Research Progress of Chitosan-based Multifunctional Nanoparticles in Cancer Targeted Therapy
- Authors: Lai C.1, Lin S.1, Liu W.2, Jin Y.1
-
Affiliations:
- College of Materials Science and Engineering, Fuzhou University
- Fujian College Association Instrumental Analysis Center of Fuzhou University, Fuzhou University
- Issue: Vol 31, No 21 (2024)
- Pages: 3074-3092
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjmseer.com/0929-8673/article/view/644712
- DOI: https://doi.org/10.2174/0929867330666230416153352
- ID: 644712
Cite item
Full Text
Abstract
Conventional tumor therapeutic modalities, such as radiotherapy, chemotherapy, and surgery, involve low tumor inhibition efficiency, non-targeted drug delivery, and side effects. The development of novel and practical nano-drug delivery systems (DDSs) for targeted tumor therapy has become particularly important. Among various bioactive nanoparticles, chitosan is considered a suitable candidate for drug delivery due to its nontoxicity, good biocompatibility, and biodegradability. The amino and hydroxyl groups of chitosan endow it with the diverse function of chemical modification, thereby improving its physical and biological properties to meet the requirements of advanced biomedical applications. Therefore, it is necessary to review the property and applications of chitosan- based materials in biomedicine. In this review, the characteristics of chitosan related to its applications are first introduced, and then the preparation and modification of chitosan-based nanoparticles, including the function tailoring of chitosan-modified nanoparticles, are demonstrated and discussed. Finally, the opportunities and challenges of chitosan- based nanomaterials in this emerging field are proposed from the perspective of the rational and systematic design for the biomedicine field.
About the authors
Chunmei Lai
College of Materials Science and Engineering, Fuzhou University
Email: info@benthamscience.net
Simin Lin
College of Materials Science and Engineering, Fuzhou University
Email: info@benthamscience.net
Wei Liu
Fujian College Association Instrumental Analysis Center of Fuzhou University, Fuzhou University
Email: info@benthamscience.net
Yanqiao Jin
College of Materials Science and Engineering, Fuzhou University
Author for correspondence.
Email: info@benthamscience.net
References
- Sohail, M.; Guo, W.; Li, Z.; Xu, H.; Zhao, F.; Chen, D.; Fu, F. Nanocarrier-based drug delivery system for cancer therapeutics: A review of the last decade. Curr. Med. Chem., 2021, 28(19), 3753-3772. doi: 10.2174/1875533XMTEwbNDMs2 PMID: 33019919
- Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm., 2012, 2012, 1-10. doi: 10.5402/2012/195727 PMID: 22830056
- Klimpel, A.; Lützenburg, T.; Neundorf, I. Recent advances of anti-cancer therapies including the use of cell-penetrating peptides. Curr. Opin. Pharmacol., 2019, 47, 8-13. doi: 10.1016/j.coph.2019.01.003 PMID: 30771730
- Pedziwiatr-Werbicka, E.; Horodecka, K.; Shcharbin, D.; Bryszewska, M. Nanoparticles in combating cancer: Opportunities and limitations: A brief review. Curr. Med. Chem., 2021, 28(2), 346-359. doi: 10.2174/1875533XMTA0kMDkhw PMID: 32000637
- Yu, H.; He, J.; Lu, Q.; Huo, D.; Yuan, S.; Zhou, Z.; Xu, P.; Hu, Y. Anti-fas Antibody conjugated nanoparticles enhancing the antitumor effect of camptothecin by activating the fasfasl apoptotic pathway. ACS Appl. Mater. Interfaces, 2016, 8(44), 29950-29959. doi: 10.1021/acsami.6b09760 PMID: 27754664
- Liu, B.; Yang, Y.; Chao, Y.; Xiao, Z.; Xu, J.; Wang, C.; Dong, Z.; Hou, L.; Li, Q.; Liu, Z. Equipping cancer cell membrane vesicles with functional DNA as a targeted vaccine for cancer immunotherapy. Nano Lett., 2021, 21(22), 9410-9418. doi: 10.1021/acs.nanolett.1c02582 PMID: 34730968
- Cheung, R.; Ng, T.; Wong, J.; Chan, W. Chitosan: An update on potential biomedical and pharmaceutical applications. Mar. Drugs, 2015, 13(8), 5156-5186. doi: 10.3390/md13085156 PMID: 26287217
- Lee, J.; Lee, C.; Kim, T.H.; Lee, E.S.; Shin, B.S.; Chi, S.C.; Park, E.S.; Lee, K.C.; Youn, Y.S. Self-assembled glycol chitosan nanogels containing palmityl-acylated exendin-4 peptide as a long-acting anti-diabetic inhalation system. J. Control. Release, 2012, 161(3), 728-734. doi: 10.1016/j.jconrel.2012.05.029 PMID: 22634071
- Chen, G.; Svirskis, D.; Lu, W.; Ying, M.; Huang, Y.; Wen, J. N -trimethyl chitosan nanoparticles and CSKSSDYQC peptide: N -trimethyl chitosan conjugates enhance the oral bioavailability of gemcitabine to treat breast cancer. J. Control. Release, 2018, 277, 142-153. doi: 10.1016/j.jconrel.2018.03.013 PMID: 29548985
- Ding, Y.; Lv, B.; Zheng, J.; Lu, C.; Liu, J.; Lei, Y.; Yang, M.; Wang, Y.; Li, Z.; Yang, Y.; Gong, W.; Han, J.; Gao, C. RBC-hitchhiking chitosan nanoparticles loading methylprednisolone for lung-targeting delivery. J. Control. Release, 2022, 341, 702-715. doi: 10.1016/j.jconrel.2021.12.018 PMID: 34933051
- Vikas; Viswanadh, M.K.; Mehata, A.K.; Sharma, V.; Priya, V.; Varshney, N.; Mahto, S.K.; Muthu, M.S. Bioadhesive chitosan nanoparticles: Dual targeting and pharmacokinetic aspects for advanced lung cancer treatment. Carbohydr. Polym., 2021, 274, 118617. doi: 10.1016/j.carbpol.2021.118617
- Heydari, A.; Darroudi, M.; Lacík, I. Efficient N -sulfopropylation of chitosan with 1,3-propane sultone in aqueous solutions: Neutral pH as the key condition. React. Chem. Eng., 2021, 6(11), 2146-2158. doi: 10.1039/D1RE00089F
- Johari, M.A.; Azmi, A.S.; Jamaluddin, J.; Hasham, R.; Chee, C.F.; Ali, F. Comparison study between encapsulation of acalypha indica linn extracts with chitosan-PCL and chitosan-OA. 6th International Conference on Biotechnology Engineering (ICBioE 2021), 22nd-23rd June 2021 Kuala Lumpur, Malaysia 2021, pp. 012007. doi: 10.1088/1757-899X/1192/1/012007
- Xia, W.; Liu, P.; Zhang, J.; Chen, J. Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll., 2011, 25(2), 170-179. doi: 10.1016/j.foodhyd.2010.03.003
- Zhao, D.; Yu, S.; Sun, B.; Gao, S.; Guo, S.; Zhao, K. Biomedical applications of chitosan and its derivative nanoparticles. Polymers, 2018, 10(4), 462. doi: 10.3390/polym10040462 PMID: 30966497
- Fathi, M.; Majidi, S.; Zangabad, P.S.; Barar, J.; Erfan-Niya, H.; Omidi, Y. Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer. Med. Res. Rev., 2018, 38(6), 2110-2136. doi: 10.1002/med.21506 PMID: 29846948
- Attaran Dowom, S.; Karimian, Z.; Mostafaei Dehnavi, M.; Samiei, L. Chitosan nanoparticles improve physiological and biochemical responses of Salvia abrotanoides (Kar.) under drought stress. BMC Plant Biol., 2022, 22(1), 364. doi: 10.1186/s12870-022-03689-4 PMID: 35869431
- Holyavka, M.; Faizullin, D.; Koroleva, V.; Olshannikova, S.; Zakhartchenko, N.; Zuev, Y.; Kondratyev, M.; Zakharova, E.; Artyukhov, V. Novel biotechnological formulations of cysteine proteases, immobilized on chitosan. Structure, stability and activity. Int. J. Biol. Macromol., 2021, 180, 161-176. doi: 10.1016/j.ijbiomac.2021.03.016 PMID: 33676977
- Wang, F.; Yang, S.; Yuan, J.; Gao, Q.; Huang, C. Effective method of chitosan-coated alginate nanoparticles for target drug delivery applications. J. Biomater. Appl., 2016, 31(1), 3-12. doi: 10.1177/0885328216648478 PMID: 27164869
- Han, H.D.; Byeon, Y.; Jang, J.H.; Jeon, H.N.; Kim, G.H.; Kim, M.G.; Pack, C.G.; Kang, T.H.; Jung, I.D.; Lim, Y.T.; Lee, Y.J.; Lee, J.W.; Shin, B.C.; Ahn, H.J.; Sood, A.K.; Park, Y.M. In vivo stepwise immunomodulation using chitosan nanoparticles as a platform nanotechnology for cancer immunotherapy. Sci. Rep., 2016, 6(1), 38348. doi: 10.1038/srep38348 PMID: 27910914
- Anitha, A.; Chennazhi, K.P.; Nair, S.V.; Jayakumar, R. 5-flourouracil loaded N,O-carboxymethyl chitosan nanoparticles as an anticancer nanomedicine for breast cancer. J. Biomed. Nanotechnol., 2012, 8(1), 29-42. doi: 10.1166/jbn.2012.1365 PMID: 22515092
- Song, P.; Du, W.; Li, W.; Zhu, L.; Zhang, W.; Gao, X.; Tao, Y.; Ge, F. Preparation, characterization, and in vitro evaluation of amphiphilic peptide P12 and P12-DOX nanomicelles as antitumor drug carriers. Nanomater. Nanotechnol., 2020, 10 doi: 10.1177/1847980420911519
- Liu, Q.; Li, B.; Li, Y.; Yang, X.; Qiao, C.; Hu, W.; Liu, M. Solution properties of N-(2-allyl-butyl ether)-O-carboxymethyl chitosan and N-(2-allyl-isooctyl ether)-O-carboxymethyl chitosan. Int. J. Biol. Macromol., 2021, 190, 93-100. doi: 10.1016/j.ijbiomac.2021.08.208 PMID: 34481851
- Anitha, A.; Maya, S.; Deepa, N.; Chennazhi, K.P.; Nair, S.V.; Tamura, H.; Jayakumar, R. Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells. Carbohydr. Polym., 2011, 83(2), 452-461. doi: 10.1016/j.carbpol.2010.08.008
- Chen, L.; Tian, Z.; Du, Y. Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials, 2004, 25(17), 3725-3732. doi: 10.1016/j.biomaterials.2003.09.100 PMID: 15020148
- Jayakumar, R.; Prabaharan, M.; Nair, S.V.; Tokura, S.; Tamura, H.; Selvamurugan, N. Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog. Mater. Sci., 2010, 55(7), 675-709. doi: 10.1016/j.pmatsci.2010.03.001
- Mahmoudzadeh, M.; Fassihi, A.; Emami, J.; Davies, N.M.; Dorkoosh, F. Physicochemical, pharmaceutical and biological approaches toward designing optimized and efficient hydrophobically modified chitosan-based polymeric micelles as a nanocarrier system for targeted delivery of anticancer drugs. J. Drug Target., 2013, 21(8), 693-709. doi: 10.3109/1061186X.2013.824455 PMID: 23915108
- Xie, P.; Liu, P. pH-responsive surface charge reversal carboxymethyl chitosan-based drug delivery system for pH and reduction dual-responsive triggered DOX release. Carbohydr. Polym., 2020, 236, 116093. doi: 10.1016/j.carbpol.2020.116093 PMID: 32172895
- Su, Y.; Hu, Y.; Du, Y.; Huang, X.; He, J.; You, J.; Yuan, H.; Hu, F. Redox-responsive polymer-drug conjugates based on doxorubicin and chitosan oligosaccharide-g-stearic acid for cancer therapy. Mol. Pharm., 2015, 12(4), 1193-1202. doi: 10.1021/mp500710x PMID: 25751168
- Sakloetsakun, D.; Iqbal, J.; Millotti, G.; Vetter, A.; Bernkop-Schnürch, A. Thiolated chitosans: Influence of various sulfhydryl ligands on permeation-enhancing and P-gp inhibitory properties. Drug Dev. Ind. Pharm., 2011, 37(6), 648-655. doi: 10.3109/03639045.2010.534484 PMID: 21561400
- Othman, N.; Masarudin, M.J.; Kuen, C.Y.; Dasuan, N.A.; Abdullah, L.C.; Md Jamil, S.N.A. S.N.A. Synthesis and optimization of chitosan nanoparticles loaded with L-ascorbic acid and thymoquinone. Nanomaterials, 2018, 8(11), 920. doi: 10.3390/nano8110920 PMID: 30405074
- Yu, B.; Zhang, Y.; Zheng, W.; Fan, C.; Chen, T. Positive surface charge enhances selective cellular uptake and anticancer efficacy of selenium nanoparticles. Inorg. Chem., 2012, 51(16), 8956-8963. doi: 10.1021/ic301050v PMID: 22873404
- Tan, C.; Feng, B.; Zhang, X.; Xia, W.; Xia, S. Biopolymer-coated liposomes by electrostatic adsorption of chitosan (chitosomes) as novel delivery systems for carotenoids. Food Hydrocoll., 2016, 52, 774-784. doi: 10.1016/j.foodhyd.2015.08.016
- Hassani Najafabadi, A.; Abdouss, M.; Faghihi, S. Synthesis and evaluation of PEG-O-chitosan nanoparticles for delivery of poor water soluble drugs: Ibuprofen. Mater. Sci. Eng. C, 2014, 41, 91-99. doi: 10.1016/j.msec.2014.04.035 PMID: 24907742
- Gabriele, F.; Donnadio, A.; Casciola, M.; Germani, R.; Spreti, N. Ionic and covalent crosslinking in chitosan-succinic acid membranes: Effect on physicochemical properties. Carbohydr. Polym., 2021, 251, 117106. doi: 10.1016/j.carbpol.2020.117106 PMID: 33142643
- Liu, J.; Yu, S.; Qu, W.; Jin, Z.; Zhao, K. Self-assembly of soluble chitosan derivatives nanoparticles for vaccine: synthesis, characterization and evaluation. Polymers, 2021, 13(23), 4097. doi: 10.3390/polym13234097 PMID: 34883601
- Nguyen, G.H.; Le, X.T. Palmarosa essential oil encapsulated in chitosan nanoparticles by ionotropic gelation: Formulation and characterization. The 5th International Conference on Chemical Engineering, Food and Biotechnology (ICCFB 2021), 4th-5th November 2021 Ho Chi Minh City, Viet Nam 2021, pp. 012002. doi: 10.1088/1755-1315/947/1/012002
- Özkahraman, B.; Tamahkar, E.; İdil, N.; Kılıç Suloglu, A.; Perçin, I. Evaluation of hyaluronic acid nanoparticle embedded chitosangelatin hydrogels for antibiotic release. Drug Dev. Res., 2021, 82(2), 241-250. doi: 10.1002/ddr.21747 PMID: 33009868
- Liu, H.; Wang, C.; Li, C.; Qin, Y.; Wang, Z.; Yang, F.; Li, Z.; Wang, J. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Advances, 2018, 8(14), 7533-7549. doi: 10.1039/C7RA13510F PMID: 35539132
- Zhang, Y.; Yu, J.; Ren, K.; Zuo, J.; Ding, J.; Chen, X. Thermosensitive hydrogels as scaffolds for cartilage tissue engineering. Biomacromolecules, 2019, 20(4), 1478-1492. doi: 10.1021/acs.biomac.9b00043 PMID: 30843390
- Qiao, Z.; Lv, X.; He, S.; Bai, S.; Liu, X.; Hou, L.; He, J.; Tong, D.; Ruan, R.; Zhang, J.; Ding, J.; Yang, H. A mussel-inspired supramolecular hydrogel with robust tissue anchor for rapid hemostasis of arterial and visceral bleedings. Bioact. Mater., 2021, 6(9), 2829-2840. doi: 10.1016/j.bioactmat.2021.01.039 PMID: 33718665
- Wang, H.; Mu, Q.; Revia, R.; Wang, K.; Zhou, X.; Pauzauskie, P.J.; Zhou, S.; Zhang, M. Chitosan-gated magnetic-responsive nanocarrier for dual-modal optical imaging, switchable drug release, and synergistic therapy. Adv. Healthc. Mater., 2017, 6(6), 1601080. doi: 10.1002/adhm.201601080 PMID: 28121065
- Tian, H.; He, Z.; Sun, C.; Yang, C.; Zhao, P.; Liu, L.; Leong, K.W.; Mao, H.Q.; Liu, Z.; Chen, Y. Uniform core-shell nanoparticles with thiolated hyaluronic acid coating to enhance oral delivery of insulin. Adv. Healthc. Mater., 2018, 7(17), 1800285. doi: 10.1002/adhm.201800285 PMID: 29984479
- Lee, J.Y.; Crake, C.; Teo, B.; Carugo, D.; de Saint Victor, M.; Seth, A.; Stride, E. Ultrasound-enhanced siRNA delivery using magnetic nanoparticle-loaded chitosan-deoxycholic acid nanodroplets. Adv. Healthc. Mater., 2017, 6(8), 1601246. doi: 10.1002/adhm.201601246 PMID: 28195673
- Luo, L.; Bian, Y.; Liu, Y.; Zhang, X.; Wang, M.; Xing, S.; Li, L.; Gao, D. Combined near infrared photothermal therapy and chemotherapy using gold nanoshells coated liposomes to enhance antitumor effect. Small, 2016, 12(30), 4103-4112. doi: 10.1002/smll.201503961 PMID: 27294601
- Sun, J.Z.; Sun, Y.C.; Sun, L. Synthesis of surface modified Fe3O4 super paramagnetic nanoparticles for ultra sound examination and magnetic resonance imaging for cancer treatment. J. Photochem. Photobiol. B, 2019, 197, 111547. doi: 10.1016/j.jphotobiol.2019.111547 PMID: 31325773
- Miguel, S.P.; Moreira, A.F.; Correia, I.J. Chitosan based-asymmetric membranes for wound healing: A review. Int. J. Biol. Macromol., 2019, 127, 460-475. doi: 10.1016/j.ijbiomac.2019.01.072 PMID: 30660567
- Ma, Q.; Lin, Z.H.; Yang, N.; Li, Y.; Su, X.G. A novel carboxymethyl chitosanquantum dot-based intracellular probe for Zn2+ ion sensing in prostate cancer cells. Acta Biomater., 2014, 10(2), 868-874. doi: 10.1016/j.actbio.2013.10.039 PMID: 24211611
- Tan, W.B.; Jiang, S.; Zhang, Y. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials, 2007, 28(8), 1565-1571. doi: 10.1016/j.biomaterials.2006.11.018 PMID: 17161865
- Yuan, Q.; Hein, S.; Misra, R.D.K. New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: Synthesis, characterization and in vitro drug delivery response. Acta Biomater., 2010, 6(7), 2732-2739. doi: 10.1016/j.actbio.2010.01.025 PMID: 20100604
- Yu, W.; Yu, N.; Wang, Z.; Li, X.; Song, C.; Jiang, R.; Geng, P.; Li, M.; Yin, S.; Chen, Z. Chitosan-mediated green synthesis and folic-acid modification of CuS quantum dots for photoacoustic imaging guided photothermal therapy of tumor. J. Colloid Interface Sci., 2019, 555, 480-488. doi: 10.1016/j.jcis.2019.08.001 PMID: 31401480
- Thangam, R.; Sundarraj, S.; Vivek, R.; Suresh, V.; Sivasubramanian, S.; Paulpandi, M.; Karthick, S.V.; Ragavi, A.S.; Kannan, S. Theranostic potentials of multifunctional chitosansilverphycoerythrin nanocomposites against triple negative breast cancer cells. RSC Advances, 2015, 5(16), 12209-12223. doi: 10.1039/C4RA14043E
- Zhu, H.; Liu, F.; Guo, J.; Xue, J.; Qian, Z.; Gu, Y. Folate-modified chitosan micelles with enhanced tumor targeting evaluated by near infrared imaging system. Carbohydr. Polym., 2011, 86(3), 1118-1129. doi: 10.1016/j.carbpol.2011.05.061
- Rosière, R.; Van Woensel, M.; Gelbcke, M.; Mathieu, V.; Hecq, J.; Mathivet, T.; Vermeersch, M.; Van Antwerpen, P.; Amighi, K.; Wauthoz, N. New folate-grafted chitosan derivative to improve delivery of paclitaxel-loaded solid lipid nanoparticles for lung tumor therapy by inhalation. Mol. Pharm., 2018, 15(3), 899-910. doi: 10.1021/acs.molpharmaceut.7b00846 PMID: 29341619
- Wang, F.; Zhang, D.; Duan, C.; Jia, L.; Feng, F.; Liu, Y.; Wang, Y.; Hao, L.; Zhang, Q. Preparation and characterizations of a novel deoxycholic acidO-carboxymethylated chitosanfolic acid conjugates and self-aggregates. Carbohydr. Polym., 2011, 84(3), 1192-1200. doi: 10.1016/j.carbpol.2011.01.017
- Wang, F.; Chen, Y.; Zhang, D.; Zhang, Q.; Zheng, D.; Hao, L.; Liu, Y.; Duan, C.; Jia, L.; Liu, G. Folate-mediated targeted and intracellular delivery of paclitaxel using a novel deoxycholic acid-O-carboxymethylated chitosan-folic acid micelles. Int. J. Nanomedicine, 2012, 7, 325-337. PMID: 22287842
- Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett., 2010, 10(9), 3318-3323. doi: 10.1021/nl100996u PMID: 20684528
- Zhang, S.; Liu, Y.; Gan, Y.; Qiu, N.; Gu, Y.; Zhu, H. Conjugates of TAT and folate with DOX-loaded chitosan micelles offer effective intracellular delivery ability. Pharm. Dev. Technol., 2019, 24(2), 253-261. doi: 10.1080/10837450.2018.1469147 PMID: 29688120
- Chen, H.P.; Chen, M.H.; Tung, F.I.; Liu, T.Y. A novel micelle-forming material used for preparing a theranostic vehicle exhibiting enhanced in vivo therapeutic efficacy. J. Med. Chem., 2015, 58(9), 3704-3719. doi: 10.1021/jm501996y PMID: 25933159
- Cheng, M.; Zhu, W.; Li, Q.; Dai, D.; Hou, Y. Anti-cancer efficacy of biotinylated chitosan nanoparticles in liver cancer. Oncotarget, 2017, 8(35), 59068-59085. doi: 10.18632/oncotarget.19146 PMID: 28938619
- Fujii, F. Semiconductor nanocrystals for biological imaging and fluorescence spectroscopy. Adv. Exp. Med. Biol., 2021, 1310, 449-473. doi: 10.1007/978-981-33-6064-8_16 PMID: 33834445
- Twu, Y.K.; Chen, Y.W.; Shih, C.M. Preparation of silver nanoparticles using chitosan suspensions. Powder Technol., 2008, 185(3), 251-257. doi: 10.1016/j.powtec.2007.10.025
- Wahid, F.; Wang, H.S.; Zhong, C.; Chu, L.Q. Facile fabrication of moldable antibacterial carboxymethyl chitosan supramolecular hydrogels cross-linked by metal ions complexation. Carbohydr. Polym., 2017, 165, 455-461. doi: 10.1016/j.carbpol.2017.02.085 PMID: 28363572
- Wahid, F.; Wang, H.S.; Lu, Y.S.; Zhong, C.; Chu, L.Q. Preparation, characterization and antibacterial applications of carboxymethyl chitosan/CuO nanocomposite hydrogels. Int. J. Biol. Macromol., 2017, 101, 690-695. doi: 10.1016/j.ijbiomac.2017.03.132 PMID: 28356237
- Wang, Z.; Dong, J.; Zhao, Q.; Ying, Y.; Zhang, L.; Zou, J.; Zhao, S.; Wang, J.; Zhao, Y.; Jiang, S. Gold nanoparticle-mediated delivery of paclitaxel and nucleic acids for cancer therapy (Review). Mol. Med. Rep., 2020, 22(6), 4475-4484. doi: 10.3892/mmr.2020.11580 PMID: 33173972
- Zhang, C.; Huang, P.; Bao, L.; He, M.; Luo, T.; Gao, G.; Cui, D. Enhancement of gastric cell radiation sensitivity by chitosan-modified gold nanoparticles. J. Nanosci. Nanotechnol., 2011, 11(11), 9528-9535. doi: 10.1166/jnn.2011.5318 PMID: 22413242
- Sahoo, A.K.; Banerjee, S.; Ghosh, S.S.; Chattopadhyay, A. Simultaneous RGB emitting Au nanoclusters in chitosan nanoparticles for anticancer gene theranostics. ACS Appl. Mater. Interfaces, 2014, 6(1), 712-724. doi: 10.1021/am4051266 PMID: 24281656
- Yan, E.; Cao, M.; Wang, Y.; Hao, X.; Pei, S.; Gao, J.; Wang, Y.; Zhang, Z.; Zhang, D. Gold nanorods contained polyvinyl alcohol/chitosan nanofiber matrix for cell imaging and drug delivery. Mater. Sci. Eng. C, 2016, 58, 1090-1097. doi: 10.1016/j.msec.2015.09.080 PMID: 26478408
- Feng, L.; Wu, L.; Qu, X. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv. Mater., 2013, 25(2), 168-186. doi: 10.1002/adma.201203229 PMID: 23161646
- Priya Swetha, P.D.; Manisha, H.; Sudhakaraprasad, K. Graphene and graphene-based materials in biomedical science. Part. Part. Syst. Charact., 2018, 35(8), 1800105. doi: 10.1002/ppsc.201800105
- Liu, J.; Cui, L.; Losic, D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater., 2013, 9(12), 9243-9257. doi: 10.1016/j.actbio.2013.08.016 PMID: 23958782
- Yim, Y.; Shin, H.; Ahn, S.M.; Min, D.H. Graphene oxide-based fluorescent biosensors and their biomedical applications in diagnosis and drug discovery. Chem. Commun., 2021, 57(77), 9820-9833. doi: 10.1039/D1CC02157E PMID: 34494621
- Fu, G.; Zhu, L.; Yang, K.; Zhuang, R.; Xie, J.; Zhang, F. Diffusion-weighted magnetic resonance imaging for therapy response monitoring and early treatment prediction of photothermal therapy. ACS Appl. Mater. Interfaces, 2016, 8(8), 5137-5147. doi: 10.1021/acsami.5b11936 PMID: 26845246
- Ghaz-Jahanian, M.A.; Abbaspour-Aghdam, F.; Anarjan, N.; Berenjian, A.; Jafarizadeh-Malmiri, H. Application of chitosan-based nanocarriers in tumor-targeted drug delivery. Mol. Biotechnol., 2015, 57(3), 201-218. doi: 10.1007/s12033-014-9816-3 PMID: 25385004
- Prabaharan, M. Chitosan-based nanoparticles for tumor-targeted drug delivery. Int. J. Biol. Macromol., 2015, 72, 1313-1322. doi: 10.1016/j.ijbiomac.2014.10.052 PMID: 25450550
- Kwon, I.K.; Lee, S.C.; Han, B.; Park, K. Analysis on the current status of targeted drug delivery to tumors. J. Control. Release, 2012, 164(2), 108-114. doi: 10.1016/j.jconrel.2012.07.010 PMID: 22800574
- Mushtaq, A.; Li, L.; A, A.; Grøndahl, L. Chitosan nanomedicine in cancer therapy: Targeted delivery and cellular uptake. Macromol. Biosci., 2021, 21(5), 2100005. doi: 10.1002/mabi.202100005 PMID: 33738977
- Ichikawa, H.; Uneme, T.; Andoh, T.; Arita, Y.; Fujimoto, T.; Suzuki, M.; Sakurai, Y.; Shinto, H.; Fukasawa, T.; Fujii, F.; Fukumori, Y. Gadolinium-loaded chitosan nanoparticles for neutron-capture therapy: Influence of micrometric properties of the nanoparticles on tumor-killing effect. Appl. Radiat. Isot., 2014, 88, 109-113. doi: 10.1016/j.apradiso.2013.12.018 PMID: 24462286
- Cheng, B.; Gao, F.; Maissy, E.; Xu, P. Repurposing suramin for the treatment of breast cancer lung metastasis with glycol chitosan-based nanoparticles. Acta Biomater., 2019, 84, 378-390. doi: 10.1016/j.actbio.2018.12.010 PMID: 30528604
- Fan, C.; Gao, W.; Chen, Z.; Fan, H.; Li, M.; Deng, F.; Chen, Z. Tumor selectivity of stealth multi-functionalized superparamagnetic iron oxide nanoparticles. Int. J. Pharm., 2011, 404(1-2), 180-190. doi: 10.1016/j.ijpharm.2010.10.038 PMID: 21087660
- Termsarasab, U.; Cho, H.J.; Kim, D.H.; Chong, S.; Chung, S.J.; Shim, C.K.; Moon, H.T.; Kim, D.D. Chitosan oligosaccharidearachidic acid-based nanoparticles for anti-cancer drug delivery. Int. J. Pharm., 2013, 441(1-2), 373-380. doi: 10.1016/j.ijpharm.2012.11.018 PMID: 23174411
- Lee, J.Y.; Termsarasab, U.; Lee, M.Y.; Kim, D.H.; Lee, S.Y.; Kim, J.S.; Cho, H.J.; Kim, D.D. Chemosensitizing indomethacin-conjugated chitosan oligosaccharide nanoparticles for tumor-targeted drug delivery. Acta Biomater., 2017, 57, 262-273. doi: 10.1016/j.actbio.2017.05.012 PMID: 28483700
- Muntimadugu, E.; Kommineni, N.; Khan, W. Exploring the potential of nanotherapeutics in targeting tumor microenvironment for cancer therapy. Pharmacol. Res., 2017, 126, 109-122. doi: 10.1016/j.phrs.2017.05.010 PMID: 28511988
- Yhee, J.Y.; Jeon, S.; Yoon, H.Y.; Shim, M.K.; Ko, H.; Min, J.; Na, J.H.; Chang, H.; Han, H.; Kim, J.H.; Suh, M.; Lee, H.; Park, J.H.; Kim, K.; Kwon, I.C. Effects of tumor microenvironments on targeted delivery of glycol chitosan nanoparticles. J. Control. Release, 2017, 267, 223-231. doi: 10.1016/j.jconrel.2017.09.015 PMID: 28917532
- Alonso, M.J.; Garcia-Fuentes, M. Nano-Oncologicals: New Targeting and Delivery Approaches In: Advances in Delivery Science and Technology (ADST); Springer, 2014.
- Vandghanooni, S.; Eskandani, M.; Barar, J.; Omidi, Y. Recent advances in aptamer-armed multimodal theranostic nanosystems for imaging and targeted therapy of cancer. Eur. J. Pharm. Sci., 2018, 117, 301-312. doi: 10.1016/j.ejps.2018.02.027 PMID: 29499349
- You, J.; Li, X.; de Cui, F.; Du, Y.Z.; Yuan, H.; Hu, F. Folate-conjugated polymer micelles for active targeting to cancer cells: Preparation, in vitro evaluation of targeting ability and cytotoxicity. Nanotechnology, 2008, 19(4), 045102. doi: 10.1088/0957-4484/19/04/045102 PMID: 21817496
- Yeh, Y.C.; Huang, T.H.; Yang, S.C.; Chen, C.C.; Fang, J.Y. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: A review of recent advances. Front Chem., 2020, 8, 286. doi: 10.3389/fchem.2020.00286 PMID: 32391321
- Chan, P.; Kurisawa, M.; Chung, J.E.; Yang, Y.Y. Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery. Biomaterials, 2007, 28(3), 540-549. doi: 10.1016/j.biomaterials.2006.08.046 PMID: 16999995
- Bhattacharya, D.; Das, M.; Mishra, D.; Banerjee, I.; Sahu, S.K.; Maiti, T.K.; Pramanik, P. Folate receptor targeted, carboxymethyl chitosan functionalized iron oxide nanoparticles: A novel ultradispersed nanoconjugates for bimodal imaging. Nanoscale, 2011, 3(4), 1653-1662. doi: 10.1039/c0nr00821d PMID: 21331392
- Jana, D.; Jia, S.; Bindra, A.K.; Xing, P.; Ding, D.; Zhao, Y. Clearable black phosphorus nanoconjugate for targeted cancer phototheranostics. ACS Appl. Mater. Interfaces, 2020, 12(16), 18342-18351. doi: 10.1021/acsami.0c02718 PMID: 32223204
- Hu, Z.; Chen, J.; Zhou, S.; Yang, N.; Duan, S.; Zhang, Z.; Su, J.; He, J.; Zhang, Z.; Lu, X.; Zhao, Y. Mouse IP-10 Gene delivered by folate-modified chitosan nanoparticles and dendritic/tumor cells fusion vaccine effectively inhibit the growth of hepatocellular carcinoma in mice. Theranostics, 2017, 7(7), 1942-1952. doi: 10.7150/thno.16236 PMID: 28638480
- Menon, J.U.; Kuriakose, A.; Iyer, R.; Hernandez, E.; Gandee, L.; Zhang, S.; Takahashi, M.; Zhang, Z.; Saha, D.; Nguyen, K.T. Dual-drug containing core-shell nanoparticles for lung cancer therapy. Sci. Rep., 2017, 7(1), 13249. doi: 10.1038/s41598-017-13320-4 PMID: 29038584
- Heidari Majd, M.; Asgari, D.; Barar, J.; Valizadeh, H.; Kafil, V.; Coukos, G.; Omidi, Y. Specific targeting of cancer cells by multifunctional mitoxantrone-conjugated magnetic nanoparticles. J. Drug Target., 2013, 21(4), 328-340. doi: 10.3109/1061186X.2012.750325 PMID: 23293842
- Johari-Ahar, M.; Barar, J.; Alizadeh, A.M.; Davaran, S.; Omidi, Y.; Rashidi, M.R. Methotrexate-conjugated quantum dots: Synthesis, characterisation and cytotoxicity in drug resistant cancer cells. J. Drug Target., 2016, 24(2), 120-133. doi: 10.3109/1061186X.2015.1058801 PMID: 26176269
- Ranjbar-Navazi, Z.; Eskandani, M.; Johari-Ahar, M.; Nemati, A.; Akbari, H.; Davaran, S.; Omidi, Y. Doxorubicin-conjugated D-glucosamine- and folate- bi-functionalised InP/ZnS quantum dots for cancer cells imaging and therapy. J. Drug Target., 2018, 26(3), 267-277. doi: 10.1080/1061186X.2017.1365876 PMID: 28795849
- Heidari Majd, M.; Asgari, D.; Barar, J.; Valizadeh, H.; Kafil, V.; Abadpour, A.; Moumivand, E.; Mojarrad, J.S.; Rashidi, M.R.; Coukos, G.; Omidi, Y. Tamoxifen loaded folic acid armed PEGylated magnetic nanoparticles for targeted imaging and therapy of cancer. Colloids Surf. B Biointerfaces, 2013, 106, 117-125. doi: 10.1016/j.colsurfb.2013.01.051 PMID: 23434700
- Qindeel, M.; Ahmed, N.; Khan, G.M.; Rehman, A. Ligand decorated chitosan as an advanced nanocarrier for targeted delivery: A critical review. Nanomedicine, 2019, 14(12), 1623-1642. doi: 10.2217/nnm-2018-0490 PMID: 31166147
- Park, E.K.; Lee, S.B.; Lee, Y.M. Preparation and characterization of methoxy poly(ethylene glycol)/poly(ε-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials, 2005, 26(9), 1053-1061. doi: 10.1016/j.biomaterials.2004.04.008 PMID: 15369694
- Singh, R.P.; Sharma, G.; Sonali; Singh, S.; Bharti, S.; Pandey, B.L.; Koch, B.; Muthu, M.S. Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery. Mater. Sci. Eng. C, 2017, 77, 446-458. doi: 10.1016/j.msec.2017.03.225
- Barar, J.; Kafil, V.; Majd, M.H.; Barzegari, A.; Khani, S.; Johari-Ahar, M.; Asgari, D.; Cokous, G.; Omidi, Y.J. Multifunctional mitoxantrone-conjugated magnetic nanosystem for targeted therapy of folate receptor-overexpressing malignant cells. J. Nanobiotechnology, 2015, 13(1), 1-16.
- Zheng, Z.; Li, Z.; Xu, C.; Guo, B.; Guo, P. Folate-displaying exosome mediated cytosolic delivery of siRNA avoiding endosome trapping. J. Control. Release, 2019, 311-312, 43-49. doi: 10.1016/j.jconrel.2019.08.021 PMID: 31446085
- Bu, L.; Gan, L.C.; Guo, X.Q.; Chen, F.Z.; Song, Q.; Qi-Zhao; Gou, X.J.; Hou, S.X.; Yao, Q. Trans-resveratrol loaded chitosan nanoparticles modified with biotin and avidin to target hepatic carcinoma. Int. J. Pharm., 2013, 452(1-2), 355-362. doi: 10.1016/j.ijpharm.2013.05.007 PMID: 23685116
- Bonferoni, M.C.; Gavini, E.; Rassu, G.; Maestri, M.; Giunchedi, P. Chitosan nanoparticles for therapy and theranostics of hepatocellular carcinoma (HCC) and liver-targeting. Nanomaterials, 2020, 10(5), 870. doi: 10.3390/nano10050870 PMID: 32365938
- Zhou, N.; Zan, X.; Wang, Z.; Wu, H.; Yin, D.; Liao, C.; Wan, Y. Galactosylated chitosanpolycaprolactone nanoparticles for hepatocyte-targeted delivery of curcumin. Carbohydr. Polym., 2013, 94(1), 420-429. doi: 10.1016/j.carbpol.2013.01.014 PMID: 23544558
- Babu, K.R.; Muckenthaler, M.U. miR-148a regulates expression of the transferrin receptor 1 in hepatocellular carcinoma. Sci. Rep., 2019, 9(1), 1518. doi: 10.1038/s41598-018-35947-7 PMID: 30728365
- Schuster, S.J. Bispecific antibodies for the treatment of lymphomas: Promises and challenges. Hematol. Oncol., 2021, 39(S1), 113-116. doi: 10.1002/hon.2858 PMID: 34105818
- Agrawal, P.; Sonali; Singh, R.P.; Sharma, G.; Mehata, A.K.; Singh, S.; Rajesh, C.V.; Pandey, B.L.; Koch, B.; Muthu, M.S. Bioadhesive micelles of d -α-tocopherol polyethylene glycol succinate 1000: Synergism of chitosan and transferrin in targeted drug delivery. Colloids Surf. B Biointerfaces, 2017, 152, 277-288. doi: 10.1016/j.colsurfb.2017.01.021 PMID: 28122295
Supplementary files
