Synthesis and Selective Anticancer Activity Evaluation of 2-phenylacrylonitrile Derivatives as Tubulin Inhibitors

  • Authors: Jin Y.1, Xin Y.2, Li Y.3, Chen X.4, Man D.5, Tian Y.1
  • Affiliations:
    1. Key Laboratory of Natural Medicines of the Changbai Mountain, Department of Medicinal Chemistry, Ministry of Education, College of Pharmacy, Yanbian University
    2. Yanji, 133002, Jilin Province, Yanbian University
    3. Key Laboratory of Natural Medicines of the Changbai Mountain, Department of Medicinal Chemistry, Ministry of Education, College of Pharmacy, Yanbian University,
    4. Key Laboratory of Natural Medicines of the Changbai Mountain, Department of Medicinal Chemistry, Ministry of Education, College of Pharmacy,, Yanbian University
    5. Key Laboratory of Natural Medicines of the Changbai Mountain, Department of Medicinal Chemistry, Ministry of Education, College of Pharmacy,, Yanbian University,
  • Issue: Vol 31, No 15 (2024)
  • Pages: 2090-2106
  • Section: Anti-Infectives and Infectious Diseases
  • URL: https://rjmseer.com/0929-8673/article/view/644415
  • DOI: https://doi.org/10.2174/0109298673263854231009063053
  • ID: 644415

Cite item

Full Text

Abstract

Objective:This study aimed at synthesizing 13 series of novel derivatives with 2-phenylacrylonitrile, evaluating antitumor activity both in vivo and in vitro, and obtaining novel tubulin inhibitors.

Methods:The 13 series of 2-phenylacrylonitrile derivatives were synthesized by Knoevenagel condensation and the anti-proliferative activities were determined by MTT assay. The cell cycle and apoptosis were analyzed by flow cytometer. Quantitative cell migration was performed using 24-well Boyden chambers. The proteins were detected by western blotting. in vitro kinetics of microtubule assembly was measured using ELISA kit for Human β-tubulin (TUBB). Molecular docking was done by Discovery Studio (DS) 2017 Client online tool.

Results:Among the derivatives, compound 1g2a possessed strong inhibitory activity against HCT116 (IC50 = 5.9 nM) and BEL-7402 (IC50 = 7.8 nM) cells. Compound 1g2a exhibited better selective antiproliferative activities and specificities than all the positive control drugs, including taxol. Compound 1g2a inhibited proliferation of HCT116 and BEL-7402 cells by arresting them in the G2/M phase of the cell cycle, inhibited the migration of HCT116 and BEL-7402 cells and the formation of cell colonies. Compound 1g2a showed excellent tubulin polymerization inhibitory activity on HCT116 and BEL-7402 cells. The results of molecular docking analyses showed that 1g2a may inhibit tubulin to exert anticancer effects.

Conclusion:Compound 1g2a shows outstanding antitumor activity both in vivo and in vitro and has the potential to be further developed into a highly effective antitumor agent with little toxicity to normal tissues.

About the authors

Ye-Zhi Jin

Key Laboratory of Natural Medicines of the Changbai Mountain, Department of Medicinal Chemistry, Ministry of Education, College of Pharmacy, Yanbian University

Email: info@benthamscience.net

Ya-Bing Xin

Yanji, 133002, Jilin Province, Yanbian University

Email: info@benthamscience.net

Yuan Li

Key Laboratory of Natural Medicines of the Changbai Mountain, Department of Medicinal Chemistry, Ministry of Education, College of Pharmacy, Yanbian University,

Email: info@benthamscience.net

Xin-Yuan Chen

Key Laboratory of Natural Medicines of the Changbai Mountain, Department of Medicinal Chemistry, Ministry of Education, College of Pharmacy,, Yanbian University

Email: info@benthamscience.net

De-Ao Man

Key Laboratory of Natural Medicines of the Changbai Mountain, Department of Medicinal Chemistry, Ministry of Education, College of Pharmacy,, Yanbian University,

