Drugs to Treat Neuroinflammation in Neurodegenerative Disorders
- Authors: Wang Y.1, Kung W.2, Chung Y.3, Kumar S.4
-
Affiliations:
- Graduate Institute of Injury Prevention and Control, College of Public Health,, Taipei Medical University
- Department of Exercise and Health Promotion, College of Kinesiology and Health,, Chinese Culture University
- Department of Medical Research and Development,, Linkou Chang Gung Memorial Hospital,
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University
- Issue: Vol 31, No 14 (2024)
- Pages: 1818-1829
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjmseer.com/0929-8673/article/view/644343
- DOI: https://doi.org/10.2174/0929867330666230403125140
- ID: 644343
Cite item
Full Text
Abstract
Neuroinflammation is associated with disorders of the nervous system, and it is induced in response to many factors, including pathogen infection, brain injury, toxic substances, and autoimmune diseases. Astrocytes and microglia have critical roles in neuroinflammation. Microglia are innate immune cells in the central nervous system (CNS), which are activated in reaction to neuroinflammation-inducing factors. Astrocytes can have pro- or anti-inflammatory responses, which depend on the type of stimuli presented by the inflamed milieu. Microglia respond and propagate peripheral inflammatory signals within the CNS that cause low-grade inflammation in the brain. The resulting alteration in neuronal activities leads to physiological and behavioral impairment. Consequently, activation, synthesis, and discharge of various pro-inflammatory cytokines and growth factors occur. These events lead to many neurodegenerative conditions, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis discussed in this study. After understanding neuroinflammation mechanisms and the involvement of neurotransmitters, this study covers various drugs used to treat and manage these neurodegenerative illnesses. The study can be helpful in discovering new drug molecules for treating neurodegenerative disorders.
About the authors
Yao-Chin Wang
Graduate Institute of Injury Prevention and Control, College of Public Health,, Taipei Medical University
Email: info@benthamscience.net
Woon-Man Kung
Department of Exercise and Health Promotion, College of Kinesiology and Health,, Chinese Culture University
Email: info@benthamscience.net
Yi-Hsiu Chung
Department of Medical Research and Development,, Linkou Chang Gung Memorial Hospital,
Author for correspondence.
Email: info@benthamscience.net
Sunil Kumar
Graduate Institute of Natural Products, College of Medicine, Chang Gung University
Author for correspondence.
Email: info@benthamscience.net
References
- Ebert, S.E.; Jensen, P.; Ozenne, B.; Armand, S.; Svarer, C.; Stenbaek, D.S.; Moeller, K.; Dyssegaard, A.; Thomsen, G.; Steinmetz, J.; Forchhammer, B.H.; Knudsen, G.M.; Pinborg, L.H. Molecular imaging of neuroinflammation in patients after mild traumatic brain injury: a longitudinal 123 I- CLINDE single photon emission computed tomography study. Eur. J. Neurol., 2019, 26(12), 1426-1432. doi: 10.1111/ene.13971 PMID: 31002206
- Ji, R.R.; Nackley, A.; Huh, Y.; Terrando, N.; Maixner, W. Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology, 2018, 129(2), 343-366. doi: 10.1097/ALN.0000000000002130 PMID: 29462012
- Leng, F.; Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat. Rev. Neurol., 2021, 17(3), 157-172. doi: 10.1038/s41582-020-00435-y PMID: 33318676
- Park, K.; Lee, S.J. Deciphering the star codings: astrocyte manipulation alters mouse behavior. Exp. Mol. Med., 2020, 52(7), 1028-1038. doi: 10.1038/s12276-020-0468-z PMID: 32665584
- Sofroniew, M.V. Astrocyte barriers to neurotoxic inflammation. Nat. Rev. Neurosci., 2015, 16(5), 249-263. doi: 10.1038/nrn3898 PMID: 25891508
- Li, K. Reactive Astrocytes in Neurodegenerative Diseases. Aging Dis., 2018, 10. PMID: 31165009
- Rouach, N.; Koulakoff, A.; Abudara, V.; Willecke, K.; Giaume, C. Astroglial metabolic networks sustain hippocampal synaptic transmission. Science, 2008, 322(5907), 1551-1555. doi: 10.1126/science.1164022 PMID: 19056987
- Jessen, N.A.; Munk, A.S.F.; Lundgaard, I.; Nedergaard, M. The glymphatic system: A beginners guide. Neurochem. Res., 2015, 40(12), 2583-2599. doi: 10.1007/s11064-015-1581-6 PMID: 25947369
- Matejuk, A.; Ransohoff, R.M. Crosstalk between astrocytes and microglia: An overview. Front. Immunol., 2020, 11, 1416-1416. doi: 10.3389/fimmu.2020.01416 PMID: 32765501
- Mattson, M.P.; Arumugam, T.V. Hallmarks of brain aging: Adaptive and pathological modification by metabolic states. Cell Metab., 2018, 27(6), 1176-1199. doi: 10.1016/j.cmet.2018.05.011 PMID: 29874566
- Cekanaviciute, E.; Buckwalter, M.S. Astrocytes: Integrative regulators of neuroinflammation in stroke and other neurological diseases. Neurotherapeutics, 2016, 13(4), 685-701. doi: 10.1007/s13311-016-0477-8 PMID: 27677607
- Tyzack, G.E.; Sitnikov, S.; Barson, D.; Adams-Carr, K.L.; Lau, N.K.; Kwok, J.C.; Zhao, C.; Franklin, R.J.M.; Karadottir, R.T.; Fawcett, J.W.; Lakatos, A. Astrocyte response to motor neuron injury promotes structural synaptic plasticity via STAT3-regulated TSP-1 expression. Nat. Commun., 2014, 5(1), 4294. doi: 10.1038/ncomms5294 PMID: 25014177
- Colombo, E.; Farina, C. Astrocytes: Key regulators of neuroinflammation. Trends Immunol., 2016, 37(9), 608-620. doi: 10.1016/j.it.2016.06.006 PMID: 27443914
- Mitchell, T.J.; John, S. Signal transducer and activator of transcription (STAT) signalling and T-cell lymphomas. Immunology, 2005, 114(3), 301-312. doi: 10.1111/j.1365-2567.2005.02091.x PMID: 15720432
- Klegeris, A. Targeting neuroprotective functions of astrocytes in neuroimmune diseases. Expert Opin. Ther. Targets, 2021, 25(4), 237-241. doi: 10.1080/14728222.2021.1915993 PMID: 33836642
- Rothhammer, V.; Quintana, F.J. Control of autoimmune CNS inflammation by astrocytes. Semin. Immunopathol., 2015, 37(6), 625-638. doi: 10.1007/s00281-015-0515-3 PMID: 26223505
- Palpagama, T.H.; Waldvogel, H.J.; Faull, R.L.M.; Kwakowsky, A. The role of microglia and astrocytes in huntingtons disease. Front. Mol. Neurosci., 2019, 12(258), 258. doi: 10.3389/fnmol.2019.00258 PMID: 31708741
- Guo, S.; Wang, H.; Yin, Y. Microglia polarization from M1 to M2 in neurodegenerative diseases. Front. Aging Neurosci., 2022, 14, 815347. doi: 10.3389/fnagi.2022.815347 PMID: 35250543
- Kwon, H.S.; Koh, S.H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl. Neurodegener., 2020, 9(1), 42. doi: 10.1186/s40035-020-00221-2 PMID: 33239064
- Gendelman, H.E. Neural immunity: Friend or foe? J. Neurovirol., 2002, 8(6), 474-479. doi: 10.1080/13550280290168631 PMID: 12476342
- DiSabato, D.J.; Quan, N.; Godbout, J.P. Neuroinflammation: The devil is in the details. J. Neurochem., 2016, 139(S2), 136-153. doi: 10.1111/jnc.13607
- Bachiller, S.; Jiménez-Ferrer, I.; Paulus, A.; Yang, Y.; Swanberg, M.; Deierborg, T.; Boza-Serrano, A. Microglia in neurological diseases: A road map to brain-disease dependent-inflammatory response. Front. Cell. Neurosci., 2018, 12(488), 488. doi: 10.3389/fncel.2018.00488 PMID: 30618635
- Harry, G.J.; Kraft, A.D. Neuroinflammation and microglia: considerations and approaches for neurotoxicity assessment. Expert Opin. Drug Metab. Toxicol., 2008, 4(10), 1265-1277. doi: 10.1517/17425255.4.10.1265 PMID: 18798697
- Streit, W.J.; Mrak, R.E.; Griffin, W.S.T. Microglia and neuroinflammation: a pathological perspective. J. Neuroinflammation, 2004, 1(1), 14. doi: 10.1186/1742-2094-1-14 PMID: 15285801
- Streit, W.J. Microglial senescence: does the brains immune system have an expiration date? Trends Neurosci., 2006, 29(9), 506-510. doi: 10.1016/j.tins.2006.07.001 PMID: 16859761
- Davalos, D.; Grutzendler, J.; Yang, G.; Kim, J.V.; Zuo, Y.; Jung, S.; Littman, D.R.; Dustin, M.L.; Gan, W.B. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci., 2005, 8(6), 752-758. doi: 10.1038/nn1472 PMID: 15895084
- Raivich, G. Like cops on the beat: the active role of resting microglia. Trends Neurosci., 2005, 28(11), 571-573. doi: 10.1016/j.tins.2005.09.001 PMID: 16165228
- Wang, W-Y.; Tan, M.S.; Yu, J.T.; Tan, L. Role of pro-inflammatory cytokines released from microglia in Alzheimers disease. Ann. Transl. Med., 2015, 3(10), 136-136. PMID: 26207229
- Boche, D.; Perry, V.H.; Nicoll, J.A.R. Review: Activation patterns of microglia and their identification in the human brain. Neuropathol. Appl. Neurobiol., 2013, 39(1), 3-18. doi: 10.1111/nan.12011 PMID: 23252647
- Sica, A.; Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest., 2012, 122(3), 787-795. doi: 10.1172/JCI59643 PMID: 22378047
- Shibata, M. Hypothalamic neuronal responses to cytokines. Yale J. Biol. Med., 1990, 63(2), 147-156. PMID: 2205055
- Bernheim, H.A.; Kluger, M.J. Fever: effect of drug-induced antipyresis on survival. Science, 1976, 193(4249), 237-239. doi: 10.1126/science.935867 PMID: 935867
- Kempuraj, D.; Thangavel, R.; Selvakumar, G.P.; Zaheer, S.; Ahmed, M.E.; Raikwar, S.P.; Zahoor, H.; Saeed, D.; Natteru, P.A.; Iyer, S.; Zaheer, A. Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front. Cell. Neurosci., 2017, 11, 216-216. doi: 10.3389/fncel.2017.00216 PMID: 28790893
- Park, B.S.; Lee, J.O. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med., 2013, 45(12), e66-e66. doi: 10.1038/emm.2013.97 PMID: 24310172
- Lu, Y.C.; Yeh, W.C.; Ohashi, P.S. LPS/TLR4 signal transduction pathway. Cytokine, 2008, 42(2), 145-151. doi: 10.1016/j.cyto.2008.01.006 PMID: 18304834
- Vaure, C.Ã.; Liu, Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front. Immunol., 2014, 5(316), 316. doi: 10.3389/fimmu.2014.00316 PMID: 25071777
- Soares, J.B.; Pimentel-Nunes, P.; Roncon-Albuquerque, R., Jr; Leite-Moreira, A. The role of lipopolysaccharide/toll-like receptor 4 signaling in chronic liver diseases. Hepatol. Int., 2010, 4(4), 659-672. doi: 10.1007/s12072-010-9219-x PMID: 21286336
- Wang, L.; Li, D.; Yang, K.; Hu, Y.; Zeng, Q. Toll-like receptor-4 and mitogen-activated protein kinase signal system are involved in activation of dendritic cells in patients with acute coronary syndrome. Immunology, 2008, 125(1), 122-130. doi: 10.1111/j.1365-2567.2008.02827.x PMID: 18373609
- Badshah, H.; Ali, T.; Kim, M.O. Osmotin attenuates LPS-induced neuroinflammation and memory impairments via the TLR4/NFκB signaling pathway. Sci. Rep., 2016, 6(1), 24493. doi: 10.1038/srep24493 PMID: 27093924
- Guo, C.; Yang, L.; Wan, C.X.; Xia, Y.Z.; Zhang, C.; Chen, M.H.; Wang, Z.D.; Li, Z.R.; Li, X.M.; Geng, Y.D.; Kong, L.Y. Anti-neuroinflammatory effect of Sophoraflavanone G from Sophora alopecuroides in LPS-activated BV2 microglia by MAPK, JAK/STAT and Nrf2/HO-1 signaling pathways. Phytomedicine, 2016, 23(13), 1629-1637. doi: 10.1016/j.phymed.2016.10.007 PMID: 27823627
- Maung, A.A.; Fujimi, S.; Miller, M.L.; MacConmara, M.P.; Mannick, J.A.; Lederer, J.A. Enhanced TLR4 reactivity following injury is mediated by increased p38 activation. J. Leukoc. Biol., 2005, 78(2), 565-573. doi: 10.1189/jlb.1204698 PMID: 15857937
- Ahmed, M.B.; Islam, S.U.; Lee, Y.S. Decursin negatively regulates LPS-induced upregulation of the TLR4 and JNK signaling stimulated by the expression of PRP4 in vitro. Anim. Cells Syst., 2020, 24(1), 44-52. doi: 10.1080/19768354.2020.1726811 PMID: 32158615
- Fukata, M.; Chen, A.; Klepper, A.; Krishnareddy, S.; Vamadevan, A.S.; Thomas, L.S.; Xu, R.; Inoue, H.; Arditi, M.; Dannenberg, A.J.; Abreu, M.T. Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: Role in proliferation and apoptosis in the intestine. Gastroenterology, 2006, 131(3), 862-877. doi: 10.1053/j.gastro.2006.06.017 PMID: 16952555
- Lee, J.Y.; Nam, J.H.; Nam, Y.; Nam, H.Y.; Yoon, G.; Ko, E.; Kim, S.B.; Bautista, M.R.; Capule, C.C.; Koyanagi, T.; Leriche, G.; Choi, H.G.; Yang, J.; Kim, J.; Hoe, H.S. The small molecule CA140 inhibits the neuroinflammatory response in wild-type mice and a mouse model of AD. J. Neuroinflammation, 2018, 15(1), 286. doi: 10.1186/s12974-018-1321-3 PMID: 30309372
- Greenhill, C.J.; Rose-John, S.; Lissilaa, R.; Ferlin, W.; Ernst, M.; Hertzog, P.J.; Mansell, A.; Jenkins, B.J. IL-6 trans-signaling modulates TLR4-dependent inflammatory responses via STAT3. J. Immunol., 2011, 186(2), 1199-1208. doi: 10.4049/jimmunol.1002971 PMID: 21148800
- Meraz-Ríos, M.A.; Toral-Rios, D.; Franco-Bocanegra, D.; Villeda-Hernández, J.; Campos-Peña, V. Inflammatory process in Alzheimers disease. Front. Integr. Nuerosci., 2013, 7, 59.
- Dunn, N.; Mullee, M.; Perry, V.H.; Holmes, C. Association between dementia and infectious disease: evidence from a case-control study. Alzheimer Dis. Assoc. Disord., 2005, 19(2), 91-94. doi: 10.1097/01.wad.0000165511.52746.1f PMID: 15942327
- Ren, L.; Yi, J.; Yang, J.; Li, P.; Cheng, X.; Mao, P. Nonsteroidal anti-inflammatory drugs use and risk of Parkinson disease. Medicine (Baltimore), 2018, 97(37), e12172-e12172. doi: 10.1097/MD.0000000000012172 PMID: 30212946
- Etminan, M.; Gill, S.; Samii, A. Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimers disease: systematic review and meta-analysis of observational studies. BMJ, 2003, 327(7407), 128. doi: 10.1136/bmj.327.7407.128 PMID: 12869452
- Lamkanfi, M.; Dixit, V.M. Inflammasomes and their roles in health and disease. Annu. Rev. Cell Dev. Biol., 2012, 28(1), 137-161. doi: 10.1146/annurev-cellbio-101011-155745 PMID: 22974247
- Spooren, A.; Kolmus, K.; Laureys, G.; Clinckers, R.; De Keyser, J.; Haegeman, G.; Gerlo, S. Interleukin-6, a mental cytokine. Brain Res. Brain Res. Rev., 2011, 67(1-2), 157-183. doi: 10.1016/j.brainresrev.2011.01.002 PMID: 21238488
- Qi, Y.; Zou, L.B.; Wang, L.H.; Jin, G.; Pan, J.J.; Chi, T.Y.; Ji, X.F. Xanthoceraside inhibits pro-inflammatory cytokine expression in Aβ25-35/IFN-γ-stimulated microglia through the TLR2 receptor, MyD88, nuclear factor-κB, and mitogen-activated protein kinase signaling pathways. J. Pharmacol. Sci., 2013, 122(4), 305-317. doi: 10.1254/jphs.13031FP PMID: 23966052
- Chen, H.; Shuai, L.; Lu, J. Folic acid supplementation mitigates Alzheimer's disease by reducing inflammation: A randomized controlled trial. Mediators Inflamm, 2016, 2016, 5912146. doi: 10.1155/2016/5912146
- Kumar, A.; Sharma, S. Donepezil, in StatPearls; StatPearls Publishing LLC: Treasure Island (FL), 2020.
- Birks, J. Cholinesterase inhibitors for Alzheimers disease. Cochrane Database Syst. Rev., 2006, 2006(1), CD005593. PMID: 16437532
- Schneider, L.S.; Dagerman, K.S.; Higgins, J.P.; McShane, R. Lack of evidence for the efficacy of memantine in mild Alzheimer disease. Arch. Neurol., 2011, 68(8), 991-998. doi: 10.1001/archneurol.2011.69 PMID: 21482915
- Touchon, J.; Bergman, H.; Bullock, R.; Rapatz, G.; Nagel, J.; Lane, R. Response to rivastigmine or donepezil in Alzheimers patients with symptoms suggestive of concomitant Lewy body pathology. Curr. Med. Res. Opin., 2006, 22(1), 49-59. doi: 10.1185/030079906X80279 PMID: 16393430
- Fitzgerald, P.J.; Hale, P.J.; Ghimire, A.; Watson, B.O. The cholinesterase inhibitor donepezil has antidepressant-like properties in the mouse forced swim test. Transl. Psychiatry, 2020, 10(1), 255. doi: 10.1038/s41398-020-00928-w PMID: 32712627
- Forloni, G.; Balducci, C. Alzheimers disease, oligomers, and inflammation. J. Alzheimers Dis., 2018, 62(3), 1261-1276. doi: 10.3233/JAD-170819 PMID: 29562537
- Kim, H.G.; Moon, M.; Choi, J.G.; Park, G.; Kim, A.J.; Hur, J.; Lee, K.T.; Oh, M.S. Donepezil inhibits the amyloid-beta oligomer-induced microglial activation in vitro and in vivo. Neurotoxicology, 2014, 40, 23-32. doi: 10.1016/j.neuro.2013.10.004 PMID: 24189446
- Liu, Y.; Zhang, Y.; Zheng, X.; Fang, T.; Yang, X.; Luo, X.; Guo, A.; Newell, K.A.; Huang, X.F.; Yu, Y. Galantamine improves cognition, hippocampal inflammation, and synaptic plasticity impairments induced by lipopolysaccharide in mice. J. Neuroinflammation, 2018, 15(1), 112. doi: 10.1186/s12974-018-1141-5 PMID: 29669582
- Wu, H.M.; Tzeng, N.S.; Qian, L.; Wei, S.J.; Hu, X.; Chen, S.H.; Rawls, S.M.; Flood, P.; Hong, J.S.; Lu, R.B. Novel neuroprotective mechanisms of memantine: increase in neurotrophic factor release from astroglia and anti-inflammation by preventing microglial activation. Neuropsychopharmacology, 2009, 34(10), 2344-2357. doi: 10.1038/npp.2009.64 PMID: 19536110
- Nizri, E.; Irony-Tur-Sinai, M.; Faranesh, N.; Lavon, I.; Lavi, E.; Weinstock, M.; Brenner, T. Suppression of neuroinflammation and immunomodulation by the acetylcholinesterase inhibitor rivastigmine. J. Neuroimmunol., 2008, 203(1), 12-22. doi: 10.1016/j.jneuroim.2008.06.018 PMID: 18692909
- Tansey, M.G.; Goldberg, M.S. Neuroinflammation in Parkinsons disease: Its role in neuronal death and implications for therapeutic intervention. Neurobiol. Dis., 2010, 37(3), 510-518. doi: 10.1016/j.nbd.2009.11.004 PMID: 19913097
- DeMaagd, G.; Philip, A. Parkinson's disease and its management: Part 1: Disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. Pharm. Ther., 2015, 40(8), 504-532. PMID: 26236139
- Wang, Q.; Liu, Y.; Zhou, J. Neuroinflammation in Parkinsons disease and its potential as therapeutic target. Transl. Neurodegener., 2015, 4(1), 19-19. doi: 10.1186/s40035-015-0042-0 PMID: 26464797
- Tang, Y.; Le, W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol. Neurobiol., 2016, 53(2), 1181-1194. doi: 10.1007/s12035-014-9070-5 PMID: 25598354
- Lynch, M.A. Age-related neuroinflammatory changes negatively impact on neuronal function. Front. Aging Neurosci., 2010, 1(6), 6. doi: 10.3389/neuro.24.006.2009 PMID: 20552057
- Tufekci, K.U. Chapter four - inflammation in Parkinsons disease. Advances in protein chemistry and structural biology; Donev, R., Ed.; Academic Press, 2012, pp. 69-132.
- Poewe, W.; Espay, A.J. Long duration response in Parkinsons disease: levodopa revisited. Brain, 2020, 143(8), 2332-2335. doi: 10.1093/brain/awaa226 PMID: 32844192
- Hershey, T.; Black, K.J.; Carl, J.L.; McGee-Minnich, L.; Snyder, A.Z.; Perlmutter, J.S. Long term treatment and disease severity change brain responses to levodopa in Parkinsons disease. J. Neurol. Neurosurg. Psychiatry, 2003, 74(7), 844-851. doi: 10.1136/jnnp.74.7.844 PMID: 12810765
- Poletti, M.; Bonuccelli, U. Acute and chronic cognitive effects of levodopa and dopamine agonists on patients with Parkinsons disease: a review. Ther. Adv. Psychopharmacol., 2013, 3(2), 101-113. doi: 10.1177/2045125312470130 PMID: 24167681
- Aarsland, D.; Ballard, C.; Walker, Z.; Bostrom, F.; Alves, G.; Kossakowski, K.; Leroi, I.; Pozo-Rodriguez, F.; Minthon, L.; Londos, E. Memantine in patients with Parkinsons disease dementia or dementia with Lewy bodies: a double-blind, placebo-controlled, multicentre trial. Lancet Neurol., 2009, 8(7), 613-618. doi: 10.1016/S1474-4422(09)70146-2 PMID: 19520613
- Rashid, U.; Ansari, F.L. Challenges in designing therapeutic agents for treating Alzheimers disease-from serendipity to rationality. In: Drug design and discovery in Alzheimer's disease; Atta ur, R.; Choudhary, M.I., Eds.; Elsevier, 2014; pp. 40-141.
- McShane, R.; Maggie, J.W.; Emmert, R. Memantine for dementia. Cochrane Database Syst. Rev., 2019, 3(3), CD003154. doi: 10.1002/14651858.CD003154.pub6
- Rizzi, G.; Tan, K.R. Dopamine and acetylcholine, a circuit point of view in Parkinsons disease. Front. Neural Circuits, 2017, 11(110), 110. doi: 10.3389/fncir.2017.00110 PMID: 29311846
- Alshammari, T.M.; AlMutairi, E.N. Use of an entacapone- containing drug combination and risk of death: Analysis of the FDA AERS (FAERS) database. Saudi Pharm J., 2015, 23(1), 28-32. doi: 10.1016/j.jsps.2014.04.005 PMID: 25685040
- Lecht, S.; Haroutiunian, S.; Hoffman, A.; Lazarovici, P. Rasagiline - a novel MAO B inhibitor in Parkinsons disease therapy. Ther. Clin. Risk Manag., 2007, 3(3), 467-474. PMID: 18488080
- LeWitt, P.A.; Fahn, S. Levodopa therapy for Parkinson disease: A look backward and forward. Neurology, 2016, 86(14)(Suppl. 1), S3-S12. doi: 10.1212/WNL.0000000000002509 PMID: 27044648
- Yan, Y.; Jiang, W.; Liu, L.; Wang, X.; Ding, C.; Tian, Z.; Zhou, R. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell, 2015, 160(1-2), 62-73. doi: 10.1016/j.cell.2014.11.047 PMID: 25594175
- Chen, H.; Jacobs, E.; Schwarzschild, M.A.; McCullough, M.L.; Calle, E.E.; Thun, M.J.; Ascherio, A. Nonsteroidal antiinflammatory drug use and the risk for Parkinsons disease. Ann. Neurol., 2005, 58(6), 963-967. doi: 10.1002/ana.20682 PMID: 16240369
- Naegele, M.; Martin, R. The good and the bad of neuroinflammation in multiple sclerosis. Handbook of Clinical Neurology; Goodin, D.S., Ed.; Elsevier, 2014, pp. 59-87.
- Matthews, P.M. Chronic inflammation in multiple sclerosis - seeing what was always there. Nat. Rev. Neurol., 2019, 15(10), 582-593. doi: 10.1038/s41582-019-0240-y PMID: 31420598
- Frank-Cannon, T.C.; Alto, L.T.; McAlpine, F.E.; Tansey, M.G. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol. Neurodegener., 2009, 4(1), 47-47. doi: 10.1186/1750-1326-4-47 PMID: 19917131
- Wynn, D.R. Enduring clinical value of copaxone® (glatiramer acetate) in multiple sclerosis after 20 years of use. Mult. Scler. Int., 2019, 2019, 1-19. doi: 10.1155/2019/7151685 PMID: 30775037
- Pjrek, E.; Winkler, D.; Dervic, K.; Aschauer, H.; Kasper, S. Psychosis as a possible side-effect of treatment with glatiramer acetate. Int. J. Neuropsychopharmacol., 2005, 8(3), 487-488. doi: 10.1017/S1461145705005304 PMID: 15975191
- Mandal, P.; Gupta, A.; Fusi-Rubiano, W.; Keane, P.A.; Yang, Y. Fingolimod: therapeutic mechanisms and ocular adverse effects. Eye (Lond.), 2017, 31(2), 232-240. doi: 10.1038/eye.2016.258 PMID: 27886183
- Gajofatto, A.; Turatti, M.; Monaco, S.; Benedetti, M.D. Clinical efficacy, safety, and tolerability of fingolimod for the treatment of relapsing-remitting multiple sclerosis. Drug Healthc. Patient Saf., 2015, 7, 157-167. doi: 10.2147/DHPS.S69640 PMID: 26715860
- OConnor, P.; Comi, G.; Freedman, M.S.; Miller, A.E.; Kappos, L.; Bouchard, J.P.; Lebrun-Frenay, C.; Mares, J.; Benamor, M.; Thangavelu, K.; Liang, J.; Truffinet, P.; Lawson, V.J.; Wolinsky, J.S. Long-term safety and efficacy of teriflunomide. Neurology, 2016, 86(10), 920-930. doi: 10.1212/WNL.0000000000002441 PMID: 26865517
- Rafiee Zadeh, A.; Ghadimi, K.; Ataei, A.; Askari, M.; Sheikhinia, N.; Tavoosi, N.; Falahatian, M. Mechanism and adverse effects of multiple sclerosis drugs: a review article. Part 2. Int. J. Physiol. Pathophysiol. Pharmacol., 2019, 11(4), 105-114. PMID: 31523358
- Deeks, E.D. Cladribine tablets: A review in relapsing MS. CNS Drugs, 2018, 32(8), 785-796. doi: 10.1007/s40263-018-0562-0 PMID: 30105527
- Minton, K. Cladribine hope for multiple sclerosis. Nat. Rev. Immunol., 2009, 9(6), 387-387. doi: 10.1038/nri2579
- Carlström, K.E.; Ewing, E.; Granqvist, M.; Gyllenberg, A.; Aeinehband, S.; Enoksson, S.L.; Checa, A.; Badam, T.V.S.; Huang, J.; Gomez-Cabrero, D.; Gustafsson, M.; Al Nimer, F.; Wheelock, C.E.; Kockum, I.; Olsson, T.; Jagodic, M.; Piehl, F. Therapeutic efficacy of dimethyl fumarate in relapsing-remitting multiple sclerosis associates with ROS pathway in monocytes. Nat. Commun., 2019, 10(1), 3081. doi: 10.1038/s41467-019-11139-3 PMID: 31300673
- Toumi, M.; Jadot, G. Economic impact of new active substance status on EU payers budgets: example of dimethyl fumarate (Tecfidera®) for multiple sclerosis. J. Mark. Access Health Policy, 2014, 2(1), 23932. doi: 10.3402/jmahp.v2.23932 PMID: 27226838
- Foroughipour, M.; Gazeran, S. Effectiveness and side effects of dimethyl fumarate in multiple sclerosis after 12 months of follow up: An Iranian clinical trial. Iran. J. Neurol., 2019, 18(4), 154-158. PMID: 32117551
- Diaz, R.A.; Doss, S.; Burke, M.J.; George, E.; Adler, A.I. Alemtuzumab for relapsing-remitting multiple sclerosis. Lancet Neurol., 2014, 13(9), 869-870. doi: 10.1016/S1474-4422(14)70184-X PMID: 25285344
- Guarnera, C.; Bramanti, P.; Mazzon, E. Alemtuzumab: a review of efficacy and risks in the treatment of relapsing remitting multiple sclerosis. Ther. Clin. Risk Manag., 2017, 13, 871-879. doi: 10.2147/TCRM.S134398 PMID: 28761351
- Huggett, B. How Tysabri survived. Nat. Biotechnol., 2009, 27(11), 986-986. doi: 10.1038/nbt1109-986 PMID: 19898447
- Hoepner, R.; Faissner, S.; Salmen, A.; Gold, R.; Chan, A. Efficacy and side effects of natalizumab therapy in patients with multiple sclerosis. J. Cent. Nerv. Syst. Dis., 2014, 6, JCNSD.S14049. doi: 10.4137/JCNSD.S14049 PMID: 24855407
- Ali, Z.K.; Baker, D.E. Formulary drug review: Ocrelizumab. Hosp. Pharm., 2017, 52(9), 599-606. doi: 10.1177/0018578717731733 PMID: 29276296
- Aschenbrenner, D.S. Two new drugs approved for multiple sclerosis. Am. J. Nurs., 2019, 119(7), 22-23. doi: 10.1097/01.NAJ.0000569436.66670.b3
- Marriott, J.J.; Miyasaki, J.M.; Gronseth, G.; OConnor, P.W. Evidence Report: The efficacy and safety of mitoxantrone (Novantrone) in the treatment of multiple sclerosis: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology, 2010, 74(18), 1463-1470. doi: 10.1212/WNL.0b013e3181dc1ae0 PMID: 20439849
- Scott, L.J.; Figgitt, D.P. Mitoxantrone. CNS Drugs, 2004, 18(6), 379-396. doi: 10.2165/00023210-200418060-00010 PMID: 15089110
- David, O.J.; Kovarik, J.M.; Schmouder, R.L. Clinical pharmacokinetics of fingolimod. Clin. Pharmacokinet., 2012, 51(1), 15-28. doi: 10.2165/11596550-000000000-00000 PMID: 22149256
Supplementary files
