitro Method Practices (GIVIMP) ⋅ en ⋅ OECD
  17. Li, Z.; Gao, Y.; Yang, C.; Xiang, Y.; Zhang, W.; Zhang, T.; Su, R.; Lu, C.; Zhuang, X. Assessment and confirmation of species difference in nonlinear pharmacokinetics of atipamezole with physiologically based pharmacokinetic modeling. Drug Metab. Dispos., 2020, 48(1), 41-51. doi: 10.1124/dmd.119.089151 PMID: 31699808
  18. Bogdanffy, M.; Sarangapani, R.; Plowchalk, D.R.; Jarabek, A.; Andersen, M.E. A biologically based risk assessment for vinyl acetate-induced cancer and noncancer inhalation toxicity. Toxicol. Sci., 1999, 51(1), 19-35. doi: 10.1093/toxsci/51.1.19 PMID: 10496674
  19. Lin, Z.; Monteiro-Riviere, N.A.; Kannan, R.; Riviere, J.E. A computational framework for interspecies pharmacokinetics, exposure and toxicity assessment of gold nanoparticles. Nanomedicine, 2016, 11(2), 107-119. doi: 10.2217/nnm.15.177 PMID: 26653715
  20. Teeguarden, J.G.; Bogdanffy, M.S.; Covington, T.R.; Tan, C.; Jarabek, A.M. A PBPK model for evaluating the impact of aldehyde dehydrogenase polymorphisms on comparative rat and human nasal tissue acetaldehyde dosimetry. Inhal. Toxicol., 2008, 20(4), 375-390. doi: 10.1080/08958370801903750 PMID: 18302046
  21. Yang, X.; Zhou, Y.F.; Yu, Y.; Zhao, D.H.; Shi, W.; Fang, B.H.; Liu, Y.H. A physiologically based pharmacokinetic model for quinoxaline-2-carboxylic acid in rats, extrapolation to pigs. J. Vet. Pharmacol. Ther., 2015, 38(1), 55-64. doi: 10.1111/jvp.12143 PMID: 25378053
  22. Yuan, L.G.; Luo, X.Y.; Zhu, L.X.; Wang, R.; Liu, Y.H. A physiologically based pharmacokinetic model for valnemulin in rats and extrapolation to pigs. J. Vet. Pharmacol. Ther., 2011, 34(3), 224-231. doi: 10.1111/j.1365-2885.2010.01230.x PMID: 20950354
  23. Hu, Z.Y.; Lu, J.; Zhao, Y. A physiologically based pharmacokinetic model of alvespimycin in mice and extrapolation to rats and humans. Br. J. Pharmacol., 2014, 171(11), 2778-2789. doi: 10.1111/bph.12609 PMID: 24471734
  24. Frederick, C.B.; Bush, M.L.; Lomax, L.G.; Black, K.A.; Finch, L.; Kimbell, J.S.; Morgan, K.T.; Subramaniam, R.P.; Morris, J.B.; Ultman, J.S. Application of a hybrid computational fluid dynamics and physiologically based inhalation model for interspecies dosimetry extrapolation of acidic vapors in the upper airways. Toxicol. Appl. Pharmacol., 1998, 152(1), 211-231. doi: 10.1006/taap.1998.8492 PMID: 9772217
  25. Lu, Y.; Rieth, S.; Lohitnavy, M.; Dennison, J.; El-Masri, H.; Barton, H.A.; Bruckner, J.; Yang, R.S.H. Application of PBPK modeling in support of the derivation of toxicity reference values for 1,1,1-trichloroethane. Regul. Toxicol. Pharmacol., 2008, 50(2), 249-260. doi: 10.1016/j.yrtph.2007.12.001 PMID: 18226845
  26. Bi, Y.; Deng, J.; Murry, D.J.; An, G. A whole-body physiologically based pharmacokinetic model of gefitinib in mice and scale-up to humans. AAPS J., 2016, 18(1), 228-238. doi: 10.1208/s12248-015-9836-3 PMID: 26559435
  27. Chou, W.C.; Lin, Z. Bayesian evaluation of a physiologically based pharmacokinetic (PBPK) model for perfluorooctane sulfonate (PFOS) to characterize the interspecies uncertainty between mice, rats, monkeys, and humans: Development and performance verification. Environ. Int., 2019, 129, 408-422. doi: 10.1016/j.envint.2019.03.058 PMID: 31152982
  28. Aborig, M.; Malik, P.R.V.; Nambiar, S.; Chelle, P.; Darko, J.; Mutsaers, A.; Edginton, A.N.; Fleck, A.; Osei, E.; Wettig, S. Biodistribution and physiologically-based pharmacokinetic modeling of gold nanoparticles in mice with interspecies extrapolation. Pharmaceutics, 2019, 11(4), 179. doi: 10.3390/pharmaceutics11040179 PMID: 31013763
  29. McMullin, T. S.; Yang, Y.; Campbell, J.; Clewell, H. J.; Plotzke, K.; Andersen, M. E. Development of an integrated multi-species and multi-dose route PBPK model for Volatile Methyl Siloxanes - D4 and D5. Regulatory toxicology and pharmacology. RTP, 2016, 74(Suppl), S1-13.
  30. Yang, X.; Morris, S.M.; Gearhart, J.M.; Ruark, C.D.; Paule, M.G.; Slikker, W., Jr; Mattison, D.R.; Vitiello, B.; Twaddle, N.C.; Doerge, D.R.; Young, J.F.; Fisher, J.W. Development of a physiologically based model to describe the pharmacokinetics of methylphenidate in juvenile and adult humans and nonhuman primates. PLoS One, 2014, 9(9), e106101. doi: 10.1371/journal.pone.0106101 PMID: 25184666
  31. Troutman, J.A.; Rick, D.L.; Stuard, S.B.; Fisher, J.; Bartels, M.J. Development of a physiologically-based pharmacokinetic model of 2-phenoxyethanol and its metabolite phenoxyacetic acid in rats and humans to address toxicokinetic uncertainty in risk assessment. Regul. Toxicol. Pharmacol., 2015, 73(2), 530-543. doi: 10.1016/j.yrtph.2015.07.012 PMID: 26188115
  32. Methaneethorn, J.; Naosang, K.; Kaewworasut, P.; Poomsaidorn, C.; Lohitnavy, M. Development of a physiologically-based pharmacokinetic Model of Δ 9-Tetrahydrocannabinol in mice, rats, and pigs. Eur. J. Drug Metab. Pharmacokinet., 2020, 45(4), 487-494. doi: 10.1007/s13318-020-00616-6 PMID: 32253721
  33. Sweeney, L.M.; Kirman, C.R.; Gannon, S.A.; Thrall, K.D.; Gargas, M.L.; Kinzell, J.H. Development of a physiologically based pharmacokinetic (PBPK) model for methyl iodide in rats, rabbits, and humans. Inhal. Toxicol., 2009, 21(6), 552-582. doi: 10.1080/08958370802601569 PMID: 19519155
  34. Campbell, J.L., Jr; Bull, R.J.; Clewell, H.J., III Development of a rat and human PBPK model for bromate and estimation of human equivalent concentrations in drinking water. Int. J. Environ. Health Res., 2021, 31(8), 951-962. doi: 10.1080/09603123.2019.1702628 PMID: 31850798
  35. Peters, S.A. Identification of intestinal loss of a drug through physiologically based pharmacokinetic simulation of plasma concentration-time profiles. Clin. Pharmacokinet., 2008, 47(4), 245-259. doi: 10.2165/00003088-200847040-00003 PMID: 18336054
  36. Sarangapani, R.; Teeguarden, J.G.; Gentry, P.R.; Clewell, H.J., III; Barton, H.A.; Bogdanffy, M.S. Interspecies dose extrapolation for inhaled dimethyl sulfate: A PBPK model-based analysis using nasal cavity N7-methylguanine adducts. Inhal. Toxicol., 2004, 16(9), 593-605. doi: 10.1080/08958370490464562 PMID: 16036752
  37. Li, X.; Yang, Y.; Zhang, Y.; Wu, C.; Jiang, Q.; Wang, W.; Li, H.; Li, J.; Luo, C.; Wu, W.; Wang, Y.; Zhang, T. Justification of biowaiver and dissolution rate specifications for piroxicam immediate release products based on physiologically based pharmacokinetic modeling: An in-depth analysis. Mol. Pharm., 2019, 16(9), 3780-3790. doi: 10.1021/acs.molpharmaceut.9b00350 PMID: 31398041
  38. Yanagi, M.; Kamiya, Y.; Murayama, N.; Banju, K.; Shimizu, M.; Yamazaki, H. Metabolic profiles for the pyrrolizidine alkaloid neopetasitenine and its metabolite petasitenine in humans extrapolated from rat in vivo and in vitro data sets using a simplified physiologically based pharmacokinetic model. J. Toxicol. Sci., 2021, 46(9), 391-399. doi: 10.2131/jts.46.391 PMID: 34470991
  39. Noh, K.; Yang, Q.J.; Sekhon, L.; Quach, H.P.; Chow, E.C.Y.; Pang, K.S. Noteworthy idiosyncrasies of 1α,25‐dihydroxyvitamin D 3 kinetics for extrapolation from mouse to man: Commentary. Biopharm. Drug Dispos., 2020, 41(3), 126-148. doi: 10.1002/bdd.2223 PMID: 32319119
  40. Sarangapani, R.; Teeguarden, J.G.; Cruzan, G.; Clewell, H.J.; Andersen, M.E. Physiologically based pharmacokinetic modeling of styrene and styrene oxide respiratory-tract dosimetry in rodents and humans. Inhal. Toxicol., 2002, 14(8), 789-834. doi: 10.1080/08958370290084647 PMID: 12122565
  41. Lu, X.F.; Bi, K.; Chen, X. Physiologically based pharmacokinetic model of docetaxel and interspecies scaling: comparison of simple injection with folate receptor-targeting amphiphilic copolymer-modified liposomes. Xenobiotica, 2016, 46(12), 1093-1104. doi: 10.3109/00498254.2016.1155128 PMID: 26986924
  42. Hudachek, S.F.; Gustafson, D.L. Physiologically based pharmacokinetic model of lapatinib developed in mice and scaled to humans. J. Pharmacokinet. Pharmacodyn., 2013, 40(2), 157-176. doi: 10.1007/s10928-012-9295-8 PMID: 23315145
  43. Dallas, C.E.; Chen, X.M.; Muralidhara, S.; Varkonyi, P.; Tackett, R.L.; Bruckner, J.V. Physiologically based pharmacokinetic model useful in prediction of the influence of species, dose, and exposure route on perchloroethylene pharmacokinetics. J. Toxicol. Environ. Health, 1995, 44(3), 301-317. doi: 10.1080/15287399509531961 PMID: 7897693
  44. Chen, Y.; Zhao, K.; Liu, F.; Xie, Q.; Zhong, Z.; Miao, M.; Liu, X.; Liu, L. Prediction of deoxypodophyllotoxin disposition in mouse, rat, monkey, and dog by physiologically based pharmacokinetic model and the extrapolation to human. Front. Pharmacol., 2016, 7, 488. doi: 10.3389/fphar.2016.00488 PMID: 28018224
  45. Pierrillas, P.B.; Henin, E.; Ball, K.; Ogier, J.; Amiel, M.; Kraus-Berthier, L.; Chenel, M.; Bouzom, F.; Tod, M. Prediction of human nonlinear pharmacokinetics of a new Bcl-2 inhibitor using PBPK modeling and interspecies extrapolation strategy. Drug Metab. Dispos., 2019, 47(6), 648-656. doi: 10.1124/dmd.118.085605 PMID: 30940629
  46. Béliveau, M.; Lipscomb, J.; Tardif, R.; Krishnan, K. Quantitative structure-property relationships for interspecies extrapolation of the inhalation pharmacokinetics of organic chemicals. Chem. Res. Toxicol., 2005, 18(3), 475-485. doi: 10.1021/tx049722k PMID: 15777087
  47. Sweeney, L.M.; Phillips, E.A.; Goodwin, M.R.; Bannon, D.I. Toxicokinetic model development for the insensitive munitions component 3-Nitro-1,2,4-Triazol-5-One. Int. J. Toxicol., 2015, 34(5), 408-416. doi: 10.1177/1091581815589000 PMID: 26060267
  48. Pande, P.; Madeen, E.P.; Williams, D.E.; Crowell, S.R.; Ognibene, T.J.; Turteltaub, K.W.; Corley, R.A.; Smith, J.N. Translating dosimetry of Dibenzodef,pchrysene (DBC) and metabolites across dose and species using physiologically based pharmacokinetic (PBPK) modeling. Toxicol. Appl. Pharmacol., 2022, 438, 115830. doi: 10.1016/j.taap.2021.115830 PMID: 34933053
  49. Kirman, C.R.; Sweeney, L.M.; Corley, R.; Gargas, M.L. Using physiologically-based pharmacokinetic modeling to address nonlinear kinetics and changes in rodent physiology and metabolism due to aging and adaptation in deriving reference values for propylene glycol methyl ether and propylene glycol methyl ether acetate. Risk Anal., 2005, 25(2), 271-284. doi: 10.1111/j.1539-6924.2005.00588.x PMID: 15876203
  50. Animal Models of Thrombosis and Hemorrhagic Diseases; National Academies Press: Washington, D.C., 1976, pp. 189-204. doi: 10.17226/19903
  51. Hau, J.; Van, G.L. Handbook of Laboratory Animal Science; Crc Press: Boca Raton, Fla., 2003, p. 2.
  52. Sweeney, L.M.; Gargas, M.L. Route-to-route extrapolation of 1,2-dichloroethane studies from the oral route to inhalation using physiologically based pharmacokinetic models. Regul. Toxicol. Pharmacol., 2016, 81, 468-479. doi: 10.1016/j.yrtph.2016.10.005 PMID: 27756559
  53. Johnson, P.D.; Besselsen, D.G. Practical aspects of experimental design in animal research. ILAR J., 2002, 43(4), 202-206. doi: 10.1093/ilar.43.4.202 PMID: 12391395
  54. Animal Models of Diabetes; King, A.J.F., Ed.; Springer US: New York, NY, 2020. doi: 10.1007/978-1-0716-0385-7
  55. Davies, B.; Morris, T. Physiological parameters in laboratory animals and humans. Pharm. Res., 1993, 10(7), 1093-1095. doi: 10.1023/A:1018943613122 PMID: 8378254
  56. Brown, R.P.; Delp, M.D.; Lindstedt, S.L.; Rhomberg, L.R.; Beliles, R.P. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol. Ind. Health, 1997, 13(4), 407-484. doi: 10.1177/074823379701300401 PMID: 9249929
  57. Upton, R.N. Organ weights and blood flows of sheep and pig for physiological pharmacokinetic modelling. J. Pharmacol. Toxicol. Methods, 2008, 58(3), 198-205. doi: 10.1016/j.vascn.2008.08.001 PMID: 18775498
  58. Lin, L.; Wong, H. Predicting oral drug absorption: Mini review on physiologically-based pharmacokinetic models. Pharmaceutics, 2017, 9(4), 41. doi: 10.3390/pharmaceutics9040041 PMID: 28954416
  59. Lipscomb, J.C.; Haddad, S.; Poet, T.; Krishnan, K. Physiologically-based pharmacokinetic (PBPK) models in toxicity testing and risk assessment. Adv. Exp. Med. Biol., 2012, 745, 76-95. doi: 10.1007/978-1-4614-3055-1_6 PMID: 22437814
  60. Gibaldi, M.; Lee, M. Archana Desai; American Society Of Health-System Pharmacists. Gibaldi’s Drug Delivery Systems in Pharmaceutical Care; American Society Of Health-System Pharmacists: Bethesda, Md., 2007.
  61. Turner, P.V.; Brabb, T.; Pekow, C.; Vasbinder, M.A. Administration of substances to laboratory animals: Routes of administration and factors to consider. J. Am. Assoc. Lab. Anim. Sci., 2011, 50(5), 600-613. PMID: 22330705
  62. Diep, U.; Chudow, M.; Sunjic, K.M. Pharmacokinetic changes in liver failure and impact on drug therapy. AACN Adv. Crit. Care, 2017, 28(2), 93-101. doi: 10.4037/aacnacc2017948 PMID: 28592464
  63. Shah, V.P.; Amidon, G.L.; Lennernas, H.; Shah, V.P.; Crison, J.R. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability, Pharm Res 12, 413-420, 1995--backstory of BCS. AAPS J., 2014, 16(5), 894-898. doi: 10.1208/s12248-014-9620-9 PMID: 24961917
  64. Papich, M.G.; Martinez, M.N. Applying Biopharmaceutical Classification System (BCS) criteria to predict oral absorption of drugs in dogs: Challenges and pitfalls. AAPS J., 2015, 17(4), 948-964. doi: 10.1208/s12248-015-9743-7 PMID: 25916691
  65. Liu, Y.; Sun, J.; Zhong, L.; Li, Y.; Er, A.N.; Li, T.; Yang, L.; Dong, L. Combination of a biopharmaceutic classification system and physiologically based pharmacokinetic models to predict absorption properties of baicalein in vitro and in vivo. J. Tradit. Chin. Med. Sci., 2021, 8(3), 238-247. doi: 10.1016/j.jtcms.2021.07.006
  66. Hansmann, S.; Darwich, A.; Margolskee, A.; Aarons, L.; Dressman, J. Forecasting oral absorption across biopharmaceutics classification system classes with physiologically based pharmacokinetic models. J. Pharm. Pharmacol., 2016, 68(12), 1501-1515. doi: 10.1111/jphp.12618 PMID: 27781273
  67. Alqahtani, M.S.; Kazi, M.; Alsenaidy, M.A.; Ahmad, M.Z. Advances in oral drug delivery. Front. Pharmacol., 2021, 12, 618411. doi: 10.3389/fphar.2021.618411 PMID: 33679401
  68. di Cagno, M.P.; Clarelli, F.; Våbenø, J.; Lesley, C.; Rahman, S.D.; Cauzzo, J.; Franceschinis, E.; Realdon, N.; Stein, P.C. Experimental determination of drug diffusion coefficients in unstirred aqueous environments by temporally resolved concentration measurements. Mol. Pharm., 2018, 15(4), 1488-1494. doi: 10.1021/acs.molpharmaceut.7b01053 PMID: 29462563
  69. Lin, W.; Chen, Y.; Unadkat, J.D.; Zhang, X.; Wu, D.; Heimbach, T. Applications, challenges, and outlook for pbpk modeling and simulation: A regulatory, industrial and academic perspective. Pharm. Res., 2022, 39(8), 1701-1731. doi: 10.1007/s11095-022-03274-2 PMID: 35552967
  70. Wang, Y.; Cder, O. PBPK Current Status and Challenges: A Regulatory Perspective. In: Development of Best Practices in Physiologically Based Pharmacokinetic Modeling to Support Clinical Pharmacology Regulatory Decision-Making; , 2019.
  71. Manolis, E.; Musuamba, F.T.; Karlsson, K.E. The european medicines agency experience with pediatric dose selection. J. Clin. Pharmacol., 2021, 61(Suppl. 1), S22-S27. doi: 10.1002/jcph.1863 PMID: 34185894
  72. Maharaj, A.R.; Edginton, A.N. Physiologically based pharmacokinetic modeling and simulation in pediatric drug development. CPT Pharmacometrics Syst. Pharmacol., 2014, 3(11), 1-13. doi: 10.1038/psp.2014.45 PMID: 25353188
  73. Rosenbaum, S. Basic Pharmacokinetics and Pharmacodynamics: An Integrated Textbook and Computer Simulations; John Wiley & Sons, Inc: Hoboken, New Jersey, 2017.
  74. Onetto, A.J.; Sharif, S. Drug Distribution; StatPearls, 2022.
  75. Espié, P.; Tytgat, D.; Sargentini-Maier, M.L.; Poggesi, I.; Watelet, J.B. Physiologically based pharmacokinetics (PBPK). Drug Metab. Rev., 2009, 41(3), 391-407. doi: 10.1080/10837450902891360 PMID: 19601719
  76. Khalil, F.; Läer, S. Physiologically based pharmacokinetic modeling: Methodology, applications, and limitations with a focus on its role in pediatric drug development. J. Biomed. Biotechnol., 2011, 2011, 1-13. doi: 10.1155/2011/907461 PMID: 21716673
  77. Yoon, M.; Kedderis, G.L.; Yang, Y.; Allen, B.C.; Yan, G.Z.; Clewell, H.J. Use of in vitro data in PBPK Models: An example of in vitro to in vivo extrapolation with carbaryl. ACS Symposium Series, 2012, pp. 323-338. doi: 10.1021/bk-2012-1099.ch020
  78. Kundu, P.K.; Cohen, I.M.; Dowling, D.R. Fluid Mechanics; Academic Press: Waltham, Ma, 2012.
  79. Vulović, A.; Šušteršič, T.; Cvijić, S.; Ibrić, S.; Filipović, N. Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling. Eur. J. Pharm. Sci., 2018, 113, 171-184. doi: 10.1016/j.ejps.2017.10.022 PMID: 29054499
  80. Afshar, M.; Lanoue, A.; Sallantin, J. Multiobjective/multicriteria optimization and decision support in drug discovery. Comprehensive Medicinal Chemistry, 2007, II, 767-774. doi: 10.1016/B0-08-045044-X/00275-3
  81. Peyret, T.; Krishnan, K. QSARs for PBPK modelling of environmental contaminants. SAR QSAR Environ. Res., 2011, 22(1-2), 129-169. doi: 10.1080/1062936X.2010.548351 PMID: 21391145
  82. Gaohua, L.; Miao, X.; Dou, L. Crosstalk of physiological pH and chemical pKa under the umbrella of physiologically based pharmacokinetic modeling of drug absorption, distribution, metabolism, excretion, and toxicity. Expert Opin. Drug Metab. Toxicol., 2021, 17(9), 1103-1124. doi: 10.1080/17425255.2021.1951223 PMID: 34253134
  83. Peters, S.A. Physiologically Based Pharmacokinetic (PBPK) modeling and simulations: Principles, methods, and applications in the pharmaceutical industry; John Wiley & Sons, Inc: Hoboken, Nj, 2022.
  84. Mintun, M.; Himmelstein, K.J.; Schroder, R.L.; Gibaldi, M.; Shen, D.D. Tissue distribution kinetics of tetraethylammonium ion in the rat. J. Pharmacokinet. Biopharm., 1980, 8(4), 373-409. doi: 10.1007/BF01059385 PMID: 7431228
  85. Marcoline, F.; Grabe, M.; Nayak, S.; Zahnley, T.; Oster, G.; Macey, R. Berkeley Madonna User’s Guide; University of California Department of Molecular and Cellular Biolog, 2020.
  86. El-Khateeb, E.; Burkhill, S.; Murby, S.; Amirat, H.; Rostami-Hodjegan, A.; Ahmad, A. Physiological‐based pharmacokinetic modeling trends in pharmaceutical drug development over the last 20‐years; in‐depth analysis of applications, organizations, and platforms. Biopharm. Drug Dispos., 2021, 42(4), 107-117. doi: 10.1002/bdd.2257 PMID: 33325034
  87. Kuepfer, L. Prospects and limitations of physiologically-based pharmacokinetic modelling for cross-species extrapolation. SVU-International Journal of Veterinary Sciences, 2019, 2(2), 45-51. doi: 10.21608/svu.2019.14193.1020 PMID: 31108904
  88. Yuan, Y.; He, Q.; Zhang, S.; Li, M.; Tang, Z.; Zhu, X.; Jiao, Z.; Cai, W.; Xiang, X. Application of physiologically based pharmacokinetic modeling in preclinical studies: A feasible strategy to practice the principles of 3Rs. Front. Pharmacol., 2022, 13, 895556. doi: 10.3389/fphar.2022.895556 PMID: 35645843

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024