Email: info@benthamscience.net

Yu-Shun Tian

Key Laboratory of Natural Medicines of the Changbai Mountain, Department of Medicinal Chemistry, Ministry of Education, College of Pharmacy, Yanbian University

Author for correspondence.
Email: info@benthamscience.net

References

  1. You, L.; Lv, Z.; Li, C.; Ye, W.; Zhou, Y.; Jin, J.; Han, Q. Worldwide cancer statistics of adolescents and young adults in 2019: A systematic analysis of the Global Burden of Disease Study 2019. ESMO Open, 2021, 6(5), 100255. doi: 10.1016/j.esmoop.2021.100255 PMID: 34481330
  2. Ma, J.; Li, J.; Tian, Y.S. Synthesis and bioactivity evaluation of 2,3-diaryl acrylonitrile derivatives as potential anticancer agents. Bioorg. Med. Chem. Lett., 2017, 27(1), 81-85. doi: 10.1016/j.bmcl.2016.11.025 PMID: 27887843
  3. Hashem, S.; Ali, T.A.; Akhtar, S.; Nisar, S.; Sageena, G.; Ali, S.; Al-Mannai, S.; Therachiyil, L.; Mir, R.; Elfaki, I.; Mir, M.M.; Jamal, F.; Masoodi, T.; Uddin, S.; Singh, M.; Haris, M.; Macha, M.; Bhat, A.A. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomed. Pharmacother., 2022, 150, 113054. doi: 10.1016/j.biopha.2022.113054 PMID: 35658225
  4. Giacomini, E.; Rupiani, S.; Guidotti, L.; Recanatini, M.; Roberti, M. The use of stilbene scaffold in medicinal chemistry and multi- target drug design. Curr. Med. Chem., 2016, 23(23), 2439-2489. doi: 10.2174/0929867323666160517121629 PMID: 27183980
  5. De Filippis, B.; Ammazzalorso, A.; Fantacuzzi, M.; Giampietro, L.; Maccallini, C.; Amoroso, R. Anticancer activity of stilbene-based derivatives. ChemMedChem, 2017, 12(8), 558-570. doi: 10.1002/cmdc.201700045 PMID: 28266812
  6. Mikstacka, R.; Stefański, T.; Różański, J. Tubulin-interactive stilbene derivatives as anticancer agents. Cell. Mol. Biol. Lett., 2013, 18(3), 368-397. doi: 10.2478/s11658-013-0094-z PMID: 23818224
  7. Mustafa, M.; Anwar, S.; Elgamal, F.; Ahmed, E.R.; Aly, O.M. Potent combretastatin A-4 analogs containing 1,2,4-triazole: Synthesis, antiproliferative, anti-tubulin activity, and docking study. Eur. J. Med. Chem., 2019, 183, 111697. doi: 10.1016/j.ejmech.2019.111697 PMID: 31536891
  8. Fu, D.J.; Yang, J.J.; Li, P.; Hou, Y.H.; Huang, S.N.; Tippin, M.A.; Pham, V.; Song, L.; Zi, X.; Xue, W.L.; Zhang, L.R.; Zhang, S.Y. Bioactive heterocycles containing a 3,4,5-trimethoxyphenyl fragment exerting potent antiproliferative activity through microtubule destabilization. Eur. J. Med. Chem., 2018, 157, 50-61. doi: 10.1016/j.ejmech.2018.07.060 PMID: 30075402
  9. Checchi, P.M.; Nettles, J.H.; Zhou, J.; Snyder, J.P.; Joshi, H.C. Microtubule-interacting drugs for cancer treatment. Trends Pharmacol. Sci., 2003, 24(7), 361-365. doi: 10.1016/S0165-6147(03)00161-5 PMID: 12871669
  10. Liang, T.; Lu, L.; Song, X.; Qi, J.; Wang, J. Combination of microtubule targeting agents with other antineoplastics for cancer treatment. Biochim. Biophys. Acta Rev. Cancer, 2022, 1877(5), 188777. doi: 10.1016/j.bbcan.2022.188777 PMID: 35963551
  11. Zheng, S.; Zhong, Q.; Mottamal, M.; Zhang, Q.; Zhang, C.; LeMelle, E.; McFerrin, H.; Wang, G. Design, synthesis, and biological evaluation of novel pyridine-bridged analogues of combretastatin-A4 as anticancer agents. J. Med. Chem., 2014, 57(8), 3369-3381. doi: 10.1021/jm500002k PMID: 24669888
  12. Metzler, M.; Neumann, H.G. Epoxidation of the stilbene double bond, a major pathway in aminostilbene metabolism. Xenobiotica, 1977, 7(3), 117-132. doi: 10.3109/00498257709036244 PMID: 848044
  13. Brown, A.W.; Fisher, M.; Tozer, G.M.; Kanthou, C.; Harrity, J.P.A. Sydnone cycloaddition route to pyrazole-based analogs of combretastatin A4. J. Med. Chem., 2016, 59(20), 9473-9488. doi: 10.1021/acs.jmedchem.6b01128 PMID: 27690431
  14. Carr, M.; Greene, L.M.; Knox, A.J.S.; Lloyd, D.G.; Zisterer, D.M.; Meegan, M.J. Lead identification of conformationally restricted β-lactam type combretastatin analogues: Synthesis, antiproliferative activity and tubulin targeting effects. Eur. J. Med. Chem., 2010, 45(12), 5752-5766. doi: 10.1016/j.ejmech.2010.09.033 PMID: 20933304
  15. Chaudhary, V.; Venghateri, J.B.; Dhaked, H.P.S.; Bhoyar, A.S.; Guchhait, S.K.; Panda, D. Novel combretastatin-2-aminoimidazole analogues as potent tubulin assembly inhibitors: Exploration of unique pharmacophoric impact of bridging skeleton and aryl moiety. J. Med. Chem., 2016, 59(7), 3439-3451. doi: 10.1021/acs.jmedchem.6b00101 PMID: 26938120
  16. Mustafa, M.; Abdelhamid, D.; Abdelhafez, E.M.N.; Ibrahim, M.A.A.; Gamal-Eldeen, A.M.; Aly, O.M. Synthesis, antiproliferative, anti-tubulin activity, and docking study of new 1,2,4-triazoles as potential combretastatin analogues. Eur. J. Med. Chem., 2017, 141, 293-305. doi: 10.1016/j.ejmech.2017.09.063 PMID: 29031074
  17. Sun, J.; Chen, L.; Liu, C.; Wang, Z.; Zuo, D.; Pan, J.; Qi, H.; Bao, K.; Wu, Y.; Zhang, W. Synthesis and biological evaluations of 1,2-diaryl pyrroles as analogues of combretastatin A-4. Chem. Biol. Drug Des., 2015, 86(6), 1541-1547. doi: 10.1111/cbdd.12617 PMID: 26202587
  18. Tsyganov, D.V.; Khrustalev, V.N.; Konyushkin, L.D.; Raihstat, M.M.; Firgang, S.I.; Semenov, R.V.; Kiselyov, A.S.; Semenova, M.N.; Semenov, V.V. 3-(5-)-amino-o-diarylisoxazoles: Regioselective synthesis and antitubulin activity. Eur. J. Med. Chem., 2014, 73, 112-125. doi: 10.1016/j.ejmech.2013.12.006 PMID: 24388833
  19. Li, J.J.; Ma, J.; Xin, Y.B.; Quan, Z.S.; Tian, Y.S. Synthesis and pharmacological evaluation of 2,3-diphenyl acrylonitriles-bearing halogen as selective anticancer agents. Chem. Biol. Drug Des., 2018, 92(2), 1419-1428. doi: 10.1111/cbdd.13180 PMID: 29516624
  20. Xin, Y.B.; Li, J.J.; Zhang, H.J.; Ma, J.; Liu, X.; Gong, G.H.; Tian, Y.S. Synthesis and characterisation of ( Z )-styrylbenzene derivatives as potential selective anticancer agents. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1554-1564. doi: 10.1080/14756366.2018.1513925 PMID: 30244610
  21. Göker, H.; Karaaslan, C.; Püsküllü, M.O.; Yildiz, S.; Duydu, Y.; Üstündağ, A.; Yalcin, C.Ö. Synthesis and in vitro activity of polyhalogenated 2-phenylbenzimidazoles as a new class of anti-MRSA and anti-VRE agents. Chem. Biol. Drug Des., 2016, 87(1), 57-68. doi: 10.1111/cbdd.12623 PMID: 26221778
  22. Ma, L.; Lu, Y.; Li, Y.; Yang, Z.; Mao, Y.; Wang, Y.; Man, S. A novel halogenated adenosine analog 5′-BrDA displays potent toxicity against colon cancer cells in vivo and in vitro. Toxicol. Appl. Pharmacol., 2022, 436, 115857. doi: 10.1016/j.taap.2021.115857 PMID: 34979143
  23. Mukherjee, A.; Ghosh, S.; Ghosh, S.; Mahato, S.; Pal, M.; Sen, S.K.; Majee, A.; Singh, B. Molecular recognition of synthesized halogenated chalcone by calf thymus DNA through multispectroscopic studies and analysis the anti-cancer, anti-bacterial activity of the compounds. J. Mol. Liq., 2021, 337, 116504. doi: 10.1016/j.molliq.2021.116504
  24. Wan, D.; Yang, J.; McReynolds, C.B.; Barnych, B.; Wagner, K.M.; Morisseau, C.; Hwang, S.H.; Sun, J.; Blöcher, R.; Hammock, B.D. In vitro and in vivo metabolism of a potent inhibitor of soluble epoxide hydrolase, 1-(1-propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea. Front. Pharmacol., 2019, 10, 464. doi: 10.3389/fphar.2019.00464 PMID: 31143115
  25. Wu, M.J.; Wu, D.M.; Chen, J.B.; Zhao, J.F.; Gong, L.; Gong, Y.X.; Li, Y.; Yang, X.D.; Zhang, H. Synthesis and anti-proliferative activity of allogibberic acid derivatives containing 1,2,3-triazole pharmacophore. Bioorg. Med. Chem. Lett., 2018, 28(14), 2543-2549. doi: 10.1016/j.bmcl.2018.05.038 PMID: 29884535
  26. Shen, Q.K.; Deng, H.; Wang, S.B.; Tian, Y.S.; Quan, Z.S. Synthesis, and evaluation of in vitro and in vivo anticancer activity of 14-substituted oridonin analogs: A novel and potent cell cycle arrest and apoptosis inducer through the p53-MDM2 pathway. Eur. J. Med. Chem., 2019, 173, 15-31. doi: 10.1016/j.ejmech.2019.04.005 PMID: 30981113
  27. Arshad, F.; Khan, M.F.; Akhtar, W.; Alam, M.M.; Nainwal, L.M.; Kaushik, S.K.; Akhter, M.; Parvez, S.; Hasan, S.M.; Shaquiquzzaman, M. Revealing quinquennial anticancer journey of morpholine: A SAR based review. Eur. J. Med. Chem., 2019, 167, 324-356. doi: 10.1016/j.ejmech.2019.02.015 PMID: 30776694
  28. Goel, P.; Alam, O.; Naim, M.J.; Nawaz, F.; Iqbal, M.; Alam, M.I. Recent advancement of piperidine moiety in treatment of cancer : A review. Eur. J. Med. Chem., 2018, 157, 480-502. doi: 10.1016/j.ejmech.2018.08.017 PMID: 30114660
  29. Gul, H.I.; Yamali, C.; Sakagami, H.; Angeli, A.; Leitans, J.; Kazaks, A.; Tars, K.; Ozgun, D.O.; Supuran, C.T. New anticancer drug candidates sulfonamides as selective hCA IX or hCA XII inhibitors. Bioorg. Chem., 2018, 77, 411-419. doi: 10.1016/j.bioorg.2018.01.021 PMID: 29427856
  30. Kassem, A.F.; Nassar, I.F.; Abdel-Aal, M.T.; Awad, H.M.; El-Sayed, W.A. Synthesis and anticancer activity of new ((Furan-2-yl)-1,3,4-thiadiazolyl)-1,3,4-oxadiazole acyclic sugar derivatives. Chem. Pharm. Bull., 2019, 67(8), 888-895. doi: 10.1248/cpb.c19-00280 PMID: 31366838
  31. Makar, S.; Saha, T.; Singh, S.K. Naphthalene, a versatile platform in medicinal chemistry: Sky-high perspective. Eur. J. Med. Chem., 2019, 161, 252-276. doi: 10.1016/j.ejmech.2018.10.018 PMID: 30366253
  32. Zulfiqar, S.; Haroon, M.; Baig, M.W.; Tariq, M.; Ahmad, Z.; Tahir, M.N.; Akhtar, T. Synthesis, crystal structure, anti-cancer, anti-inflammatory anti-oxidant and quantum chemical studies of 4-(pyrrolidine-2,5-dione-1-yl)phenol. J. Mol. Struct., 2021, 1224, 129267. doi: 10.1016/j.molstruc.2020.129267
  33. Joshi, G.; Singh, P.K.; Negi, A.; Rana, A.; Singh, S.; Kumar, R. Growth factors mediated cell signalling in prostate cancer progression: Implications in discovery of anti-prostate cancer agents. Chem. Biol. Interact., 2015, 240, 120-133. doi: 10.1016/j.cbi.2015.08.009 PMID: 26297992
  34. Clarke, P.R.; Allan, L.A. Cell-cycle control in the face of damage : A matter of life or death. Trends Cell Biol., 2009, 19(3), 89-98. doi: 10.1016/j.tcb.2008.12.003 PMID: 19168356
  35. Tian, Y.S.; Kim, H.J.; Kim, H.M. Rho-associated kinase (ROCK) inhibition reverses low cell activity on hydrophobic surfaces. Biochem. Biophys. Res. Commun., 2009, 386(3), 499-503. doi: 10.1016/j.bbrc.2009.06.087 PMID: 19545543
  36. Kamal, A.; Ashraf, M.; Basha, S.T.; Ali Hussaini, S.M.; Singh, S.; Vishnuvardhan, M.V.P.S.; Kiran, B.; Sridhar, B. Design, synthesis and antiproliferative activity of the new conjugates of E7010 and resveratrol as tubulin polymerization inhibitors. Org. Biomol. Chem., 2016, 14(4), 1382-1394. doi: 10.1039/C5OB02022K PMID: 26676480
  37. Chen, X.; Zhang, B.; Yuan, X.; Yang, F.; Liu, J.; Zhao, H.; Liu, L.; Wang, Y.; Wang, Z.; Zheng, Q. Isoliquiritigenin-induced differentiation in mouse melanoma B16F0 cell line. Oxid. Med. Cell. Longev., 2012, 2012, 1-11. doi: 10.1155/2012/534934 PMID: 23304254
  38. Liu, Y.N.; Wang, J.J.; Ji, Y.T.; Zhao, G.D.; Tang, L.Q.; Zhang, C.M.; Guo, X.L.; Liu, Z.P. Design, synthesis, and biological evaluation of 1-methyl-1,4-dihydroindeno1,2- c pyrazole analogues as potential anticancer agents targeting tubulin colchicine binding site. J. Med. Chem., 2016, 59(11), 5341-5355. doi: 10.1021/acs.jmedchem.6b00071 PMID: 27172319

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers