Antiviral Compounds to Address Influenza Pandemics: An Update from 2016-2022
- Authors: Romeo R.1, Legnani L.2, Chiacchio M.3, Giofrè S.4, Iannazzo D.5
-
Affiliations:
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali,, Università di Messina,
- Dipartimento di Ingegneria, University of Messina
- Issue: Vol 31, No 18 (2024)
- Pages: 2507-2549
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjmseer.com/0929-8673/article/view/644538
- DOI: https://doi.org/10.2174/0929867331666230907093501
- ID: 644538
Cite item
Full Text
Abstract
In recent decades, the world has gained experience of the dangerous effects of pandemic events caused by emerging respiratory viruses. In particular, annual epidemics of influenza are responsible for severe illness and deaths. Even if conventional influenza vaccines represent the most effective tool for preventing virus infections, they are not completely effective in patients with severe chronic disease and immunocompromised and new small molecules have emerged to prevent and control the influenza viruses. Thus, the attention of chemists is continuously focused on the synthesis of new antiviral drugs able to interact with the different molecular targets involved in the virus replication cycle. To date, different classes of influenza viruses inhibitors able to target neuraminidase enzyme, hemagglutinin protein, Matrix-2 (M2) protein ion channel, nucleoprotein or RNAdependent RNA polymerase have been synthesized using several synthetic strategies comprising the chemical modification of currently used drugs. The best results, in terms of inhibitory activity, are in the nanomolar range and have been obtained from the chemical modification of clinically used drugs such as Peramivir, Zanamivir, Oseltamir, Rimantadine, as well as sialylated molecules, and hydroxypyridinone derivatives. The aim of this review is to report, covering the period 2016-2022, the most recent routes related to the synthesis of effective influenza virus inhibitors.
About the authors
Roberto Romeo
Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina
Email: info@benthamscience.net
Laura Legnani
Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca
Email: info@benthamscience.net
Maria Chiacchio
Dipartimento di Scienze del Farmaco e della Salute, Università di Catania
Email: info@benthamscience.net
Salvatore Giofrè
Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali,, Università di Messina,
Email: info@benthamscience.net
Daniela Iannazzo
Dipartimento di Ingegneria, University of Messina
Author for correspondence.
Email: info@benthamscience.net
References
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol., 2021, 19(3), 141-154. doi: 10.1038/s41579-020-00459-7 PMID: 33024307
- Krammer, F.; Smith, G.J.D.; Fouchier, R.A.M.; Peiris, M.; Kedzierska, K.; Doherty, P.C.; Palese, P.; Shaw, M.L.; Treanor, J.; Webster, R.G.; García-Sastre, A. Influenza. Nat. Rev. Dis. Primer, 2018, 4, 3. doi: 10.1038/s41572-018-0002-y
- Dini, G.; Toletone, A.; Sticchi, L.; Orsi, A.; Bragazzi, N.L.; Durando, P. Influenza vaccination in healthcare workers: A comprehensive critical appraisal of the literature. Hum. Vaccin. Immunother., 2018, 14(3), 772-789. doi: 10.1080/21645515.2017.1348442
- Świerczyńska, M.; Mirowska-Guzel, D.M.; Pindelska, E. Antiviral drugs in influenza. Int. J. Environ. Res. Public Health, 2022, 19(5), 3018. doi: 10.3390/ijerph19053018 PMID: 35270708
- Bouvier, N.M.; Palese, P. The biology of influenza viruses. Vaccine, 2008, 26(Suppl 4)(4), D49-D53. doi: 10.1016/j.vaccine.2008.07.039 PMID: 19230160
- Pritchett, T.J.; Brossmer, R.; Rose, U.; Paulson, J.C. Recognition of monovalent sialosides by influenza virus H3 hemagglutinin. Virology, 2022, 160(2), 502-506. doi: 10.1016/0042-6822(87)90026-2
- Principi, N.; Camilloni, B.; Alunno, A.; Polinori, I.; Argentiero, A.; Esposito, S. Drugs for influenza treatment: Is there significant news? Front. Med., 2019, 6, 109. doi: 10.3389/fmed.2019.00109 PMID: 31192211
- Lampejo, T. Influenza and antiviral resistance: An overview. Eur. J. Clin. Microbiol. Infect. Dis., 2020, 39(7), 1201-1208. doi: 10.1007/s10096-020-03840-9 PMID: 32056049
- Mahal, A.; Duan, M.; Zinad, D.S.; Mohapatra, R.K.; Obaidullah, A.J.; Wei, X.; Pradhan, M.K.; Das, D.; Kandi, V.; Zinad, H.S.; Zhu, Q. Recent progress in chemical approaches for the development of novel neuraminidase inhibitors. RSC Advances, 2021, 11(3), 1804-1840. doi: 10.1039/D0RA07283D PMID: 35424082
- Liu, S.; Wang, W.; Jiang, L.; Wan, S.; Zhang, L.; Yu, R.; Jiang, T. 2-Pyridinyl-4(3H)-quinazolinone: A scaffold for anti-influenza A virus compounds. Chem. Biol. Drug Des., 2015, 86(5), 1221-1225. doi: 10.1111/cbdd.12589 PMID: 26017319
- Wang, P-C.; Fang, J-M.; Tsai, K-C.; Wang, S-Y.; Huang, W-I.; Tseng, Y.C.; Cheng, Y.S.; Cheng, E.; Cheng, T.J.; Cheng, R.; Wong, C.H. Peramivir phosphonate derivatives as influenza neuraminidase inhibitors. J. Med. Chem., 2016, 59, 5297-5310. doi: 10.1021/acs.jmedchem.6b00029 PMID: 27167096
- Abd El-All, A.S.; Atta, S.M.; Hanaa, M.F. R.; Enas M, A.; Abdalla, M.M. New potent SARS-CoV 3C-like protease inhibitors derived from thieno2,3-d-pyrimidine derivatives. Arch. Pharm. Chem., 2016, 349, 202-210. doi: 10.1002/ardp.201500407 PMID: 26806115
- Enkhtaivan, G.; Muthuraman, P.; Kim, D.H.; Mistry, B. Discovery of berberine based derivatives as anti-influenza agent through blocking of neuraminidase. Bioorg. Med. Chem., 2017, 25(20), 5185-5193. doi: 10.1016/j.bmc.2017.07.006 PMID: 28958846
- Mistry, B.; Patel, R.V.; Keum, Y.S.; Kim, D.H. Synthesis of N-Mannich bases of berberine linking piperazine moieties revealing anticancer and antioxidant effects. Saudi J. Biol. Sci., 2017, 24(1), 36-44. doi: 10.1016/j.sjbs.2015.09.005 PMID: 28053569
- Ju, H.; Zhang, J.; Sun, Z.; Huang, Z.; Qi, W.; Huang, B.; Zhan, P.; Liu, X. Discovery of C-1 modified oseltamivir derivatives as potent influenza neuraminidase inhibitors. Eur. J. Med. Chem., 2018, 146, 220-231. doi: 10.1016/j.ejmech.2018.01.050 PMID: 29407952
- Das, A.; Adak, A.K.; Ponnapalli, K.; Lin, C.H.; Hsu, K.C.; Yang, J.M.; Hsu, T.A.; Lin, C.C. Design and synthesis of 1,2,3-triazole-containing N-acyl zanamivir analogs as potent neuraminidase inhibitors. Eur. J. Med. Chem., 2016, 123, 397-406. doi: 10.1016/j.ejmech.2016.07.064 PMID: 27487569
- Chen, B.L.; Wang, Y.J.; Guo, H.; Zeng, G.Y. Design, synthesis, and biological evaluation of crenatoside analogues as novel influenza neuraminidase inhibitors. Eur. J. Med. Chem., 2016, 109, 199-205. doi: 10.1016/j.ejmech.2015.12.031 PMID: 26774928
- Meng, F.J.; Sun, T.; Dong, W.Z.; Li, M.H.; Tuo, Z.Z. Discovery of novel pyrazole derivatives as potent neuraminidase inhibitors against influenza H1N1 virus. Arch. Pharm., 2016, 349(3), 168-174. doi: 10.1002/ardp.201500342 PMID: 26797880
- Shih, S.R.; Chu, T.Y.; Reddy, G.R.; Tseng, S.N.; Chen, H.L.; Tang, W.F.; Wu, M.; Yeh, J.Y.; Chao, Y.S.; Hsu, J.T.A.; Hsieh, H.P.; Horng, J.T. Pyrazole compound BPR1P0034 with potent and selective anti-influenza virus activity. J. Biomed. Sci., 2010, 17(1), 13. doi: 10.1186/1423-0127-17-13 PMID: 20178582
- Sharma, G.; Vasanth Kumar, S.; Wahab, H.A. Molecular docking, synthesis, and biological evaluation of naphthoquinone as potential novel scaffold for H5N1 neuraminidase inhibition. J. Biomol. Struct. Dyn., 2018, 36(1), 233-242. doi: 10.1080/07391102.2016.1274271 PMID: 28013578
- Yang, Z-L.; Zeng, X.; Liu, F. H, P.; Yu, Q.; Meng, X.; Yan, Z.-L.; Fan, Z.-C.; Xiao, H.-X.; Iyer, H.-X.; Yang, Y.; Yu, P. Synthesis of multivalent difluorinated zanamivir analogs as potent antiviral inhibitors. Tetrahedron Lett., 2016, 57, 2579-2582. doi: 10.1016/j.tetlet.2016.04.079
- Li, Z.; Meng, Y.; Xu, S.; Shen, W.; Meng, Z.; Wang, Z.; Ding, G.; Huang, W.; Xiao, W.; Xu, J. Discovery of acylguanidine oseltamivir carboxylate derivatives as potent neuraminidase inhibitors. Bioorg. Med. Chem., 2017, 25(10), 2772-2781. doi: 10.1016/j.bmc.2017.03.052 PMID: 28385598
- Weiss, S.; Keller, M.; Bernhardt, G.; Buschauer, A.; König, B. NG-Acyl-argininamides as NPY Y1 receptor antagonists: Influence of structurally diverse acyl substituents on stability and affinity. Bioorg. Med. Chem., 2010, 18(17), 6292-6304. doi: 10.1016/j.bmc.2010.07.028 PMID: 20688523
- Wang, Z.; Cheng, L.P.; Zhang, X.H.; Pang, W.; Li, L.; Zhao, J.L. Design, synthesis and biological evaluation of novel oseltamivir derivatives as potent neuraminidase inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(24), 5429-5435. doi: 10.1016/j.bmcl.2017.11.003 PMID: 29141777
- Wang, K.; Yang, F.; Wang, L.; Liu, K.; Sun, L.; Lin, B.; Hu, Y.; Wang, B.; Cheng, M.; Tian, Y. Synthesis and biological evaluation of NH2-acyl oseltamivir analogues as potent neuraminidase inhibitors. Eur. J. Med. Chem., 2017, 141, 648-656. doi: 10.1016/j.ejmech.2017.10.004 PMID: 29107426
- Xiao, M.; Ye, J.; Lian, W.; Zhang, M.; Li, B.; Liu, A.; Hu, A. Microwave-assisted synthesis, characterization and bioassay of acylhydrazone derivatives as influenza neuraminidase inhibitors. Med. Chem. Res., 2017, 26(12), 3216-3227. doi: 10.1007/s00044-017-2015-6
- Zhang, J.; Poongavanam, V.; Kang, D.; Bertagnin, C.; Lu, H.; Kong, X.; Ju, H.; Lu, X.; Gao, P.; Tian, Y.; Jia, H.; Desta, S.; Ding, X.; Sun, L.; Fang, Z.; Huang, B.; Liang, X.; Jia, X.; Ma, X.; Xu, W.; Murugan, N.A.; Loregian, B.; Zhan, P.; Liu, X. Optimization of n-substituted oseltamivir derivatives as potent inhibitors of group-1 and -2 influenza A neuraminidases, including a drug-resistant variant. J. Med. Chem., 2018, 61, 6379-6397. doi: 10.1021/acs.jmedchem.8b00929
- Neri-Bazán, R.M.; García-Machorro, J.; Méndez-Luna, D.; Tolentino-López, L.E.; Martínez-Ramos, F.; Padilla-Martínez, I.I.; Aguilar-Faisal, L.; Soriano-Ursúa, M.A.; Trujillo-Ferrara, J.G.; Fragoso-Vázquez, M.J.; Barrón, B.L.; Correa-Basurto, J. Design, in silico studies, synthesis and in vitro evaluation of oseltamivir derivatives as inhibitors of neuraminidase from influenza A virus H1N1. Eur. J. Med. Chem., 2017, 128, 154-167. doi: 10.1016/j.ejmech.2017.01.039 PMID: 28182988
- Hajzer, V.; Fiera, R.; Latika, A.; Durmis, J.; Kollár, J.; Frecer, V.; Tučeková, Z.; Miertu, S.; Kostolanský, F.; Varečkovág, E.; ebesta, R. Stereoisomers of oseltamivir: Synthesis, in silico prediction and biological evaluation. Org. Biomol. Chem., 2017, 15, 1828-1841. doi: 10.1039/c6ob02673g PMID: 28155963
- Vavricka, C.J.; Muto, C.; Hasunuma, T.¸.; Kimura, Y.; Araki, M.; Wu, Y.; Gao, G.F.; Ohrui, H.; Izumi, M.; Kiyota, H. Synthesis of sulfo-sialic acid analogues: Potent neuraminidase inhibitors in regards to anomeric functionality. Sci. Rep., 2017, 7, 8239. doi: 10.1038/s41598-017-07836-y PMID: 28811524
- Cheng, L.P.; Wang, T.C.; Yu, R.; Li, M.; Huang, J.W. Design, synthesis and biological evaluation of novel zanamivir derivatives as potent neuraminidase inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(23-24), 3622-3629. doi: 10.1016/j.bmcl.2018.10.040 PMID: 30389293
- Wang, B.; Wang, K.; Meng, P.; Hu, Y.; Yang, F.; Liu, K.; Lei, Z.; Chen, B.; Tian, Y. Design, synthesis, and evaluation of carboxyl-modified oseltamivir derivatives with improved lipophilicity as neuraminidase inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(21), 3477-3482. doi: 10.1016/j.bmcl.2018.09.014 PMID: 30266543
- Lin, D.; Yi, Y-J.; Xiao, M-W.; Chen, J.; Ye, J.; Hu, A-X.; Lian, W-W.; Liu, A-L.; Du, G-H. Design, synthesis and biological evaluation of honokiol derivatives as influenza neuraminidase inhibitors. J. Asian Nat. Prod. Res., 2019, 21, 1052-1067. doi: 10.1080/10286020.2018.1509854 PMID: 30585512
- Tsuji, M.; Sriwilaijaroen, N.; Inoue, H.; Miki, K.; Kinoshita, K.; Koyama, K.; Furuhata, K.; Suzuki, Y.; Takahashi, K. Synthesis and anti-influenza virus evaluation of triterpene-sialic acid conjugates. Bioorg. Med. Chem., 2018, 26(1), 17-24. doi: 10.1016/j.bmc.2017.09.038 PMID: 29198893
- Hadházi, Á.; Li, L.; Bailly, B.; Maggioni, A.; Martin, G.; Dirr, L.; Dyason, J.C.; Thomson, R.J.; Gao, G.F.; Borbás, A.; Ve, T.; Pascolutti, M.; von Itzstein, M. A sulfonozanamivir analogue has potent anti-influenza virus activity. ChemMedChem, 2018, 13(8), 785-789. doi: 10.1002/cmdc.201800092 PMID: 29453852
- Jia, R.; Zhang, J.; Ai, W.; Ding, X.; Desta, S.; Sun, L.; Sun, Z.; Ma, X.; Li, Z.; Wang, D.; Huang, B.; Zhan, P.; Liu, X. Design, synthesis and biological evaluation of "Multi-Site"-binding influenza virus neuraminidase inhibitors. Eur. J. Med. Chem., 2019, 178, 64-80. doi: 10.1016/j.ejmech.2019.05.076 PMID: 31176096
- Cui, M.Y.; Xiao, M.W.; Xu, L.J.; Chen, Y.; Liu, A.L.; Ye, J.; Hu, A.X. Bioassay of ferulic acid derivatives as influenza neuraminidase inhibitors. Arch. Pharm., 2020, 353(1), 1900174. doi: 10.1002/ardp.201900174 PMID: 31657061
- Ye, J.; Yang, X.; Xu, M.; Chan, P.; Ma, C. Novel N-Substituted oseltamivir derivatives as potent influenza neuraminidase inhibitors: Design, synthesis, biological evaluation, ADME prediction and molecular docking studies. Eur. J. Med. Chem., 2019, 182, 111635. doi: 10.1016/j.ejmech.2019.111635 PMID: 31493744
- Ju, H.; Xiu, S.; Ding, X.; Shang, M.; Jia, R.; Huang, B.; Zhan, P.; Liu, X. Discovery of novel 1,2,3-triazole oseltamivir derivatives as potent influenza neuraminidase inhibitors targeting the 430-cavity. Eur. J. Med. Chem., 2020, 187, 111940. doi: 10.1016/j.ejmech.2019.111940 PMID: 31835169
- Cui, M.Y.; Nie, J.X.; Yan, Z.Z.; Xiao, M.W.; Lin, D.; Ye, J.; Hu, A.X. Design, synthesis, bioactivity, and DFT calculation of 2-thiazolyl-hydrazone derivatives as influenza neuraminidase inhibitors. Med. Chem. Res., 2019, 28(7), 938-947. doi: 10.1007/s00044-019-02343-3
- Hu, Y.; Chen, B.; Lei, Z.; Zhao, H.; Zhu, H.; Quan, P.; Tian, Y. Synthesis and biological evaluation of nh2-sulfonyl oseltamivir analogues as influenza neuraminidase inhibitors. Molecules, 2019, 24(11), 2176. doi: 10.3390/molecules24112176 PMID: 31185617
- Yu, Y.; Qin, H.J.; Shi, X.X.; Song, J.Q.; Zhou, J.P.; Yu, P.; Fan, Z.C.; Zhong, M.; Yang, Y. Thiosialoside-decorated polymers use a two-step mechanism to inhibit both early and late stages of influenza virus infection. Eur. J. Med. Chem., 2020, 199, 112357. doi: 10.1016/j.ejmech.2020.112357 PMID: 32428793
- Zhong, Z.J.; Cheng, L.P.; Pang, W.; Zheng, X.S.; Fu, S.K. Design, synthesis and biological evaluation of dihydrofurocoumarin derivatives as potent neuraminidase inhibitors. Bioorg. Med. Chem. Lett., 2021, 37, 127839. doi: 10.1016/j.bmcl.2021.127839 PMID: 33556571
- Xiao, M.; Xu, L.; Lin, D.; Lian, W.; Cui, M.; Zhang, M.; Yan, X.; Li, S.; Zhao, J.; Ye, J.; Liu, A.; Hu, A. Design, synthesis, and bioassay of 4-thiazolinone derivatives as influenza neuraminidase inhibitors. Eur. J. Med. Chem., 2021, 213, 113161. doi: 10.1016/j.ejmech.2021.113161 PMID: 33540229
- Ye, J.; Lin, L.; Xu, J.; Chan, P.K.; Yang, X.; Ma, C. Design, synthesis, biological evaluation and In silico studies of pyrazole-based nh2-acyl oseltamivir analogues as potent neuraminidase inhibitors. Pharmaceuticals, 2021, 14(4), 371. doi: 10.3390/ph14040371 PMID: 33923858
- Yu, W.; Ping Cheng, L. Pang, W.; Ling Guo, L. Design, synthesis and biological evaluation of novel 1, 3, 4-oxadiazole derivatives as potent neuraminidase inhibitors. Bioorg. Med. Chem., 2022, 57, 116647. doi: 10.1016/j.bmc.2022.116647 PMID: 35121400
- Shi, L.; Zhang, X.Y.; Cheng, L.P. Design, synthesis and biological evaluation of 1,3,4-triazole-3-acetamide derivatives as potent neuraminidase inhibitors. Bioorg. Med. Chem. Lett., 2022, 61, 128590. doi: 10.1016/j.bmcl.2022.128590 PMID: 35108623
- Zhang, X.Y.; Cheng, L.P.; Zhong, Z.J.; Pang, W.; Song, X. Design, synthesis and biological evaluation of oxalamide derivatives as potent neuraminidase inhibitors. New J. Chem., 2022, 46, 13533-13539. doi: 10.1039/D2NJ00726F
- Wang, K.; Lei, Z.; Zhao, L.; Chen, B.; Yang, F.; Liu, K.; Zhu, H.; Zhao, H.; Cao, R.; Zhang, K.; Tian, Y. Design, synthesis and biological evaluation of oseltamivir derivatives containing pyridyl group as potent inhibitors of neuraminidase for influenza A. Eur. J. Med. Chem., 2020, 185, 111841. doi: 10.1016/j.ejmech.2019.111841 PMID: 31708183
- Li, M.; Cheng, L.P.; Pang, W.; Zhong, Z.J.; Guo, L.L. Design, synthesis, and biological evaluation of novel acylhydrazone derivatives as potent neuraminidase inhibitors. ACS Med. Chem. Lett., 2020, 11(9), 1745-1750. doi: 10.1021/acsmedchemlett.0c00313 PMID: 32944142
- (a) Walther, T.; Karamanska, R.; Chan, R.W.Y.; Chan, M.C.W.; Jia, N.; Air, G.; Hopton, C.; Wong, M.P.; Dell, A.; Malik Peiris, J.S.; Haslam, S.M.; Nicholls, J.M. Glycomic analysis of human respiratory tract tissues and correlation with influenza virus infection. PLoS Pathog., 2013, 9, e1003223. doi: 10.1371/journal.pap.1003223; (b) Roy, A.; Byrne, S.; Sarangi, N.K.; Murphy, P.V.; Keyes, T.E. A cell free biomembrane platform for multimodal study of influenza virus hemagglutinin and for evaluation of entry-inhibitors against hemagglutinin. Front. Mol. Sci., 2022, 9, 1017338. doi: 10.3389/fmolb.2022.1017338
- Vanderlinden, E. Göktaş F.; Cesur, Z.; Froeyen, M.; Reed, M.L.; Russell, C.J.; Cesur, N.; Naesens, L. Novel inhibitors of influenza virus fusion: Structure-activity relationship and interaction with the viral hemagglutinin. J. Virol., 2010, 84(9), 4277-4288. doi: 10.1128/JVI.02325-09 PMID: 20181685
- Basu, A.; Antanasijevic, A.; Wang, M.; Li, B.; Mills, D.M.; Ames, J.A.; Nash, P.J.; Williams, J.D.; Peet, N.P.; Moir, D.T.; Prichard, M.N.; Keith, K.A.; Barnard, D.L.; Caffrey, M.; Rong, L.; Bowlin, T.L. New small molecule entry inhibitors targeting hemagglutinin-mediated influenza a virus fusion. J. Virol., 2014, 88(3), 1447-1460. doi: 10.1128/JVI.01225-13 PMID: 24198411
- Zhu, Z.; Yao, Z.; Shen, X.; Chen, Z.; Liu, X.; Parquette, J.R.; Liu, S. Oligothiophene compounds inhibit the membrane fusion between H5N1 avian influenza virus and the endosome of host cell. Eur. J. Med. Chem., 2017, 130, 185-194. doi: 10.1016/j.ejmech.2017.02.040 PMID: 28246043
- Torres, F.; Brucker, N.; Andrade, S.; Kawano, D.; Garcia, S.; Poser, G.; Eifler-Lima, V. New insights into the chemistry and antioxidant activity of coumarins. Curr. Top. Med. Chem., 2014, 14(22), 2600-2623. doi: 10.2174/1568026614666141203144551 PMID: 25478878
- Hassan, M.Z.; Osman, H.; Ali, M.A.; Ahsan, M. Therapeutic potential of coumarins as antiviral agents. Eur. J. Med. Chem., 2016, 123, 236-255. doi: 10.1016/j.ejmech.2016.07.056
- Khomenko, T.M.; Zarubaev, V.V.; Orshanskaya, I.R.; Kadyrova, R.A.; Sannikova, V.A.; Korchagina, D.V.; Volcho, K.P.; Salakhutdinov, N.F. Anti-influenza activity of monoterpene-containing substituted coumarins. Bioorg. Med. Chem. Lett., 2017, 27, 2920-2925. doi: 10.1016/j.bmcl.2017.04.091 PMID: 28501512
- Salakhutdinov, N.F.; Volcho, K.P.; Yarovaya, O.I. Monoterpenes as a renewable source of biologically active compounds. Pure Appl. Chem., 2017, 89(8), 1105-1117. doi: 10.1515/pac-2017-0109
- Ilyina, I.V.; Zarubaev, V.V.; Lavrentieva, I.N.; Shtro, A.A.; Esaulkova, I.L.; Korchagina, D.V.; Borisevich, S.S.; Volcho, K.P.; Salakhutdinov, N.F. Highly potent activity of isopulegol-derived substituted octahydro-2-H-chromen-4-ols against influenza A and B viruses. Bioorg. Med. Chem. Lett., 2018, 28(11), 2061-2067. doi: 10.1016/j.bmcl.2018.04.057 PMID: 29716780
- Song, G.; Shen, X.; Li, S.; Li, Y.; Liu, Y.; Zheng, Y.; Lin, R.; Fan, J.; Ye, H.; Liu, S. Structureactivity relationships of 3-O-β-chacotriosyl ursolic acid derivatives as novel H5N1 entry inhibitors. Eur. J. Med. Chem., 2015, 93, 431-442. doi: 10.1016/j.ejmech.2015.02.029 PMID: 25728024
- Liao, Y.; Chen, L.; Li, S.; Cui, Z.; Lei, Z.; Li, H.; Liu, S.; Song, G. Structure-aided optimization of 3-O-β-chacotriosyl ursolic acid as novel H5N1 entry inhibitors with high selective index. Bioorg. Med. Chem., 2019, 27(18), 4048-4058. doi: 10.1016/j.bmc.2019.07.028 PMID: 31350154
- Walther, T.; Karamanska, R.; Chan, R.W.Y.; Chan, M.C.W.; Jia, N.; Air, G.; Hopton, C.; Wong, M.P.; Dell, A.; Malik Peiris, J.S.; Haslam, S.M.; Nicholls, J.M. Glycomic analysis of human respiratory tract tissues and correlation with influenza virus infection. PLoS Pathog., 2013, 9(3), e1003223. doi: 10.1371/journal.ppat.1003223 PMID: 23516363
- Bhatia, S.; Lauster, D.; Bardua, M.; Ludwig, K.; Angioletti-Uberti, S.; Popp, N.; Hoffmann, U.; Paulus, F.; Budt, M.; Stadtmüller, M.; Wolff, T.; Hamann, A.; Böttcher, C.; Herrmann, A.; Haag, R. Linear polysialoside outperforms dendritic analogs for inhibition of influenza virus infection in vitro and in vivo. Biomaterials, 2017, 138, 22-34. doi: 10.1016/j.biomaterials.2017.05.028 PMID: 28550754
- Dong, J.; Chen, S.; Li, R.; Cui, W.; Jiang, H.; Ling, Y.; Yang, Z.; Hu, W. Imidazole-based pinanamine derivatives: Discovery of dual inhibitors of the wild-type and drug-resistant mutant of the influenza A virus. Eur. J. Med. Chem., 2016, 108, 605-615. doi: 10.1016/j.ejmech.2015.12.013 PMID: 26722757
- Gordon, N.A.; McGuire, K.L.; Wallentine, S.K.; Mohl, G.A.; Lynch, J.D.; Harrison, R.G.; Busath, D.D. Divalent copper complexes as influenza A M2 inhibitors. Antiviral Res., 2017, 147, 100-106. doi: 10.1016/j.antiviral.2017.10.009 PMID: 29032206
- Suslov, E.; Zarubaev, V.V.; Slita, A.V.; Ponomarev, K.; Korchagina, D.; Ayine-Tora, D.M.; Reynisson, J.; Volcho, K.; Salakhutdinov, N. Anti-influenza activity of diazaadamantanes combined with monoterpene moieties. Bioorg. Med. Chem. Lett., 2017, 27(19), 4531-4535. doi: 10.1016/j.bmcl.2017.08.062 PMID: 28886889
- Wu, S.; Huang, J.; Gazzarrini, S.; He, S.; Chen, L.; Li, J.; Xing, L.; Li, C.; Chen, L.; Neochoritis, C.G.; Liao, G.P.; Zhou, H.; Dömling, A.; Moroni, A.; Wang, W. Isocyanides as influenza a virus subtype H5N1 wild-type m2 channel inhibitors. ChemMedChem, 2015, 10(11), 1837-1845. doi: 10.1002/cmdc.201500318 PMID: 26506405
- Drakopoulos, A.; Tzitzoglaki, C.; McGuire, K.; Hoffmann, A.; Konstantinidi, A.; Kolokouris, D.; Ma, C.; Freudenberger, K.; Hutterer, J.; Gauglitz, G.; Wang, J.; Schmidtke, M.; Busath, D.D.; Kolocouris, A. Unraveling the binding, proton blockage, and inhibition of influenza M2 wt and S31N by rimantadine variants. ACS Med. Chem. Lett., 2018, 9, 198-203. doi: 10.1021/acsmedchemlett.7b00458 PMID: 29541360
- Wang, J.; Ma, C.; Wang, J.; Jo, H.; Canturk, B.; Fiorin, G.; Pinto, L.H.; Lamb, R.A.; Klein, M.L.; DeGrado, W.F. Discovery of novel dual inhibitors of the wild-type and the most prevalent drug-resistant mutant, S31N, of the M2 proton channel from influenza A virus. J. Med. Chem., 2013, 56(7), 2804-2812. doi: 10.1021/jm301538e PMID: 23437766
- Li, F.; Ma, C.; DeGrado, W.F.; Wang, J. Discovery of highly potent inhibitors targeting the predominant drug-resistant S31N Mutant of the influenza a virus M2 proton channel. J. Med. Chem., 2016, 59(3), 1207-1216. doi: 10.1021/acs.jmedchem.5b01910 PMID: 26771709
- Li, F.; Hu, Y.; Wang, Y.; Ma, C.; Wang, J. Expeditious lead optimization of isoxazole-containing influenza a virus m2-s31n inhibitors using the suzukimiyaura cross-coupling reaction. J. Med. Chem., 2017, 60(4), 1580-1590. doi: 10.1021/acs.jmedchem.6b01852 PMID: 28182419
- Peng, S. Progression of antiviral agents targeting viral polymerases. Molecules, 2022, 27(21), 7370. doi: 10.3390/molecules27217370
- Clark, M.P.; Ledeboer, M.W.; Davies, I.; Byrn, R.A.; Jones, S.M.; Perola, E.; Tsai, A.; Jacobs, M.; Nti-Addae, K.; Bandarage, U.K.; Boyd, M.J.; Bethiel, R.S.; Court, J.J.; Deng, H.; Duffy, J.P.; Dorsch, W.A.; Farmer, L.J.; Gao, H.; Gu, W.; Jackson, K.; Jacobs, D.H.; Kennedy, J.M.; Ledford, B.; Liang, J.; Maltais, F.; Murcko, M.; Wang, T.; Wannamaker, M.W.; Bennett, H.B.; Leeman, J.R.; McNeil, C.; Taylor, W.P.; Memmott, C.; Jiang, M.; Rijnbrand, R.; Bral, C.; Germann, U.; Nezami, A.; Zhang, Y.; Salituro, F.G.; Bennani, Y.L.; Charifson, P.S. Discovery of a novel, first-in-class, orally bioavailable azaindole inhibitor (VX-787) of influenza PB2. J. Med. Chem., 2014, 57(15), 6668-6678. doi: 10.1021/jm5007275 PMID: 25019388
- Bandarage, U.K.; Clark, M.P.; Perola, E.; Gao, H.; Jacobs, M.D.; Tsai, A.; Gillespie, J.; Kennedy, J.M.; Maltais, F.; Ledeboer, M.W.; Davies, I.; Gu, W.; Byrn, R.A.; Addae, R.A.; Bennett, H.; Leeman, J.R.; Jones, S.M.; OBrien, C.; Memmott, C.; Bennani, Y.; Charifson, P.S. Novel 2-substituted 7-azaindole and 7-azaindazole analogues as potential antiviral agents for the treatment of influenza. ACS Med. Chem. Lett., 2017, 8, 261-265. doi: 10.1021/acsmedchemlett.6b00487 PMID: 28197323
- Massari, S.; Desantis, J.; Nannetti, G.; Sabatini, S.; Tortorella, S.; Goracci, L.; Cecchetti, V.; Loregian, A.; Tabarrini, O. Efficient and regioselective one-step synthesis of 7-aryl-5-methyl- and 5-aryl-7-methyl-2-amino-1,2,4triazolo1,5-apyrimidine derivatives. Org. Biomol. Chem., 2017, 15(37), 7944-7955. doi: 10.1039/C7OB02085F
- Pismataro, M.C.; Felicetti, T.; Bertagnin, C.; Nizi, M.G.; Bonomini, A.; Barreca, M.L.; Cecchetti, V.; Jochmans, D.; De Jonghe, S.; Neyts, J.; Loregian, A.; Tabarrini, O.; Massari, S. 2,4-Triazolo1,5-apyrimidines: Efficient one-step synthesis and functionalization as influenza polymerase PA-PB1 interaction disruptors. Eur. J. Med. Chem., 2021, 221, 113494. doi: 10.1016/j.ejmech.2021.113494
- Kim, C.U.; Jeong, Y.J.; Lee, P. Extracellular nucleoprotein exacerbates influenza virus pathogenesis by activating Toll-like receptor 4 and the NLRP3 inflammasome. Cell. Mol. Immunol., 2022, 19(6), 715-725. doi: 10.1038/s41423-022-00862-5
- Rogolino, D.; Naesens, L.; Bartoli, J.; Carcelli, M.; De Luca, L.; Pelosi, G.; Stokes, R.W.; Van Berwaer, R.; Vittorio, S.; Stevaert, A.; Cohen, S.M. Exploration of the 2,3-dihydroisoindole pharmacophore for inhibition of the influenza virus PA endonuclease. Bioorg. Chem., 2021, 116, 105388. doi: 10.1016/j.bioorg.2021.105388 PMID: 34670331
- Credille, C.V.; Dick, B.L.; Morrison, C.N.; Stokes, R.W.; Adamek, R.N.; Wu, N.C.; Wilson, I.A.; Cohen, S.M. Structure-activity relationships in metal-binding pharmacophores for influenza endonuclease. J. Med. Chem., 2018, 61, 10206-10217. doi: 10.1021/acs.jmedchem.8b01363 PMID: 30351002
- Jacobsen, J.A.; Fullagar, J.L.; Miller, M.T.; Cohen, S.M. Identifying chelators for metalloprotein inhibitors using a fragment-based approach. J. Med. Chem., 2011, 54(2), 591-602. doi: 10.1021/jm101266s
- Credille, C.V.; Morrison, C.N.; Stokes, R.W.; Dick, B.L.; Feng, Y.; Sun, J.; Chen, Y.; Cohen, S.M. SAR exploration of tight-binding inhibitors of influenza virus PA endonuclease. J. Med. Chem., 2019, 62(21), 9438-9449. doi: 10.1021/acs.jmedchem.9b00747 PMID: 31536340
- Sethy, B.; Hsieh, C.F.; Lin, T.J.; Hu, P.Y.; Chen, Y.L.; Lin, C.Y.; Tseng, S-N.; Horng, J.T.; Hsieh, P.W. Design, synthesis, and biological evaluation of itaconic acid derivatives as potential anti-influenza agents. J. Med. Chem., 2019, 62(5), 2390-2403. doi: 10.1021/acs.jmedchem.8b01683
- Szűcs, Z.; Csávás, M.; Rőth, E.; Borbás, A.; Batta, G.; Perret, F.; Ostorházi, E.; Szatmári, R.; Vanderlinden, E.; Naesens, L.; Herczegh, P. Synthesis and biological evaluation of lipophilic teicoplanin pseudoaglycon derivatives containing a substituted triazole function. J. Antibiot., 2017, 70(2), 152-157. doi: 10.1038/ja.2016.80 PMID: 27353163
- Pintér, G.; Batta, G.; Kéki, S.; Mándi, A.; Komáromi, I.; Takács-Novák, K.; Sztaricskai, F.; Röth, E.; Ostorházi, E.; Rozgonyi, F.; Naesens, L.; Herczegh, P. Diazo transfer-click reaction route to new, lipophilic teicoplanin and ristocetin aglycon derivatives with high antibacterial and anti-influenza virus activity: An aggregation and receptor binding study. J. Med. Chem., 2009, 52(19), 6053-6061. doi: 10.1021/jm900950d PMID: 19791806
- a) Wintachai, P.K.; Lee, R.C.; Ramphan, S.; Kuadkitkan, A.; Wikan, N.; Ubol, S.; Roytrakul, S.; Chu, J.J.; Smith, D.R. Activity of andrographolide against chikungunya virus infection. Sci. Rep., 2020, 5, 14179. doi: 10.1038/srep14179; b) Gupta, S.; Mishra, K.P.; Ganju, L. Broad-spectrum antiviral properties of andrographolide. Arch. Virol., 2017, 162, 611-623. doi: 10.1007/s00705-016-3166-3; c) Majumdar, M.; Misra, T.K.; Roy, D.N.; Braz, J. In vitro anti-biofilm activity of 14-deoxy-11,12-didehydroandro- grapholide from Andrographis paniculata against Pseudomonas aeruginosa. Microbiol., 2020, 51, 15-27. doi: 10.1007/s42770-019-00169-0; d) Zhang, H.; Li, S.; Si, Y. XU, H. Andrographolide and its derivatives: Current achievements and future perspectives. Eur. J. Med. Chem., 2021, 224, 113710. doi: 10.1016/j.ejmech.2021.113710
- Yuan, L.; Zhang, C.; Sun, H.; Liu, Q.; Huang, J.; Sheng, L.; Lin, B.; Wang, J.; Chen, L. The semi-synthesis of novel andrographolide analogues and anti-influenza virus activity evaluation of their derivatives. Bioorg. Med. Chem. Lett., 2016, 26(3), 769-773. doi: 10.1016/j.bmcl.2015.12.100 PMID: 26791013
- Ivanova, A.E.; Burgart, Y.V.; Saloutin, V.I. Non-natural nucleosides bearing 4-aryldiazenylpyrazole aglycone. Mendeleev Commun., 2016, 26(2), 106-108. doi: 10.1016/j.mencom.2016.03.006; Ivanova, A.E.; Burgart, Y.V.; Saloutin, V.I.; Orshanskaya, Y.R.; Zarubaev, V.V. β-d-Ribofuranosyl substituted polyfluoroalkylpyrazoles and their activity against the influenza virus. Mendeleev Commun., 2018, 28(1), 52-54. doi: 10.1016/j.mencom.2018.01.017
- Chiacchio, U.; Gumina, G.; Rescifina, A.; Romeo, R.; Uccella, N.; Casuscelli, F.; Piperno, A.; Romeo, G. Modified dideoxynucleosides: Synthesis of 2′-N-alkyl-3′-hydroxyalkyl-1′,2′-isoxazolidinyl thymidine and 5-fluorouridine derivatives. Tetrahedron, 1996, 52(26), 8889-8898. doi: 10.1016/0040-4020(96)00437-1
- Li, G.; Obul, M.; Zhao, J.; Liu, G.; Lu, W.; Aisa, H.A. Novel amides modified rupestonic acid derivatives as anti-influenza virus reagents. Bioorg. Med. Chem. Lett., 2019, 29(19), 126605. doi: 10.1016/j.bmcl.2019.08.009 PMID: 31439378
- Lamuta, A.; Naesens, L.; Liekens, S.; Lillsunde, K-E.; Tammela, P.; Kikelja, D. Tomaič T. Anti-influenza virus activity of benzodthiazoles that target heat shock protein 90. Bioorg. Chem., 2020, 98, 103733. doi: 10.1016/j.bioorg.2020.103733
- Gjorgjieva, M.; Tomaič, T.; Barančokova, M.; Katsamakas, S.; Ila, J.; Tammela, P.; Peterlin Maič, L.; Kikelj, D. Discovery of benzothiazole scaffold-based dna gyrase b inhibitors. J. Med. Chem., 2016, 59(19), 8941-8954. doi: 10.1021/acs.jmedchem.6b00864 PMID: 27541007
- Apaydın, Ç.B.; Tansuyu, M.; Cesur, Z.; Naesens, L.; Göktaş, F. Design, synthesis and anti-influenza virus activity of furan-substituted spirothiazolidinones. Bioorg. Chem., 2021, 112, 104958. doi: 10.1016/j.bioorg.2021.104958 PMID: 33979734
- Hussain, M.; Galvin, H.; Haw, T.Y.; Nutsford, A.; Husain, M. Drug resistance in influenza A virus: The epidemiology and management. Infect. Drug Resist., 2017, 10, 121-134. doi: 10.2147/IDR.S105473 PMID: 28458567
- Zarubaev, V.V.; Pushkina, E.A.; Borisevich, S.S.; Galochkina, A.V.; Garshinina, A.V.; Shtro, A.A.; Egorova, A.A.; Sokolova, A.S.; Khursan, S.L.; Yarovaya, O.I.; Salakhutdinov, N.F. Selection of influenza virus resistant to the novel camphor-based antiviral camphecene results in loss of pathogenicity. Virology, 2018, 524, 69-77. doi: 10.1016/j.virol.2018.08.011 PMID: 30165308
- Zarubaev, V.V.; Garshinina, A.V.; Volobueva, A.S.; Slita, A.V.; Yarovaya, O.I.; Bykov, V.V.; Leonov, K.A.; Motov, V.S.; Khazanov, V.A.; Salakhutdinov, N.F. Optimization of application schedule of camphecene, a novel anti-influenza compound, based on its pharmacokinetic characteristics. Fundam. Clin. Pharmacol., 2022, 36(3), 518-525. doi: 10.1111/fcp.12750 PMID: 34984730
- Wu, Q.; Wang, W.; Dai, X.; Wang, Z.; Shen, Z.; Ying, H.; Yu, C. Chemical compositions and anti-influenza activities of essential oils from Mosla dianthera. J. Ethnopharmacol., 2012, 139(2), 668-671. doi: 10.1016/j.jep.2011.11.056 PMID: 22193174
- Madia, V.N.; Toscanelli, W.; De Vita, D.; De Angelis, M.; Messore, A.; Longo, D.; Scipione, L.; Tudino, V.; Diodata D, A.; Di Santo, R.; Garzoli, S.; Stringaro, A.; Colone, M.; Marchetti, M.; Superti, F.; Nencioni, L.; Costi, R. Ultrastructural damages to H1N1 Influenza virus caused by vapor essential oils. Molecules, 2022, 27, 3718. doi: 10.3390/molecules27123718 PMID: 35744845
Supplementary files
