Chalcone Derivatives as Antibacterial Agents: An Updated Overview


Cite item

Full Text

Abstract

Background:The indiscriminate use of antibiotics brings an alarming reality: in 2050, bacterial resistance could be the main cause of death in the world, resulting in the death of 10 million people, according to the World Health Organization (WHO). In this sense, to combat bacterial resistance, several natural substances, including chalcones, have been described in relation to antibacterial, representing a potential tool for the discovery of new antibacterial drugs.

Objective:The objective of this study is to perform a bibliographic survey and discuss the main contributions in the literature about the antibacterial potential of chalcones in the last 5 years.

Methods:A search was carried out in the main repositories, for which the publications of the last 5 years were investigated and discussed. Unprecedented in this review, in addition to the bibliographic survey, molecular docking studies were carried out to exemplify the applicability of using one of the molecular targets for the design of new entities with antibacterial activity.

Results:In the last 5 years, antibacterial activities were reported for several types of chalcones, for which activities were observed for both gram-positive and gram-negative bacteria with high potency, including MIC values in the nanomolar range. Molecular docking simulations demonstrated important intermolecular interactions between chalcones and residues from the enzymatic cavity of the enzyme DNA gyrase, one of the validated molecular targets in the development of new antibacterial agents.

Conclusion:The data presented demonstrate the potential of using chalcones in drug development programs with antibacterial properties, which may be useful to combat resistance, a worldwide public health problem.

About the authors

Aldo de Oliveira

Department of Exact Sciences and Education, Federal University of Santa Catarina

Author for correspondence.
Email: info@benthamscience.net

Arthur Cenci

Department of Exact Sciences and Education,, Federal University of Santa Catarina,

Email: info@benthamscience.net

Lucas Gonçalves

Department of Exact Sciences and Education,, Federal University of Santa Catarina,

Email: info@benthamscience.net

Maria Thedy

Department of Chemistry, Federal University of Santa Catarina,

Email: info@benthamscience.net

Angelica Justino

Department of Chemistry, Federal University of Santa Catarina,

Email: info@benthamscience.net

Antônio Braga

Department of Chemistry, Federal University of Santa Catarina

Email: info@benthamscience.net

Lidiane Meier

Department of Exact Sciences and Education,, Federal University of Santa Catarina,

Email: info@benthamscience.net

References

  1. Leonard, A.F.C.; Morris, D.; Schmitt, H.; Gaze, W.H. Natural recreational waters and the risk that exposure to antibiotic resistant bacteria poses to human health. Curr. Opin. Microbiol., 2022, 65, 40-46. doi: 10.1016/j.mib.2021.10.004 PMID: 34739925
  2. Yadav, M. Potential prospective to counter antibiotic-resistant pathogens; Comprehensive Gut Microbiota, 2022. Epub ahead of print
  3. Ahamed, M.J.N.; Ibrahim, F.B.; Srinivasan, H. Synergistic interactions of antimicrobials to counteract the drug-resistant microorganisms. Biointerface Res. Appl. Chem., 2022, 12, 861-872. doi: 10.33263/briac121.861872
  4. Luz, C.F.; van Niekerk, J.M.; Keizer, J.; Beerlage-de Jong, N.; Braakman-Jansen, L.M.A.; Stein, A.; Sinha, B.; van Gemert-Pijnen, J.E.W.C.; Glasner, C. Mapping twenty years of antimicrobial resistance research trends. Artif. Intell. Med., 2022, 123, 102216. doi: 10.1016/j.artmed.2021.102216 PMID: 34998519
  5. Moretto, V.T.; Bartley, P.S.; Ferreira, V.M.; Santos, C.S.; Silva, L.K.; Ponce-Terashima, R.A.; Blanton, R.E.; Reis, M.G.; Barbosa, L.M. Microbial source tracking and antimicrobial resistance in one river system of a rural community in Bahia, Brazil. Braz. J. Biol., 2021, 82, e231838. doi: 10.1590/1519-6984.231838 PMID: 33681894
  6. Rizvi, S.G.; Ahammad, S.Z. COVID-19 and antimicrobial resistance: A cross-study. Sci. Total Environ., 2022, 807(Pt 2), 150873. doi: 10.1016/j.scitotenv.2021.150873 PMID: 34634340
  7. Amarsy, R.; Trystram, D.; Cambau, E.; Monteil, C.; Fournier, S.; Oliary, J.; Junot, H.; Sabatier, P.; Porcher, R.; Robert, J.; Jarlier, V.; Arlet, G.; Lefevre, L.A.; Aubry, A.; Belec, L.; Bercot, B.; Bonacorsi, S.; Calvez, V.; Cambau, E.; Carbonnelle, E.; Chevaliez, S.; Decousser, J-W.; Delaugerre, C.; Descamps, D.; Doucet-Populaire, F.; Gaillard, J-L.; Chenon, A.G. Surging bloodstream infections and antimicrobial resistance during the first wave of COVID-19: A study in a large multihospital institution in the Paris region. Int. J. Infect. Dis., 2022, 114, 90-96. doi: 10.1016/j.ijid.2021.10.034 PMID: 34688945
  8. Costa, A.; Junior, A. Bacterial resistance to antibiotics and public health: A brief literature review. Sci. Station, 2017, 7, 45. doi: 10.18468/estcien.2017v7n2.p45-57
  9. WHO Regional Office for Europe. Preventing the COVID-19 Pandemic from Causing an Antibiotic Resistance Catastrophe., 2020. Available from: https://www.who.int/europe/news/item/18-11-2020-preventing-the-covid-19-pandemic-from-causing-an-antibiotic-resistance-catastrophe
  10. Wei, W.; Ortwine, J.K.; Mang, N.S.; Joseph, C.; Hall, B.C.; Prokesch, B.C. Limited role for antibiotics in COVID-19: Scarce evidence of bacterial coinfection. medRxiv, 2020.
  11. Cohen, F.L.; Tartasky, D. Microbial resistance to drug therapy: A review. Am. J. Infect. Control, 1997, 25(1), 51-64. doi: 10.1016/s0196-6553(97)90054-7 PMID: 9057945
  12. Sulis, G.; Sayood, S.; Gandra, S. Antimicrobial resistance in low- and middle-income countries: Current status and future directions. Expert Rev. Anti Infect. Ther., 2022, 20(2), 147-160. doi: 10.1080/14787210.2021.1951705 PMID: 34225545
  13. Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; Johnson, S.C.; Browne, A.J.; Chipeta, M.G.; Fell, F.; Hackett, S.; Haines-Woodhouse, G.; Kashef Hamadani, B.H.; Kumaran, E.A.P.; McManigal, B.; Agarwal, R.; Akech, S.; Albertson, S.; Amuasi, J.; Andrews, J.; Aravkin, A.; Ashley, E.; Bailey, F.; Baker, S.; Basnyat, B.; Bekker, A.; Bender, R.; Bethou, A.; Bielicki, J.; Boonkasidecha, S.; Bukosia, J.; Carvalheiro, C.; Castañeda-Orjuela, C.; Chansamouth, V.; Chaurasia, S.; Chiurchiù, S.; Chowdhury, F.; Cook, A.J.; Cooper, B.; Cressey, T.R.; Criollo-Mora, E.; Cunningham, M.; Darboe, S.; Day, N.P.J.; De Luca, M.; Dokova, K.; Dramowski, A.; Dunachie, S.J.; Eckmanns, T.; Eibach, D.; Emami, A.; Feasey, N.; Fisher-Pearson, N.; Forrest, K.; Garrett, D.; Gastmeier, P.; Giref, A.Z.; Greer, R.C.; Gupta, V.; Haller, S.; Haselbeck, A.; Hay, S.I.; Holm, M.; Hopkins, S.; Iregbu, K.C.; Jacobs, J.; Jarovsky, D.; Javanmardi, F.; Khorana, M.; Kissoon, N.; Kobeissi, E.; Kostyanev, T.; Krapp, F.; Krumkamp, R.; Kumar, A.; Kyu, H.H.; Lim, C.; Limmathurotsakul, D.; Loftus, M.J.; Lunn, M.; Ma, J.; Mturi, N.; Munera-Huertas, T.; Musicha, P.; Mussi-Pinhata, M.M.; Nakamura, T.; Nanavati, R.; Nangia, S.; Newton, P.; Ngoun, C.; Novotney, A.; Nwakanma, D.; Obiero, C.W.; Olivas-Martinez, A.; Olliaro, P.; Ooko, E.; Ortiz-Brizuela, E.; Peleg, A.Y.; Perrone, C.; Plakkal, N.; Ponce-de-Leon, A.; Raad, M.; Ramdin, T.; Riddell, A.; Roberts, T.; Robotham, J.V.; Roca, A.; Rudd, K.E.; Russell, N.; Schnall, J.; Scott, J.A.G.; Shivamallappa, M.; Sifuentes-Osornio, J.; Steenkeste, N.; Stewardson, A.J.; Stoeva, T.; Tasak, N.; Thaiprakong, A.; Thwaites, G.; Turner, C.; Turner, P.; van Doorn, H.R.; Velaphi, S.; Vongpradith, A.; Vu, H.; Walsh, T.; Waner, S.; Wangrangsimakul, T.; Wozniak, T.; Zheng, P.; Sartorius, B.; Lopez, A.D.; Stergachis, A.; Moore, C.; Dolecek, C.; Naghavi, M. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet, 2022, 399(10325), 629-655. doi: 10.1016/S0140-6736(21)02724-0 PMID: 35065702
  14. Mustikasari, K.; Santoso, U.T. The benefits of chalcone and its derivatives as antibacterial agents: A review. BIO Web. Conf., 2020, 20, p. 03007.
  15. Shah, P.; Westwell, A.D. The role of fluorine in medicinal chemistry. J. Enzyme Inhib. Med. Chem., 2007, 22(5), 527-540. doi: 10.1080/14756360701425014 PMID: 18035820
  16. Burmaoglu, S.; Algul, O.; Gobek, A.; Aktas Anil, D.; Ulger, M.; Erturk, B.G.; Kaplan, E.; Dogen, A.; Aslan, G. Design of potent fluoro-substituted chalcones as antimicrobial agents. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 490-495. doi: 10.1080/14756366.2016.1265517 PMID: 28118738
  17. Chu, W-C.; Bai, P-Y.; Yang, Z-Q.; Cui, D-Y.; Hua, Y-G.; Yang, Y.; Yang, Q-Q.; Zhang, E.; Qin, S. Synthesis and antibacterial evaluation of novel cationic chalcone derivatives possessing broad spectrum antibacterial activity. Eur. J. Med. Chem., 2018, 143, 905-921. doi: 10.1016/j.ejmech.2017.12.009 PMID: 29227931
  18. Zhang, M.; Prior, A.M.; Maddox, M.M.; Shen, W-J.; Hevener, K.E.; Bruhn, D.F.; Lee, R.B.; Singh, A.P.; Reinicke, J.; Simmons, C.J.; Hurdle, J.G.; Lee, R.E.; Sun, D. Pharmacophore modeling, synthesis, and antibacterial evaluation of chalcones and derivatives. ACS Omega, 2018, 3(12), 18343-18360. doi: 10.1021/acsomega.8b03174 PMID: 30613820
  19. Prakash, G.; Boopathy, M.; Selvam, R.; Johnsanthosh Kumar, S.; Subramanian, K. The effect of anthracene-based chalcone derivatives in the resazurin dye reduction assay mechanisms for the investigation of gram-positive and gram-negative bacterial and fungal infection. New J. Chem., 2018, 42, 1037-1045. doi: 10.1039/C7NJ04125J
  20. Meier, D.; Hernández, M.V.; van Geelen, L.; Muharini, R.; Proksch, P.; Bandow, J.E.; Kalscheuer, R. The plant-derived chalcone Xanthoangelol targets the membrane of Gram-positive bacteria. Bioorg. Med. Chem., 2019, 27(23), 115151. doi: 10.1016/j.bmc.2019.115151 PMID: 31648878
  21. Jin, H.; Jiang, X.; Yoo, H.; Wang, T.; Sung, C.G.; Choi, U.; Lee, C-R.; Yu, H.; Koo, S. Synthesis of chalcone-derived heteroaromatics with antibacterial activities. ChemistrySelect, 2020, 5, 12421-12424. doi: 10.1002/slct.202003397
  22. Mustafa, M.; Mostafa, Y.A. A facile synthesis, drug-likeness, and in silico molecular docking of certain new azidosulfonamide–chalcones and their in vitro antimicrobial activity. Monatshefte Chem., 2020, 151, 417-427. doi: 10.1007/s00706-020-02568-8
  23. Narwal, S.; Kumar, S.; Verma, P.K. Synthesis and biological activity of new chalcone scaffolds as prospective antimicrobial agents. Res. Chem. Intermed., 2021, 47, 1625-1641. doi: 10.1007/s11164-020-04359-6
  24. Hu, Y.; Hu, C.; Pan, G.; Yu, C.; Ansari, M.F.; Yadav Bheemanaboina, R.R.; Cheng, Y.; Zhou, C.; Zhang, J. Novel chalcone-conjugated, multi-flexible end-group coumarin thiazole hybrids as potential antibacterial repressors against methicillin-resistant Staphylococcus aureus. Eur. J. Med. Chem., 2021, 222, 113628. doi: 10.1016/j.ejmech.2021.113628 PMID: 34139627
  25. Yadav, M.; Lal, K.; Kumar, A.; Kumar, A.; Kumar, D. Indole-chalcone linked 1,2,3-triazole hybrids: Facile synthesis, antimicrobial evaluation and docking studies as potential antimicrobial agents. J. Mol. Struct., 2022, 1261, 132867. doi: 10.1016/j.molstruc.2022.132867
  26. Silver, L.L. Appropriate targets for antibacterial drugs. Cold Spring Harb. Perspect. Med., 2016, 6(12), 1-7. doi: 10.1101/cshperspect.a030239 PMID: 27599531
  27. Christensen, D.J.; Gottlin, E.B.; Benson, R.E.; Hamilton, P.T. Phage display for target-based antibacterial drug discovery. Drug Discov. Today, 2001, 6(14), 721-727. doi: 10.1016/s1359-6446(01)01853-0 PMID: 11445463
  28. Baron, S. Medical Microbiology, 4th ed; Univ of Texas Medical Branch: USA, 1996.
  29. Silhavy, T.J.; Kahne, D.; Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol., 2010, 2(5), a000414. doi: 10.1101/cshperspect.a000414 PMID: 20452953
  30. Uzman, A. Molecular Biology of the Cell 4th Ed.: Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. Biochem. Mol. Biol. Educ., 2003, 31, 212-214.
  31. Zgurskaya, H.I.; Löpez, C.A.; Gnanakaran, S. Permeability barrier of gram-negative cell envelopes and approaches to bypass it. ACS Infect. Dis., 2015, 1(11), 512-522. doi: 10.1021/acsinfecdis.5b00097 PMID: 26925460
  32. Bush, K. Bradford, P.A. β-lactams and β-lactamase inhibitors: An overview. Cold Spring Harb. Perspect. Med., 2016, 6(8), a025247. doi: 10.1101/cshperspect.a025247 PMID: 27329032
  33. Tahlan, K.; Jensen, S.E. Origins of the β-lactam rings in natural products. J. Antibiot., 2013, 66(7), 401-410. doi: 10.1038/ja.2013.24 PMID: 23531986
  34. Chukwudi, C.U. rRNA binding sites and the molecular mechanism of action of the tetracyclines. Antimicrob. Agents Chemother., 2016, 60(8), 4433-4441.
  35. Chellat, M.F.; Raguž, L.; Riedl, R. Targeting antibiotic resistance. Angew. Chem. Int. Ed. Engl., 2016, 55(23), 6600-6626. doi: 10.1002/anie.201506818 PMID: 27000559
  36. Drlica, K.; Hiasa, H.; Kerns, R.; Malik, M.; Mustaev, A.; Zhao, X. Quinolones: Action and resistance updated. Curr. Top. Med. Chem., 2009, 9(11), 981-998. doi: 10.2174/156802609789630947 PMID: 19747119
  37. Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanism of quinolone action and resistance. Biochemistry, 2014, 53(10), 1565-1574. doi: 10.1021/bi5000564 PMID: 24576155
  38. Hooper, D.C.; Jacoby, G.A. Topoisomerase inhibitors: Fluoroquinolone mechanisms of action and resistance. Cold Spring Harb. Perspect. Med., 2016, 6(9), 1-21. doi: 10.1101/cshperspect.a025320 PMID: 27449972
  39. Poirel, L.; Jayol, A.; Nordmann, P. Polymyxins: Antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin. Microbiol. Rev., 2017, 30(2), 557-596. doi: 10.1128/CMR.00064-16 PMID: 28275006
  40. Kołton, A.; Długosz-Grochowska, O.; Wojciechowska, R.; Czaja, M. Biosynthesis regulation of folates and phenols in plants. Sci. Hortic., 2022, 291, 110561.
  41. Wallace-Povirk, A.; Tong, N.; Wong-Roushar, J.; O’Connor, C.; Zhou, X.; Hou, Z.; Bao, X.; Garcia, G.E.; Li, J.; Kim, S.; Dann, C.E.; Matherly, L.H.; Gangjee, A. Discovery of 6-substituted thieno2,3-dpyrimidine analogs as dual inhibitors of glycinamide ribonucleotide formyltransferase and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase in de novo purine nucleotide biosynthesis in folate receptor expressing human tumors. Bioorg. Med. Chem., 2021, 37, 116093.
  42. Feng, G.; Zou, W.; Zhong, Y. Sulfonamides repress cell division in the root apical meristem by inhibiting folates synthesis. J. Hazard. Mater. Adv., 2022, 5, 100045. doi: 10.1016/j.hazadv.2022.100045
  43. Yang, H.; Zhang, X.; Liu, Y.; Liu, L.; Li, J.; Du, G.; Chen, J. Synthetic biology-driven microbial production of folates: Advances and perspectives. Bioresour. Technol., 2021, 324, 124624.
  44. The Biochemistry of Folic Acid and Related Pteridines; North-Holland Publishing Company, 1969.
  45. Lin, S.; Chen, Y.; Li, H.; Liu, J.; Liu, S. Design, synthesis, and evaluation of amphiphilic sofalcone derivatives as potent Gram-positive antibacterial agents. Eur. J. Med. Chem., 2020, 202, 112596. doi: 10.1016/j.ejmech.2020.112596 PMID: 32659547
  46. Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol., 1997, 267(3), 727-748. doi: 10.1006/jmbi.1996.0897 PMID: 9126849
  47. Korb, O.; Stützle, T.; Exner, T.E. Empirical scoring functions for advanced protein-ligand docking with PLANTS. J. Chem. Inf. Model., 2009, 49(1), 84-96. doi: 10.1021/ci800298z PMID: 19125657

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers