MicroRNA-mediated Regulation of LDL Receptor: Biological and Pharmacological Implications


Cite item

Full Text

Abstract

One of the main causes of atherosclerosis is a disruption in cellular cholesterol hemostasis. The low-density lipoprotein receptor (LDLR) is an important factor in maintaining cholesterol homeostasis by the receptor-mediated endocytosis of LDL particles. Defective hepatic LDLR activity and uptake of LDL particles lead to elevated blood levels of low-density lipoprotein cholesterol (LDL-C), which is associated with a higher risk of atherosclerotic cardiovascular disease. LDLR expression can be affected by microRNAs (miRNAs). Some miRNAs, like miR-148a, miR-185, miR-224, miR-520, miR-128-1, miR-27a/b, miR-130b, and miR-301 seem to be important post-transcriptional regulators of LDLR related genes. These findings indicate the critical role of miRNAs in regulating LDL metabolism. The aim of this review was to provide insight into the miRNAs involved in LDLR activity and their potential roles in the treatment of cardiovascular disease.

About the authors

Reyhaneh Keshavarz

Department of Genetics, Faculty of Biological Sciences,, Islamic Azad University,

Email: info@benthamscience.net

Željko Reiner

Department of Internal Medicine, University Hospital Center Zagreb, University of Zagreb,

Email: info@benthamscience.net

Gokhan Zengin

Department of Biology, Science Faculty,, Selçuk University

Email: info@benthamscience.net

Ali Eid

Department of Basic Medical Sciences, College of Medicine, Qatar University

Email: info@benthamscience.net

Amirhossein Sahebkar

Biotechnology Research Center, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Macchi, C.; Greco, M.F.; Favero, C.; Dioni, L.; Cantone, L.; Hoxha, M.; Vigna, L.; Solazzo, G.; Corsini, A.; Banach, M.; Pesatori, A.C.; Bollati, V.; Ruscica, M. Associations among PCSK9 levels, atherosclerosis-derived extracellular vesicles, and their miRNA content in adults with obesity. Front. Cardiovasc. Med., 2022, 8, 785250. doi: 10.3389/fcvm.2021.785250 PMID: 35071356
  2. Alvarez, M.L.; Khosroheidari, M.; Eddy, E.; Done, S.C. MicroRNA-27a decreases the level and efficiency of the LDL receptor and contributes to the dysregulation of cholesterol homeostasis. Atherosclerosis, 2015, 242(2), 595-604. doi: 10.1016/j.atherosclerosis.2015.08.023 PMID: 26318398
  3. Aryal, B.; Singh, A.K.; Rotllan, N.; Price, N.; Fernández-Hernando, C. MicroRNAs and lipid metabolism. Curr. Opin. Lipidol., 2017, 28(3), 273-280. doi: 10.1097/MOL.0000000000000420 PMID: 28333713
  4. Goedeke, L.; Wagschal, A.; Fernández-Hernando, C.; Näär, A.M. miRNA regulation of LDL-cholesterol metabolism. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2016, 1861(12)(12 Pt B), 2047-2052. doi: 10.1016/j.bbalip.2016.03.007 PMID: 26968099
  5. Bahrami, A.; Parsamanesh, N.; Atkin, S.L.; Banach, M.; Sahebkar, A. Effect of statins on toll-like receptors: A new insight to pleiotropic effects. Pharmacol. Res., 2018, 135, 230-238. doi: 10.1016/j.phrs.2018.08.014 PMID: 30120976
  6. Ferretti, G.; Bacchetti, T.; Sahebkar, A. Effect of statin therapy on paraoxonase-1 status: A systematic review and meta-analysis of 25 clinical trials. Prog. Lipid Res., 2015, 60, 50-73. doi: 10.1016/j.plipres.2015.08.003 PMID: 26416579
  7. Parizadeh, S.M.R.; Azarpazhooh, M.R.; Moohebati, M.; Nematy, M.; Ghayour-Mobarhan, M.; Tavallaie, S.; Rahsepar, A.A.; Amini, M.; Sahebkar, A.; Mohammadi, M.; Ferns, G.A.A. Simvastatin therapy reduces prooxidant-antioxidant balance: Results of a placebo-controlled cross-over trial. Lipids, 2011, 46(4), 333-340. doi: 10.1007/s11745-010-3517-x PMID: 21207250
  8. Sahebkar, A.; Kotani, K.; Serban, C.; Ursoniu, S.; Mikhailidis, D.P.; Jones, S.R.; Ray, K.K.; Blaha, M.J.; Rysz, J.; Toth, P.P.; Muntner, P.; Lip, G.Y.H.; Banach, M. Statin therapy reduces plasma endothelin-1 concentrations: A meta-analysis of 15 randomized controlled trials. Atherosclerosis, 2015, 241(2), 433-442. doi: 10.1016/j.atherosclerosis.2015.05.022 PMID: 26074317
  9. Sahebkar, A.; Serban, C.; Mikhailidis, D.P.; Undas, A.; Lip, G.Y.H.; Muntner, P.; Bittner, V.; Ray, K.K.; Watts, G.F.; Hovingh, G.K.; Rysz, J.; Kastelein, J.J.; Banach, M. Association between statin use and plasma D-dimer levels. A systematic review and meta-analysis of randomised controlled trials. Thromb. Haemost., 2015, 114(3), 546-557. PMID: 26017749
  10. Sahebkar, A.; Serban, C.; Ursoniu, S.; Mikhailidis, D.P.; Undas, A.; Lip, G.Y.H.; Bittner, V.; Ray, K.K.; Watts, G.F.; Hovingh, G.K.; Rysz, J.; Kastelein, J.J.P.; Banach, M. The impact of statin therapy on plasma levels of von Willebrand factor antigen. Thromb. Haemost., 2016, 115(3), 520-532. doi: 10.1160/th15-08-0620 PMID: 26632869
  11. Koushki, K.; Shahbaz, S.K.; Mashayekhi, K.; Sadeghi, M.; Zayeri, Z.D.; Yousefi, M.T.; Banach, M.; Al- Rasadi, K.; Johnston, T.P.; Sahebkar A. Anti-inflammatory action of statins in cardiovascular disease: The role of inflammasome and toll-Like receptor pathways. Clin. Rev. Allergy. Immunol., 2021, 60(2), 175-199. doi: 10.1007/s12016-020-08791-9
  12. Sohrevardi, S.; Nasab, F.; Mirjalili, M.; Bagherniya, M.; Tafti, A.; Jarrahzadeh, M.; Azarpazhooh, M.; Saeidmanesh, M.; Banach, M.; Jamialahmadi, T.; Sahebkar, A. Effect of atorvastatin on delirium status of patients in the intensive care unit: A randomized controlled trial. Arch. Med. Sci., 2019, 17(5), 1423-1428. doi: 10.5114/aoms.2019.89330 PMID: 34522273
  13. Bahrami, A.; Bo, S.; Jamialahmadi, T.; Sahebkar, A. Effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on ageing: Molecular mechanisms. Ageing Res. Rev., 2020, 58, 101024. doi: 10.1016/j.arr.2020.101024 PMID: 32006687
  14. Vallejo-Vaz, A.J.; De Marco, M.; Stevens, C.A.T.; Akram, A.; Freiberger, T.; Hovingh, G.K.; Kastelein, J.J.P.; Mata, P.; Raal, F.J.; Santos, R.D.; Soran, H.; Watts, G.F.; Abifadel, M.; Aguilar-Salinas, C.A.; Al-khnifsawi, M.; AlKindi, F.A.; Alnouri, F.; Alonso, R.; Al-Rasadi, K.; Al-Sarraf, A.; Ashavaid, T.F.; Binder, C.J.; Bogsrud, M.P.; Bourbon, M.; Bruckert, E.; Chlebus, K.; Corral, P.; Descamps, O.; Durst, R.; Ezhov, M.; Fras, Z.; Genest, J.; Groselj, U.; Harada-Shiba, M.; Kayikcioglu, M.; Lalic, K.; Lam, C.S.P.; Latkovskis, G.; Laufs, U.; Liberopoulos, E.; Lin, J.; Maher, V.; Majano, N.; Marais, A.D.; März, W.; Mirrakhimov, E.; Miserez, A.R.; Mitchenko, O.; Nawawi, H.M.; Nordestgaard, B.G.; Paragh, G.; Petrulioniene, Z.; Pojskic, B.; Postadzhiyan, A.; Reda, A.; Reiner, Ž.; Sadoh, W.E.; Sahebkar, A.; Shehab, A.; Shek, A.B.; Stoll, M.; Su, T.C.; Subramaniam, T.; Susekov, A.V.; Symeonides, P.; Tilney, M.; Tomlinson, B.; Truong, T.H.; Tselepis, A.D.; Tybjærg-Hansen, A.; Vázquez-Cárdenas, A.; Viigimaa, M.; Vohnout, B.; Widén, E.; Yamashita, S.; Banach, M.; Gaita, D.; Jiang, L.; Nilsson, L.; Santos, L.E.; Schunkert, H.; Tokgözoğlu, L.; Car, J.; Catapano, A.L.; Ray, K.K. Overview of the current status of familial hypercholesterolaemia care in over 60 countries-the EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Atherosclerosis, 2018, 277, 234-255. doi: 10.1016/j.atherosclerosis.2018.08.051 PMID: 30270054
  15. Banach, M.; Serban, C.; Ursoniu, S.; Rysz, J.; Muntner, P.; Toth, P.P.; Jones, S.R.; Rizzo, M.; Glasser, S.P.; Watts, G.F.; Blumenthal, R.S.; Lip, G.Y.H.; Mikhailidis, D.P.; Sahebkar, A. Statin therapy and plasma coenzyme Q10 concentrations-A systematic review and meta-analysis of placebo-controlled trials. Pharmacol. Res., 2015, 99, 329-336. doi: 10.1016/j.phrs.2015.07.008 PMID: 26192349
  16. Bytyçi, I.; Penson, P.E.; Mikhailidis, D.P.; Wong, N.D.; Hernandez, A.V.; Sahebkar, A.; Thompson, P.D.; Mazidi, M.; Rysz, J.; Pella, D.; Reiner, Ž.; Toth, P.P.; Banach, M. Prevalence of statin intolerance: A meta-analysis. Eur. Heart J., 2022, 43(34), 3213-3223. doi: 10.1093/eurheartj/ehac015 PMID: 35169843
  17. Treiber, T.; Treiber, N.; Meister, G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol. Cell Biol., 2019, 20(1), 5-20. doi: 10.1038/s41580-018-0059-1 PMID: 30228348
  18. Yang, S.C.; Alalaiwe, A.; Lin, Z.C.; Lin, Y.C.; Aljuffali, I.A.; Fang, J.Y. Anti-inflammatory microRNAs for treating inflammatory skin dseases. Biomolecules, 2022, 12(8), 1072. doi: 10.3390/biom12081072 PMID: 36008966
  19. Medley, J.C.; Panzade, G.; Zinovyeva, A.Y. microRNA strand selection: Unwinding the rules. Wiley Interdiscip. Rev. RNA, 2021, 12(3), e1627. doi: 10.1002/wrna.1627 PMID: 32954644
  20. Goedeke, L.; Aranda, J.F.; Fernández-Hernando, C. microRNA regulation of lipoprotein metabolism. Curr. Opin. Lipidol., 2014, 25(4), 282-288. doi: 10.1097/MOL.0000000000000094 PMID: 24978143
  21. Ramírez, C.M.; Goedeke, L.; Fernández-Hernando, C. "Micromanaging" metabolic syndrome. Cell Cycle, 2011, 10(19), 3249-3252. doi: 10.4161/cc.10.19.17558 PMID: 21946517
  22. Goedeke, L.; Rotllan, N.; Ramírez, C.M.; Aranda, J.F.; Canfrán-Duque, A.; Araldi, E.; Fernández-Hernando, A.; Langhi, C.; de Cabo, R.; Baldán, Á.; Suárez, Y.; Fernández-Hernando, C. miR-27b inhibits LDLR and ABCA1 expression but does not influence plasma and hepatic lipid levels in mice. Atherosclerosis, 2015, 243(2), 499-509. doi: 10.1016/j.atherosclerosis.2015.09.033 PMID: 26520906
  23. Chen, W.J.; Yin, K.; Zhao, G.J.; Fu, Y.C.; Tang, C.K. The magic and mystery of MicroRNA-27 in atherosclerosis. Atherosclerosis, 2012, 222(2), 314-323. doi: 10.1016/j.atherosclerosis.2012.01.020 PMID: 22307089
  24. Wagschal, A.; Najafi-Shoushtari, S.H.; Wang, L.; Goedeke, L.; Sinha, S.; deLemos, A.S.; Black, J.C.; Ramírez, C.M.; Li, Y.; Tewhey, R.; Hatoum, I.; Shah, N.; Lu, Y.; Kristo, F.; Psychogios, N.; Vrbanac, V.; Lu, Y.C.; Hla, T.; de Cabo, R.; Tsang, J.S.; Schadt, E.; Sabeti, P.C.; Kathiresan, S.; Cohen, D.E.; Whetstine, J.; Chung, R.T.; Fernández-Hernando, C.; Kaplan, L.M.; Bernards, A.; Gerszten, R.E.; Näär, A.M. Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. Nat. Med., 2015, 21(11), 1290-1297. doi: 10.1038/nm.3980 PMID: 26501192
  25. Salerno, A.G.; van Solingen, C.; Scotti, E.; Wanschel, A.C.B.A.; Afonso, M.S.; Oldebeken, S.R.; Spiro, W.; Tontonoz, P.; Rayner, K.J.; Moore, K.J. LDL receptor pathway regulation by miR-224 and miR-520d. Front. Cardiovasc. Med., 2020, 7, 81. doi: 10.3389/fcvm.2020.00081 PMID: 32528976
  26. Jiang, H.; Zhang, J.; Du, Y.; Jia, X.; Yang, F.; Si, S.; Wang, L.; Hong, B. microRNA-185 modulates low density lipoprotein receptor expression as a key posttranscriptional regulator. Atherosclerosis, 2015, 243(2), 523-532. doi: 10.1016/j.atherosclerosis.2015.10.026 PMID: 26523989
  27. Yang, M.; Liu, W.; Pellicane, C.; Sahyoun, C.; Joseph, B.K.; Gallo-Ebert, C.; Donigan, M.; Pandya, D.; Giordano, C.; Bata, A.; Nickels, J.T., Jr Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake. J. Lipid Res., 2014, 55(2), 226-238. doi: 10.1194/jlr.M041335 PMID: 24296663
  28. Xu, Y.; Gao, J.; Gong, Y.; Chen, M.; Chen, J.; Zhao, W.; Tan, S. Hsa-miR-140-5p down-regulates LDL receptor and attenuates LDL-C uptake in human hepatocytes. Atherosclerosis, 2020, 297, 111-119. doi: 10.1016/j.atherosclerosis.2020.02.004 PMID: 32109664
  29. van Solingen, C.; Oldebeken, S.R.; Salerno, A.G.; Wanschel, A.C.B.A.; Moore, K.J. High-throughput screening identifies MicroRNAs regulating human PCSK9 and hepatic low-density lipoprotein receptor expression. Front. Cardiovasc. Med., 2021, 8, 667298. doi: 10.3389/fcvm.2021.667298 PMID: 34322524
  30. Ma, N.; Fan, L.; Dong, Y.; Xu, X.; Yu, C.; Chen, J.; Ren, J. New PCSK9 inhibitor miR-552-3p reduces LDL-C via enhancing LDLR in high fat diet-fed mice. Pharmacol. Res., 2021, 167, 105562. doi: 10.1016/j.phrs.2021.105562 PMID: 33737240
  31. Wang, N.; He, L.; Lin, H.; Tan, L.; Sun, Y.; Zhang, X.; Danser, A.H.J.; Lu, H.S.; He, Y.; Lu, X. MicroRNA-148a regulates low-density lipoprotein metabolism by repressing the (pro)renin receptor. PLoS One, 2020, 15(5), e0225356. doi: 10.1371/journal.pone.0225356 PMID: 32437440
  32. Liu, A.; Frostegård, J. PCSK9 plays a novel immunological role in oxidized LDL-induced dendritic cell maturation and activation of T cells from human blood and atherosclerotic plaque. J. Intern. Med., 2018, 284(2), 193-210. doi: 10.1111/joim.12758 PMID: 29617044
  33. Rotllan, N.; Fernández-Hernando, C. MicroRNA regulation of cholesterol metabolism. Cholesterol, 2012, 2012, 1-8. doi: 10.1155/2012/847849 PMID: 22919472
  34. Lambert, G.; Sjouke, B.; Choque, B.; Kastelein, J.J.P.; Hovingh, G.K. The PCSK9 decade. J. Lipid Res., 2012, 53(12), 2515-2524. doi: 10.1194/jlr.R026658 PMID: 22811413
  35. Reiner, Ž. PCSK9 inhibitors in clinical practice: Expectations and reality. Atherosclerosis, 2018, 270, 187-188. doi: 10.1016/j.atherosclerosis.2018.01.001 PMID: 29366497
  36. Dong, J.; He, M.; Li, J.; Pessentheiner, A.; Wang, C.; Zhang, J.; Sun, Y.; Wang, W.T.; Zhang, Y.; Liu, J.; Wang, S.C.; Huang, P.H.; Gordts, P.L.S.M.; Yuan, Z.Y.; Tsimikas, S.; Shyy, J.Y.J. microRNA-483 ameliorates hypercholesterolemia by inhibiting PCSK9 production. JCI Insight, 2020, 5(23), e143812. doi: 10.1172/jci.insight.143812 PMID: 33119548
  37. Momtazi, A.A.; Banach, M.; Pirro, M.; Stein, E.A.; Sahebkar, A. MicroRNAs: New therapeutic targets for familial hypercholesterolemia? Clin. Rev. Allergy Immunol., 2018, 54(2), 224-233. doi: 10.1007/s12016-017-8611-x PMID: 28534160
  38. Šimić, I.; Reiner, Z. Adverse effects of statins-myths and reality. Curr. Pharm. Des., 2015, 21(9), 1220-1226. doi: 10.2174/1381612820666141013134447 PMID: 25312733

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers