Multiple Protein Biomarkers and Different Treatment Strategies for Colorectal Carcinoma: A Comprehensive Prospective
- Authors: Chakraborty B.1, Agarwal S.2, Kori S.1, Das R.3, Kashaw V.4, Iyer A.5, Kashaw S.1
-
Affiliations:
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences,, Dr. Harisingh Gour University (A Central University)
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University)
- Department of Chemistry, ISF College of Pharmacy
- , Sagar Institute of Pharmaceutical Sciences,
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University
- Issue: Vol 31, No 22 (2024)
- Pages: 3286-3326
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjmseer.com/0929-8673/article/view/644762
- DOI: https://doi.org/10.2174/0929867330666230505165031
- ID: 644762
Cite item
Full Text
Abstract
In this review, we emphasized important biomarkers, pathogenesis, and newly developed therapeutic approaches in the treatment of colorectal cancer (CRC). This includes a complete description of small-molecule inhibitors, phytopharmaceuticals with antiproliferative potential, monoclonal antibodies for targeted therapy, vaccinations as immunotherapeutic agents, and many innovative strategies to intervene in the interaction of oncogenic proteins. Many factors combine to determine the clinical behavior of colorectal cancer and it is still difficult to comprehend the molecular causes of a person's vulnerability to CRC. It is also challenging to identify the causes of the tumor's onset, progression, and responsiveness or resistance to antitumor treatment. Current recommendations for targeted medications are being updated by guidelines throughout the world in light of the growing number of high-quality clinical studies. So, being concerned about the aforementioned aspects, we have tried to present a summarized pathogenic view, including a brief description of biomarkers and an update of compounds with their underlying mechanisms that are currently under various stages of clinical testing. This will help to identify gaps or shortfalls that can be addressed in upcoming colorectal cancer research.
About the authors
Biswadip Chakraborty
Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences,, Dr. Harisingh Gour University (A Central University)
Email: info@benthamscience.net
Shivangi Agarwal
Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University)
Email: info@benthamscience.net
Shivam Kori
Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences,, Dr. Harisingh Gour University (A Central University)
Email: info@benthamscience.net
Ratnesh Das
Department of Chemistry, ISF College of Pharmacy
Email: info@benthamscience.net
Varsha Kashaw
, Sagar Institute of Pharmaceutical Sciences,
Email: info@benthamscience.net
Arun Iyer
Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University
Email: info@benthamscience.net
Sushil Kashaw
Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences,, Dr. Harisingh Gour University (A Central University)
Author for correspondence.
Email: info@benthamscience.net
References
- Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol., 2021, 14(10), 101174. doi: 10.1016/j.tranon.2021.101174 PMID: 34243011
- Chu, KC; Tarone, KE; Chow, WH; Hankey, BF; Gloeckler-Ries, LA Temporal patterns in colorectal cancer incidence, survival, and mortality from 1950 through 1990. J Nat1 Cancer Inst, 1994, 86, 997-1006. doi: 10.1093/jnci/86.13.997 PMID: 7980765
- Lynch, H.T.; Smyrk, T.; Lynch, J. An update of HNPCC (Lynch syndrome). Cancer Genet. Cytogenet., 1997, 93(1), 84-99. doi: 10.1016/S0165-4608(96)00290-7 PMID: 9062584
- Radice, P.; Cama, A.; Mariani-Costantini, R. Molecular genetics of polyposis and hereditary colorectal cancer. Forum, 1996, 6, 275-291.
- Ponz de Leon, M. Genetic basis of tumour development. Ital. J. Gastroenterol., 1996, 28(4), 232-245. PMID: 8842841
- Sakai, E.; Nakajima, A.; Kaneda, A. Accumulation of aberrant DNA methylation during colorectal cancer development. World J. Gastroenterol., 2014, 20(4), 978-987. doi: 10.3748/wjg.v20.i4.978 PMID: 24574770
- Øines, M.; Helsingen, L.M.; Bretthauer, M.; Emilsson, L. Epidemiology and risk factors of colorectal polyps. Best Pract. Res. Clin. Gastroenterol., 2017, 31(4), 419-424. doi: 10.1016/j.bpg.2017.06.004 PMID: 28842051
- Colussi, D.; Brandi, G.; Bazzoli, F.; Ricciardiello, L. Molecular pathways involved in colorectal cancer: Implications for disease behavior and prevention. Int. J. Mol. Sci., 2013, 14(8), 16365-16385. doi: 10.3390/ijms140816365 PMID: 23965959
- Nazemalhosseini Mojarad, E.; Kuppen, P.J.; Aghdaei, H.A.; Zali, M.R. The CpG island methylator phenotype (CIMP) in colorectal cancer. Gastroenterol. Hepatol. Bed Bench, 2013, 6, 120-128.
- Worthley, D.L.; Leggett, B.A.; Aghdaei, H.A.; Zali, M.R. Colorectal cancer: Molecular features and clinical opportunities. Clin. Biochem. Rev., 2010, 31, 31-38.
- dos Reis, S.A.; da Conceição, L.L.; Siqueira, N.P.; Rosa, D.D.; da Silva, L.L.; Peluzio, M.C.G. Review of the mechanisms of probiotic actions in the prevention of colorectal cancer. Nutr. Res., 2017, 37, 1-19. doi: 10.1016/j.nutres.2016.11.009 PMID: 28215310
- Hu, T.; Li, L.; Shen, J.; Zhang, L.; Cho, C. Chronic inflammation and colorectal cancer: the role of vascular endothelial growth factor. Curr. Pharm. Des., 2015, 21(21), 2960-2967. doi: 10.2174/1381612821666150514104244 PMID: 26004415
- Kim, E.R.; Chang, D.K. Colorectal cancer in inflammatory bowel disease: The risk, pathogenesis, prevention and diagnosis. World J. Gastroenterol., 2014, 20(29), 9872-9881. doi: 10.3748/wjg.v20.i29.9872 PMID: 25110418
- Bogaert, J.; Prenen, H. Molecular genetics of colorectal cancer. Ann. Gastroenterol., 2014, 27(1), 9-14. PMID: 24714764
- Louis, P.; Hold, G.L.; Flint, H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol., 2014, 12(10), 661-672. doi: 10.1038/nrmicro3344 PMID: 25198138
- Markowitz, S.D.; Bertagnolli, M.M. Molecular basis of colorectal cancer. N. Engl. J. Med., 2009, 361(25), 2449-2460. doi: 10.1056/NEJMra0804588
- Samowitz, W.S.; Curtin, K.; Ma, K.N.; Schaffer, D.; Coleman, L.W.; Leppert, M.; Slattery, M.L. Microsatellite instability in sporadic colon cancer is associated with an improved prognosis at the population level. Cancer Epidemiol. Biomarkers Prev., 2001, 10(9), 917-923. PMID: 11535541
- Kim, G.P.; Colangelo, L.H.; Wieand, H.S.; Paik, S.; Kirsch, I.R.; Wolmark, N.; Allegra, C.J. Prognostic and predictive roles of high-degree microsatellite instability in colon cancer: A national cancer institute-national surgical adjuvant breast and bowel project collaborative study. J. Clin. Oncol., 2007, 25(7), 767-772. doi: 10.1200/JCO.2006.05.8172 PMID: 17228023
- Watanabe, T.; Wu, T.T.; Catalano, P.J.; Ueki, T.; Satriano, R.; Haller, D.G.; Benson, A.B., III; Hamilton, S.R. Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N. Engl. J. Med., 2001, 344(16), 1196-1206. doi: 10.1056/NEJM200104193441603 PMID: 11309634
- Iliopoulos, D.; Kavousanaki, M.; Ioannou, M.; Boumpas, D.; Verginis, P. The negative costimulatory molecule PD-1 modulates the balance between immunity and tolerance via miR-21. Eur. J. Immunol., 2011, 41(6), 1754-1763. doi: 10.1002/eji.201040646 PMID: 21469086
- Han, Y.; Liu, D.; Li, L. PD-1/PD-L1 pathway: Current researches in cancer. Am. J. Cancer Res., 2020, 10(3), 727-742. PMID: 32266087
- Van Coillie, S.; Wiernicki, B.; Xu, J. Molecular and cellular functions of CTLA-4. Adv. Exp. Med. Biol., 2020, 1248, 7-32. doi: 10.1007/978-981-15-3266-5_2 PMID: 32185705
- Anderson, A.C.; Joller, N.; Kuchroo, V.K. Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation. Immunity, 2016, 44(5), 989-1004. doi: 10.1016/j.immuni.2016.05.001 PMID: 27192565
- Borrego, F.; Masilamani, M.; Marusina, A.I.; Tang, X.; Coligan, J.E. The CD94/NKG2 family of receptors: From molecules and cells to clinical relevance. Immunol. Res., 2006, 35(3), 263-278. doi: 10.1385/IR:35:3:263 PMID: 17172651
- Lanier, L.L. Up on the tightrope: Natural killer cell activation and inhibition. Nat. Immunol., 2008, 9(5), 495-502. doi: 10.1038/ni1581 PMID: 18425106
- Zhang, Q.; Zhang, H.; Ding, J.; Liu, H.; Li, H.; Li, H.; Lu, M.; Miao, Y.; Li, L.; Zheng, J. Combination therapy with EpCAM-CAR-NK-92 cells and regorafenib against human colorectal cancer models. J. Immunol. Res., 2018, 2018, 1-11. doi: 10.1155/2018/4263520 PMID: 30410941
- Goodin, S. Development of monoclonal antibodies for the treatment of colorectal cancer. Am. J. Health Syst. Pharm., 2008, 65(S4), S3-S7. doi: 10.2146/ajhp080100 PMID: 18499888
- Labrijn, A.F.; Janmaat, M.L.; Reichert, J.M.; Parren, P.W.H.I. Bispecific antibodies: A mechanistic review of the pipeline. Nat. Rev. Drug Discov., 2019, 18(8), 585-608. doi: 10.1038/s41573-019-0028-1 PMID: 31175342
- Takegawa, N.; Yonesaka, K. HER2 as an emerging oncotarget for colorectal cancer treatment after failure of anti-epidermal growth factor receptor therapy. Clin. Colorectal Cancer, 2017, 16(4), 247-251. doi: 10.1016/j.clcc.2017.03.001 PMID: 28363756
- Stenger, M. Trastuzumab Deruxtecan-nxki in HER2-Positive Metastatic Colorectal Cancer: DESTINY-CRC01. 2021. Available from: https://ascopost.com/news/may-2021/trastuzumab-deruxtecan-nxki-in-her2-positive-metastatic-colorectal-cancerdestiny-crc01/
- Koganemaru, S.; Kuboki, Y.; Koga, Y.; Kojima, T.; Yamauchi, M.; Maeda, N.; Kagari, T.; Hirotani, K.; Yasunaga, M.; Matsumura, Y.; Doi, T. U3-1402, a novel HER3-targeting antibodydrug conjugate, for the treatment of colorectal cancer. Mol. Cancer Ther., 2019, 18(11), 2043-2050. doi: 10.1158/1535-7163.MCT-19-0452 PMID: 31395690
- Lédel, F.; Stenstedt, K.; Hallström, M.; Ragnhammar, P.; Edler, D. HER3 expression in primary colorectal cancer including corresponding metastases in lymph node and liver. Acta Oncol., 2015, 54(4), 480-486. doi: 10.3109/0284186X.2014.983654 PMID: 25601452
- Ning, S.T.; Lee, S.Y.; Wei, M.F.; Peng, C.L.; Lin, S.Y.F.; Tsai, M.H.; Lee, P.C.; Shih, Y.H.; Lin, C.Y.; Luo, T.Y.; Shieh, M.J. Targeting colorectal cancer stem-like cells with anti-CD133 antibody-conjugated SN-38 nanoparticles. ACS Appl. Mater. Interfaces, 2016, 8(28), 17793-17804. doi: 10.1021/acsami.6b04403 PMID: 27348241
- (a) Wu, Z.; Guo, H-F.; Xu, H.; Cheung, N-K.V. Development of a tetravalent anti-gpa33/anti-cd3 bispecific antibody for colorectal cancers. Mol. Cancer Ther, 2018, 17, 2164-2175.; (b) Rageul, Z.; Mottier, S.; Jarry, A.; Shah, Y.; Théoleyre, S.; Masson, D.; Laboisse, C.L.; Denis, M.G. KLF4-dependent, PPARgamma-induced expression of GPA33 in colon cancer cell lines. Int. J. Cancer, 2009, 125, 2802-2809.
- Shiozawa, M.; Chang, C.H.; Huang, Y.C.; Chen, Y.C.; Chi, M.S.; Hao, H.C.; Chang, Y.C.; Takeda, S.; Chi, K.H.; Wang, Y.S. Pharmacologically upregulated carcinoembryonic antigen-expression enhances the cytolytic activity of genetically-modified chimeric antigen receptor NK-92MI against colorectal cancer cells. BMC Immunol., 2018, 19(1), 27. doi: 10.1186/s12865-018-0262-z PMID: 30075754
- Mathur, D.; Root, A.R.; Bugaj-Gaweda, B.; Bisulco, S.; Tan, X.; Fang, W.; Kearney, J.C.; Lucas, J.; Guffroy, M.; Golas, J.; Rohde, C.M.; Stevens, C.; Kamperschroer, C.; Kelleher, K.; Lawrence-Henderson, R.F.; Upeslacis, E.; Yao, J.; Narula, J.; LaVallie, E.R.; Fernandez, D.R.; Buetow, B.S.; Rosfjord, E.; Bloom, L.; King, L.E.; Tchistiakova, L.; Nguyen, A.; Sapra, P. A novel GUCY2C-CD3 T-cell engaging bispecific construct (PF-07062119) for the treatment of gastrointestinal cancers. Clin. Cancer Res., 2020, 26(9), 2188-2202. doi: 10.1158/1078-0432.CCR-19-3275 PMID: 31996389
- Zhu, G.; Pei, L.; Xia, H.; Tang, Q.; Bi, F. Role of oncogenic KRAS in the prognosis, diagnosis and treatment of colorectal cancer. Mol. Cancer, 2021, 20(1), 143. doi: 10.1186/s12943-021-01441-4 PMID: 34742312
- Hidalgo, M.; Martinez-Garcia, M.; Le Tourneau, C.; Massard, C.; Garralda, E.; Boni, V.; Taus, A.; Albanell, J.; Sablin, M.P.; Alt, M.; Bahleda, R.; Varga, A.; Boetsch, C.; Franjkovic, I.; Heil, F.; Lahr, A.; Lechner, K.; Morel, A.; Nayak, T.; Rossomanno, S.; Smart, K.; Stubenrauch, K.; Krieter, O. First-in-human phase I study of single-agent Vanucizumab, A first-in-class bispecific anti-angiopoietin-2/Anti-VEGF-A antibody, in adult patients with advanced solid tumors. Clin. Cancer Res., 2018, 24(7), 1536-1545. doi: 10.1158/1078-0432.CCR-17-1588 PMID: 29217526
- Michel, M.; Kaps, L.; Maderer, A.; Galle, P.R.; Moehler, M. The role of p53 dysfunction in colorectal cancer and its implication for therapy. Cancers (Basel), 2021, 13(10), 2296. doi: 10.3390/cancers13102296 PMID: 34064974
- Patnaik, A.; Gordon, M.; Tsai, F.; Papadopoulous, K.; Rasco, D.; Beeram, S.M.; Fu, S.; Janku, F.; Hynes, S.M.; Gundala, S.R.; Willard, M.D.; Zhang, W.; Lin, A.B.; Hong, D. A phase I study of LY3164530, a bispecific antibody targeting MET and EGFR, in patients with advanced or metastatic cancer. Cancer Chemother. Pharmacol., 2018, 82(3), 407-418. doi: 10.1007/s00280-018-3623-7 PMID: 29926131
- Safaie Qamsari, E.; Safaei Ghaderi, S.; Zarei, B.; Dorostkar, R.; Bagheri, S.; Jadidi-Niaragh, F.; Somi, M.H.; Yousefi, M. The c-Met receptor: Implication for targeted therapies in colorectal cancer. Tumour Biol., 2017, 39(5) doi: 10.1177/1010428317699118 PMID: 28459362
- Wu, G.S.; Burns, T.F.; McDonald, E.R., III; Jiang, W.; Meng, R.; Krantz, I.D.; Kao, G.; Gan, D.D.; Zhou, J.Y.; Muschel, R.; Hamilton, S.R.; Spinner, N.B.; Markowitz, S.; Wu, G.; El-Deiry, W.S. KILLER/DR5 is a DNA damageinducible p53regulated death receptor gene. Nat. Genet., 1997, 17(2), 141-143. doi: 10.1038/ng1097-141 PMID: 9326928
- Takahashi, H.; Jin, C.; Rajabi, H.; Pitroda, S.; Alam, M.; Ahmad, R.; Raina, D.; Hasegawa, M.; Suzuki, Y.; Tagde, A.; Bronson, R.T.; Weichselbaum, R.; Kufe, D. MUC1-C activates the TAK1 inflammatory pathway in colon cancer. Oncogene, 2015, 34(40), 5187-5197. doi: 10.1038/onc.2014.442 PMID: 25659581
- Xiao, T.; Xiao, Y.; Wang, W.; Tang, Y.Y.; Xiao, Z.; Su, M. Targeting EphA2 in cancer. J. Hematol. Oncol., 2020, 13(1), 114. doi: 10.1186/s13045-020-00944-9 PMID: 32811512
- (a) Mita, A.C.; Mita, M.M.; Nawrocki, S.T.; Giles, F.J. Survivin: Key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin. Cancer Res., 2008, 14, 5000-5005.; (b) Cai, Y.; Ma, W.; Cao, L.; Li, H.; Jiang, Y.; Lu, N.; Yin, Y. Effect of survivin on tumor growth of colorectal cancer in vivo. Int. J. Clin. Exp. Pathol., 2015, 8, 13267-13672.
- Sherman, E.J.; Mitchell, D.C.; Garner, A.L. The RNA-binding protein SART3 promotes miR-34a biogenesis and G1 cell cycle arrest in lung cancer cells. J. Biol. Chem., 2019, 294(46), 17188-17196. doi: 10.1074/jbc.AC119.010419 PMID: 31619517
- Bartnik, A.; Nirmal, A.J.; Yang, S.Y. Peptide vaccine therapy in colorectal cancer. Vaccines, 2012, 1(1), 1-16. doi: 10.3390/vaccines1010001 PMID: 26343847
- Briukhovetska, D.; Dörr, J.; Endres, S.; Libby, P.; Dinarello, C.A.; Kobold, S. Interleukins in cancer: from biology to therapy. Nat. Rev. Cancer, 2021, 21(8), 481-499. doi: 10.1038/s41568-021-00363-z PMID: 34083781
- Reichert, T.E.; Watkins, S.; Stanson, J.; Johnson, J.T.; Whiteside, T.L. Endogenous IL-2 in cancer cells: a marker of cellular proliferation. J. Histochem. Cytochem., 1998, 46(5), 603-611. doi: 10.1177/002215549804600506 PMID: 9562569
- Polin, R.A.; Abman, S.H.; Rowitch, D.; Benitz, W.E. Fetal and Neonatal Physiology, 5th ed; Elsevier: Philadelphia, PA, USA, 2017.
- Rébé, C.; Ghiringhelli, F. Interleukin-1β and cancer. Cancers (Basel), 2020, 12(7), 1791. doi: 10.3390/cancers12071791 PMID: 32635472
- Baker, K.J.; Houston, A.; Brint, E. IL-1 family members in cancer; two sides to every story. Front. Immunol., 2019, 10, 1197. doi: 10.3389/fimmu.2019.01197 PMID: 31231372
- Castro, F.; Cardoso, A.P.; Gonçalves, R.M.; Serre, K.; Oliveira, M.J. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front. Immunol., 2018, 9, 847. doi: 10.3389/fimmu.2018.00847 PMID: 29780381
- Kienzl, M.; Hasenoehrl, C.; Valadez-Cosmes, P.; Maitz, K.; Sarsembayeva, A.; Sturm, E.; Heinemann, A.; Kargl, J.; Schicho, R. IL-33 reduces tumor growth in models of colorectal cancer with the help of eosinophils. OncoImmunology, 2020, 9(1), 1776059. doi: 10.1080/2162402X.2020.1776059 PMID: 32923137
- Griesenauer, B.; Paczesny, S. The ST2/IL-33 axis in immune cells during inflammatory diseases. Front. Immunol., 2017, 8, 475. doi: 10.3389/fimmu.2017.00475 PMID: 28484466
- CCR5-blockade in metastatic colorectal cancer. Patent NCT01736813, Available from: https://ClinicalTrials.gov/show/NCT01736813
- Mukaida, N. CCR5 antagonist, an ally to fight against metastatic colorectal cancer. Transl. Cancer Res., 2016, 5(S2), S309-S312. doi: 10.21037/tcr.2016.06.36
- Zhu, Y.; An, X.; Zhang, X.; Qiao, Y.; Zheng, T.; Li, X. STING: a master regulator in the cancer-immunity cycle. Mol. Cancer, 2019, 18(1), 152. doi: 10.1186/s12943-019-1087-y PMID: 31679519
- Jiang, M.; Chen, P.; Wang, L.; Li, W.; Chen, B.; Liu, Y.; Wang, H.; Zhao, S.; Ye, L.; He, Y.; Zhou, C. cGAS-STING, an important pathway in cancer immunotherapy. J. Hematol. Oncol., 2020, 13(1), 81. doi: 10.1186/s13045-020-00916-z PMID: 32571374
- Ponz de Leon, M.; Percesepe, A. Pathogenesis of colorectal cancer. Dig. Liver Dis., 2000, 32(9), 807-821. doi: 10.1016/S1590-8658(00)80361-8
- Fearon, ER; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell, 1990, 61, 759-767. doi: 10.1016/0092-8674(90)90186-I
- Deschner, EE; Godbold, J; Lynch, HT Rectal epithelial cell proliferation in a group in young adults. Cancer, 1988, 61, 2286-2290.39.
- Grady, W.M.; Markowitz, S. Colorectal cancer: Genetic alterations. In: Gastrointestinal oncology: principles and practice; Kelsen, D.; Daly, J.; Kern, S.; Levin, B.; Tepper, J., Eds.; Lippincott Williams & Wilkins: Philadelphia, 2002; pp. 685-702.
- Fearon, E.R.; Bommer, G.T. Molecular biology of colorectal cancer. DeVita, Hellman, and Rosenbergs cancer: principles & practice of oncology; DeVita, V.T., Jr; Lawrence, T.S.; Rosenberg, S.A., Eds.; Lippincott Williams & Wilkins: Philadelphia, 2008, Vol. 1, pp. 1218-1231.
- Leach, F.S.; Nicolaides, N.C.; Papadopoulos, N.; Liu, B.; Jen, J.; Parsons, R.; Peltomäki, P.; Sistonen, P.; Aaltonen, L.A.; Nyström-Lahti, M.; Guan, X-Y.; Zhang, J.; Meltzer, P.S.; Yu, J-W.; Kao, F-T.; Chen, D.J.; Cerosaletti, K.M.; Fournier, R.E.K.; Todd, S.; Lewis, T.; Leach, R.J.; Naylor, S.L.; Weissenbach, J.; Mecklin, J-P.; Järvinen, H.; Petersen, G.M.; Hamilton, S.R.; Green, J.; Jass, J.; Watson, P.; Lynch, H.T.; Trent, J.M.; de la Chapelle, A.; Kinzler, K.W.; Vogelstein, B. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell, 1993, 75(6), 1215-1225. doi: 10.1016/0092-8674(93)90330-S PMID: 8261515
- Papadopoulos, N.; Nicolaides, N.C.; Wei, Y.F.; Ruben, S.M.; Carter, K.C.; Rosen, C.A.; Haseltine, W.A.; Fleischmann, R.D.; Fraser, C.M.; Adams, M.D.; Venter, J.C.; Hamilton, S.R.; Petersen, G.M.; Watson, P.; Lynch, H.T.; Peltomäki, P.; Mecklin, J-P.; de la Chapelle, A.; Kinzler, K.W.; Vogelstein, B. Mutation of a mutL homolog in hereditary colon cancer. Science, 1994, 263(5153), 1625-1629. doi: 10.1126/science.8128251 PMID: 8128251
- Fishel, R.; Lescoe, M.K.; Rao, M.R.S.; Copeland, N.G.; Jenkins, N.A.; Garber, J.; Kane, M.; Kolodner, R. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell, 1993, 75(5), 1027-1038. doi: 10.1016/0092-8674(93)90546-3 PMID: 8252616
- Bronner, C.E.; Baker, S.M.; Morrison, P.T.; Warren, G.; Smith, L.G.; Lescoe, M.K.; Kane, M.; Earabino, C.; Lipford, J.; Lindblom, A. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature, 1994, 368(6468), 258-261. doi: 10.1038/368258a0 PMID: 8145827
- Lynch, H.T.; Lynch, J.F.; Lynch, P.M.; Attard, T. Hereditary colorectal cancer syndromes: molecular genetics, genetic counseling, diagnosis and management. Fam. Cancer, 2008, 7(1), 27-39. doi: 10.1007/s10689-007-9165-5 PMID: 17999161
- Boland, C.R.; Koi, M.; Chang, D.K.; Carethers, J.M. The biochemical basis of microsatellite instability and abnormal immunohistochemistry and clinical behavior in Lynch Syndrome: from bench to bedside. Fam. Cancer, 2008, 7(1), 41-52. doi: 10.1007/s10689-007-9145-9 PMID: 17636426
- Al-Tassan, N.; Chmiel, N.H.; Maynard, J.; Fleming, N.; Livingston, A.L.; Williams, G.T.; Hodges, A.K.; Davies, D.R.; David, S.S.; Sampson, J.R.; Cheadle, J.P. Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors. Nat. Genet., 2002, 30(2), 227-232. doi: 10.1038/ng828 PMID: 11818965
- Kastrinos, F.; Syngal, S. Recently identified colon cancer predispositions: MYH and MSH6 mutations. Semin. Oncol., 2007, 34(5), 418-424. doi: 10.1053/j.seminoncol.2007.07.005 PMID: 17920897
- Jones, S.; Emmerson, P.; Maynard, J.; Best, J.M.; Jordan, S.; Williams, G.T.; Sampson, J.R.; Cheadle, J.P. Biallelic germline mutations in MYH predispose to multiple colorectal adenoma and somatic G:C->T:A mutations. Hum. Mol. Genet., 2002, 11(23), 2961-2967. doi: 10.1093/hmg/11.23.2961 PMID: 12393807
- Issa, J.P. CpG island methylator phenotype in cancer. Nat. Rev. Cancer, 2004, 4(12), 988-993. doi: 10.1038/nrc1507 PMID: 15573120
- Kondo, Y.; Issa, J.P.J. Epigenetic changes in colorectal cancer. Cancer Metastasis Rev., 2004, 23(1/2), 29-39. doi: 10.1023/A:1025806911782 PMID: 15000147
- Toyota, M.; Ahuja, N.; Ohe-Toyota, M.; Herman, J.G.; Baylin, S.B.; Issa, J.P.J. CpG island methylator phenotype in colorectal cancer. Proc. Natl. Acad. Sci. USA, 1999, 96(15), 8681-8686. doi: 10.1073/pnas.96.15.8681 PMID: 10411935
- Goss, K.H.; Groden, J. Biology of the adenomatous polyposis coli tumor suppressor. J. Clin. Oncol., 2000, 18(9), 1967-1979. doi: 10.1200/JCO.2000.18.9.1967 PMID: 10784639
- Baker, S.J.; Fearon, E.R.; Nigro, J.M.; Hamilton, S.R.; Preisinger, A.C.; Jessup, J.M.; vanTuinen, P.; Ledbetter, D.H.; Barker, D.F.; Nakamura, Y.; White, R.; Vogelstein, B. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science, 1989, 244(4901), 217-221. doi: 10.1126/science.2649981 PMID: 2649981
- Baker, S.J.; Markowitz, S.; Fearon, E.R.; Willson, J.K.V.; Vogelstein, B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science, 1990, 249(4971), 912-915. doi: 10.1126/science.2144057 PMID: 2144057
- Vazquez, A.; Bond, E.E.; Levine, A.J.; Bond, G.L. The genetics of the p53 pathway, apoptosis and cancer therapy. Nat. Rev. Drug Discov., 2008, 7(12), 979-987. doi: 10.1038/nrd2656 PMID: 19043449
- Baker, S.J.; Preisinger, A.C.; Jessup, J.M.; Paraskeva, C.; Markowitz, S.; Willson, J.K.; Hamilton, S.; Vogelstein, B. p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res., 1990, 50(23), 7717-7722. PMID: 2253215
- Grady, W.M.; Markowitz, S.D. TGF-β signaling pathway and tumor suppression. In: The TGF-β family; Derynck, R.; Miyazano, K., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 2008; pp. 889-938.
- Markowitz, S.; Wang, J.; Myeroff, L.; Parsons, R.; Sun, L.; Lutterbaugh, J.; Fan, R.S.; Zborowska, E.; Kinzler, K.W.; Vogelstein, B.; Brattain, M.; Willson, J.K.V. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science, 1995, 268(5215), 1336-1338. doi: 10.1126/science.7761852 PMID: 7761852
- Grady, W.M.; Myeroff, L.L.; Swinler, S.E.; Rajput, A.; Thiagalingam, S.; Lutterbaugh, J.D.; Neumann, A.; Brattain, M.G.; Chang, J.; Kim, S.J.; Kinzler, K.W.; Vogelstein, B.; Willson, J.K.; Markowitz, S. Mutational inactivation of transforming growth factor β receptor type II in microsatellite stable colon cancers. Cancer Res., 1999, 59(2), 320-324. PMID: 9927040
- Sjöblom, T.; Jones, S.; Wood, LD The consensus coding sequences of human breast and colorectal cancers. Science, 2006, 314, 268-274. doi: 10.1126/science.1133427 PMID: 16959974
- Wood, L.D.; Parsons, D.W.; Jones, S.; Lin, J.; Sjöblom, T.; Leary, R.J.; Shen, D.; Boca, S.M.; Barber, T.; Ptak, J.; Silliman, N.; Szabo, S.; Dezso, Z.; Ustyanksky, V.; Nikolskaya, T.; Nikolsky, Y.; Karchin, R.; Wilson, P.A.; Kaminker, J.S.; Zhang, Z.; Croshaw, R.; Willis, J.; Dawson, D.; Shipitsin, M.; Willson, J.K.V.; Sukumar, S.; Polyak, K.; Park, B.H.; Pethiyagoda, C.L.; Pant, P.V.K.; Ballinger, D.G.; Sparks, A.B.; Hartigan, J.; Smith, D.R.; Suh, E.; Papadopoulos, N.; Buckhaults, P.; Markowitz, S.D.; Parmigiani, G.; Kinzler, K.W.; Velculescu, V.E.; Vogelstein, B. The genomic landscapes of human breast and colorectal cancers. Science, 2007, 318(5853), 1108-1113. doi: 10.1126/science.1145720 PMID: 17932254
- Leary, R.J.; Lin, J.C.; Cummins, J.; Boca, S.; Wood, L.D.; Parsons, D.W.; Jones, S.; Sjöblom, T.; Park, B.H.; Parsons, R.; Willis, J.; Dawson, D.; Willson, J.K.V.; Nikolskaya, T.; Nikolsky, Y.; Kopelovich, L.; Papadopoulos, N.; Pennacchio, L.A.; Wang, T.L.; Markowitz, S.D.; Parmigiani, G.; Kinzler, K.W.; Vogelstein, B.; Velculescu, V.E. Integrated analysis of homozygous deletions, focal amplifications, and sequence alterations in breast and colorectal cancers. Proc. Natl. Acad. Sci. USA, 2008, 105(42), 16224-16229. doi: 10.1073/pnas.0808041105 PMID: 18852474
- Thiagalingam, S.; Lengauer, C.; Leach, F.S.; Schutte, M.; Hahn, S.A.; Overhauser, J.; Willson, J.K.V.; Markowitz, S.; Hamilton, S.R.; Kern, S.E.; Kinzler, K.W.; Vogelstein, B. Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat. Genet., 1996, 13(3), 343-346. doi: 10.1038/ng0796-343 PMID: 8673134
- Eppert, K.; Scherer, S.W.; Ozcelik, H.; Pirone, R.; Hoodless, P.; Kim, H.; Tsui, L.C.; Bapat, B.; Gallinger, S.; Andrulis, I.L.; Thomsen, G.H.; Wrana, J.L.; Attisano, L. MADR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell, 1996, 86(4), 543-552. doi: 10.1016/S0092-8674(00)80128-2 PMID: 8752209
- Riggins, G.J.; Thiagalingam, S.; Rozenblum, E.; Weinstein, C.L.; Kern, S.E.; Hamilton, S.R.; Willson, J.K.V.; Markowitz, S.D.; Kinzler, K.W.; Vogelstein, B. Mad-related genes in the human. Nat. Genet., 1996, 13(3), 347-349. doi: 10.1038/ng0796-347 PMID: 8673135
- Nosho, K.; Irahara, N.; Shima, K.; Kure, S.; Kirkner, G.J.; Schernhammer, E.S.; Hazra, A.; Hunter, D.J.; Quackenbush, J.; Spiegelman, D.; Giovannucci, E.L.; Fuchs, C.S.; Ogino, S. Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS One, 2008, 3(11), e3698. doi: 10.1371/journal.pone.0003698 PMID: 19002263
- Bos, J.L.; Fearon, E.R.; Hamilton, S.R.; Vries, M.V.; van Boom, J.H.; van der Eb, A.J.; Vogelstein, B. Prevalence of ras gene mutations in human colorectal cancers. Nature, 1987, 327(6120), 293-297. doi: 10.1038/327293a0 PMID: 3587348
- Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; Davis, N.; Dicks, E.; Ewing, R.; Floyd, Y.; Gray, K.; Hall, S.; Hawes, R.; Hughes, J.; Kosmidou, V.; Menzies, A.; Mould, C.; Parker, A.; Stevens, C.; Watt, S.; Hooper, S.; Wilson, R.; Jayatilake, H.; Gusterson, B.A.; Cooper, C.; Shipley, J.; Hargrave, D.; Pritchard-Jones, K.; Maitland, N.; Chenevix-Trench, G.; Riggins, G.J.; Bigner, D.D.; Palmieri, G.; Cossu, A.; Flanagan, A.; Nicholson, A.; Ho, J.W.C.; Leung, S.Y.; Yuen, S.T.; Weber, B.L.; Seigler, H.F.; Darrow, T.L.; Paterson, H.; Marais, R.; Marshall, C.J.; Wooster, R.; Stratton, M.R.; Futreal, P.A. Mutations of the BRAF gene in human cancer. Nature, 2002, 417(6892), 949-954. doi: 10.1038/nature00766 PMID: 12068308
- Rajagopalan, H.; Bardelli, A.; Lengauer, C.; Kinzler, K.W.; Vogelstein, B.; Velculescu, V.E. RAF/RAS oncogenes and mismatch-repair status. Nature, 2002, 418(6901), 934. doi: 10.1038/418934a PMID: 12198537
- Siena, S.; Sartore-Bianchi, A.; Di Nicolantonio, F.; Balfour, J.; Bardelli, A. Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J. Natl. Cancer Inst., 2009, 101(19), 1308-1324. doi: 10.1093/jnci/djp280 PMID: 19738166
- Shen, L.; Toyota, M.; Kondo, Y.; Lin, E.; Zhang, L.; Guo, Y.; Hernandez, N.S.; Chen, X.; Ahmed, S.; Konishi, K.; Hamilton, S.R.; Issa, J.P.J. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc. Natl. Acad. Sci. USA, 2007, 104(47), 18654-18659. doi: 10.1073/pnas.0704652104 PMID: 18003927
- Weisenberger, D.J.; Siegmund, K.D.; Campan, M.; Young, J.; Long, T.I.; Faasse, M.A.; Kang, G.H.; Widschwendter, M.; Weener, D.; Buchanan, D.; Koh, H.; Simms, L.; Barker, M.; Leggett, B.; Levine, J.; Kim, M.; French, A.J.; Thibodeau, S.N.; Jass, J.; Haile, R.; Laird, P.W. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet., 2006, 38(7), 787-793. doi: 10.1038/ng1834 PMID: 16804544
- OBrien, M.J. Hyperplastic and serrated polyps of the colorectum. Gastroenterol. Clin. North Am., 2007, 36(4), 947-968. doi: 10.1016/j.gtc.2007.08.007 PMID: 17996799
- Jass, J.R. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology, 2007, 50(1), 113-130. doi: 10.1111/j.1365-2559.2006.02549.x PMID: 17204026
- Samuels, Y.; Wang, Z.; Bardelli, A.; Silliman, N.; Ptak, J.; Szabo, S.; Yan, H.; Gazdar, A.; Powell, S.M.; Riggins, G.J.; Willson, J.K.V.; Markowitz, S.; Kinzler, K.W.; Vogelstein, B.; Velculescu, V.E. High frequency of mutations of the PIK3CA gene in human cancers. Science, 2004, 304(5670), 554. doi: 10.1126/science.1096502 PMID: 15016963
- Parsons, D.W.; Wang, T.L.; Samuels, Y.; Bardelli, A.; Cummins, J.M.; DeLong, L.; Silliman, N.; Ptak, J.; Szabo, S.; Willson, J.K.V.; Markowitz, S.; Kinzler, K.W.; Vogelstein, B.; Lengauer, C.; Velculescu, V.E. Mutations in a signalling pathway. Nature, 2005, 436(7052), 792. doi: 10.1038/436792a PMID: 16094359
- Markowitz, S.D. Aspirin and colon cancer--targeting prevention? N. Engl. J. Med., 2007, 356(21), 2195-2198. doi: 10.1056/NEJMe078044 PMID: 17522404
- Cha, Y.I.; DuBois, R.N. NSAIDs and cancer prevention: targets downstream of COX-2. Annu. Rev. Med., 2007, 58(1), 239-252. doi: 10.1146/annurev.med.57.121304.131253 PMID: 17100552
- Yan, M.; Rerko, R.M.; Platzer, P.; Dawson, D.; Willis, J.; Tong, M.; Lawrence, E.; Lutterbaugh, J.; Lu, S.; Willson, J.K.V.; Luo, G.; Hensold, J.; Tai, H.H.; Wilson, K.; Markowitz, S.D. 15-Hydroxyprostaglandin dehydrogenase, a COX-2 oncogene antagonist, is a TGF-β-induced suppressor of human gastrointestinal cancers. Proc. Natl. Acad. Sci. USA, 2004, 101(50), 17468-17473. doi: 10.1073/pnas.0406142101 PMID: 15574495
- Myung, S.J.; Rerko, R.M.; Yan, M.; Platzer, P.; Guda, K.; Dotson, A.; Lawrence, E.; Dannenberg, A.J.; Lovgren, A.K.; Luo, G.; Pretlow, T.P.; Newman, R.A.; Willis, J.; Dawson, D.; Markowitz, S.D. 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proc. Natl. Acad. Sci. USA, 2006, 103(32), 12098-12102. doi: 10.1073/pnas.0603235103 PMID: 16880406
- Backlund, M.G.; Mann, J.R.; Holla, V.R.; Buchanan, F.G.; Tai, H.H.; Musiek, E.S.; Milne, G.L.; Katkuri, S.; DuBois, R.N. 15-Hydroxyprostaglandin dehydrogenase is down-regulated in colorectal cancer. J. Biol. Chem., 2005, 280(5), 3217-3223. doi: 10.1074/jbc.M411221200 PMID: 15542609
- Saltz, L.B.; Meropol, N.J.; Loehrer, P.J., Sr; Needle, M.N.; Kopit, J.; Mayer, R.J. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J. Clin. Oncol., 2004, 22(7), 1201-1208. doi: 10.1200/JCO.2004.10.182 PMID: 14993230
- Cunningham, D.; Humblet, Y.; Siena, S.; Khayat, D.; Bleiberg, H.; Santoro, A.; Bets, D.; Mueser, M.; Harstrick, A.; Verslype, C.; Chau, I.; Van Cutsem, E. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med., 2004, 351(4), 337-345. doi: 10.1056/NEJMoa033025 PMID: 15269313
- Meyerhardt, J.A.; Mayer, R.J. Systemic therapy for colorectal cancer. N. Engl. J. Med., 2005, 352(5), 476-487. doi: 10.1056/NEJMra040958 PMID: 15689586
- Van Cutsem, E.; Peeters, M.; Siena, S.; Humblet, Y.; Hendlisz, A.; Neyns, B.; Canon, J.L.; Van Laethem, J.L.; Maurel, J.; Richardson, G.; Wolf, M.; Amado, R.G. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J. Clin. Oncol., 2007, 25(13), 1658-1664. doi: 10.1200/JCO.2006.08.1620 PMID: 17470858
- Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; Ferrara, N.; Fyfe, G.; Rogers, B.; Ross, R.; Kabbinavar, F. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med., 2004, 350(23), 2335-2342. doi: 10.1056/NEJMoa032691 PMID: 15175435
- Boman, B.M.; Huang, E. Human colon cancer stem cells: a new paradigm in gastrointestinal oncology. J. Clin. Oncol., 2008, 26(17), 2828-2838. doi: 10.1200/JCO.2008.17.6941 PMID: 18539961
- OBrien, C.A.; Pollett, A.; Gallinger, S.; Dick, J.E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 2007, 445(7123), 106-110. doi: 10.1038/nature05372 PMID: 17122772
- Ricci-Vitiani, L.; Lombardi, D.G.; Pilozzi, E.; Biffoni, M.; Todaro, M.; Peschle, C.; De Maria, R. Identification and expansion of human colon-cancer-initiating cells. Nature, 2007, 445(7123), 111-115. doi: 10.1038/nature05384 PMID: 17122771
- Dalerba, P.; Dylla, S.J.; Park, I.K.; Liu, R.; Wang, X.; Cho, R.W.; Hoey, T.; Gurney, A.; Huang, E.H.; Simeone, D.M.; Shelton, A.A.; Parmiani, G.; Castelli, C.; Clarke, M.F. Phenotypic characterization of human colorectal cancer stem cells. Proc. Natl. Acad. Sci. USA, 2007, 104(24), 10158-10163. doi: 10.1073/pnas.0703478104 PMID: 17548814
- Woods, D.; Turchi, J.J. Chemotherapy induced DNA damage response. Cancer Biol. Ther., 2013, 14(5), 379-389. doi: 10.4161/cbt.23761 PMID: 23380594
- Lindskog, E.B.; Gunnarsdóttir, K.Á.; Derwinger, K.; Wettergren, Y.; Glimelius, B.; Kodeda, K. A population-based cohort study on adherence to practice guidelines for adjuvant chemotherapy in colorectal cancer. BMC Cancer, 2014, 14(1), 948. doi: 10.1186/1471-2407-14-948 PMID: 25495897
- de Gramont, A.; Figer, A.; Seymour, M.; Homerin, M.; Hmissi, A.; Cassidy, J.; Boni, C.; Cortes-Funes, H.; Cervantes, A.; Freyer, G.; Papamichael, D.; Le Bail, N.; Louvet, C.; Hendler, D.; de Braud, F.; Wilson, C.; Morvan, F.; Bonetti, A. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J. Clin. Oncol., 2000, 18(16), 2938-2947. doi: 10.1200/JCO.2000.18.16.2938 PMID: 10944126
- Douillard, J.Y.; Cunningham, D.; Roth, A.D.; Navarro, M.; James, R.D.; Karasek, P.; Jandik, P.; Iveson, T.; Carmichael, J.; Alakl, M.; Gruia, G.; Awad, L.; Rougier, P. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet, 2000, 355(9209), 1041-1047. doi: 10.1016/S0140-6736(00)02034-1 PMID: 10744089
- Pardini, B.; Kumar, R.; Naccarati, A.; Novotny, J.; Prasad, R.B.; Forsti, A.; Hemminki, K.; Vodicka, P.; Lorenzo Bermejo, J. 5-Fluorouracil-based chemotherapy for colorectal cancer and MTHFR/MTRR genotypes. Br. J. Clin. Pharmacol., 2011, 72(1), 162-163. doi: 10.1111/j.1365-2125.2010.03892.x PMID: 21204909
- Assed Bastos, D.; Coelho Ribeiro, S.; de Freitas, D.; Hoff, P.M. Review: Combination therapy in high-risk stage II or stage III colon cancer: current practice and future prospects. Ther. Adv. Med. Oncol., 2010, 2(4), 261-272. doi: 10.1177/1758834010367905 PMID: 21789139
- Nautiyal, J.; Kanwar, S.S.; Yu, Y.; Majumdar, A.P.N. Combination of dasatinib and curcumin eliminates chemo-resistant colon cancer cells. J. Mol. Signal., 2011, 6, 7. doi: 10.1186/1750-2187-6-7 PMID: 21774804
- Details available in treatment of colorectal cancer segment of cancer.gov database. 2011.
- Bokemeyer, C.; Cutsem, E.V.; Rougier, P.; Ciardiello, F.; Heeger, S.; Schlichting, M.; Celik, I.; Köhne, C.H. Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: Pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur. J. Cancer, 2012, 48(10), 1466-1475. doi: 10.1016/j.ejca.2012.02.057 PMID: 22446022
- Douillard, J.Y.; Oliner, K.S.; Siena, S.; Tabernero, J.; Burkes, R.; Barugel, M.; Humblet, Y.; Bodoky, G.; Cunningham, D.; Jassem, J.; Rivera, F.; Kocákova, I.; Ruff, P.; Błasińska-Morawiec, M.; makal, M.; Canon, J.L.; Rother, M.; Williams, R.; Rong, A.; Wiezorek, J.; Sidhu, R.; Patterson, S.D. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N. Engl. J. Med., 2013, 369(11), 1023-1034. doi: 10.1056/NEJMoa1305275 PMID: 24024839
- Francisco, L.M.; Sage, P.T.; Sharpe, A.H. The PD-1 pathway in tolerance and autoimmunity. Immunol. Rev., 2010, 236(1), 219-242. doi: 10.1111/j.1600-065X.2010.00923.x PMID: 20636820
- Tsai, M.H.; Pan, C.H.; Peng, C.L.; Shieh, M.J. Panitumumab-conjugated pt-drug nanomedicine for enhanced efficacy of combination targeted chemotherapy against colorectal cancer. Adv. Healthc. Mater., 2017, 6(13), 1700111. doi: 10.1002/adhm.201700111 PMID: 28418176
- Tabernero, J.; Melero, I.; Ros, W.; Argiles, G.; Marabelle, A.; Rodriguez-Ruiz, M.E.; Albanell, J.; Calvo, E.; Moreno, V.; Cleary, J.M.; Eder, J.P.; Karanikas, V.; Bouseida, S.; Sandoval, F.; Sabanes, D.; Sreckovic, S.; Hurwitz, H.; Paz-Ares, L.G.; Saro Suarez, J.M.; Segal, N.H. Phase Ia and Ib studies of the novel carcinoembryonic antigen (CEA) T-cell bispecific (CEA CD3 TCB) antibody as a single agent and in combination with atezolizumab: Preliminary efficacy and safety in patients with metastatic colorectal cancer (mCRC). J. Clin. Oncol., 2017, 35(15_suppl), 3002-3002. doi: 10.1200/JCO.2017.35.15_suppl.3002
- Moradi, A.; Pourseif, M.M.; Jafari, B.; Parvizpour, S.; Omidi, Y. Nanobody-based therapeutics against colorectal cancer: Precision therapies based on the personal mutanome profile and tumor neoantigens. Pharmacol. Res., 2020, 156, 104790. doi: 10.1016/j.phrs.2020.104790 PMID: 32278043
- Sharma, P.; Allison, J.P. The future of immune checkpoint therapy. Science, 2015, 348(6230), 56-61. doi: 10.1126/science.aaa8172 PMID: 25838373
- Overman, M.J.; Ernstoff, M.S.; Morse, M.A. Where we stand with immunotherapy in colorectal cancer: Deficient mismatch repair, proficient mismatch repair, and toxicity management. Am. Soc. Clin. Oncol. Educ. Book, 2018, 38(38), 239-247. doi: 10.1200/EDBK_200821 PMID: 30231358
- FDA Approves First-Line Immunotherapy for Patients with MSI-H/dMMR Metastatic Colorectal Cancer. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-line-immunotherapy-patients-msi-hdmmrmetastatic-colorectal-cancer
- Administration USFaD. FDA Grants Nivolumab Accelerated Approval for MSI-H or dMMR Colorectal Cancer. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-nivolumab-accelerated-approvalmsi-h-or-dmmr-colorectal-cancer
- Liu, L.; Mayes, P.A.; Eastman, S.; Shi, H.; Yadavilli, S.; Zhang, T.; Yang, J.; Seestaller-Wehr, L.; Zhang, S.Y.; Hopson, C.; Tsvetkov, L.; Jing, J.; Zhang, S.; Smothers, J.; Hoos, A. The BRAF and MEK inhibitors dabrafenib and trametinib: Effects on immune function and in combination with immunomodulatory antibodies targeting PD-1, PD-L1, and CTLA-4. Clin. Cancer Res., 2015, 21(7), 1639-1651. doi: 10.1158/1078-0432.CCR-14-2339 PMID: 25589619
- Loi, S.; Dushyanthen, S.; Beavis, P.A.; Salgado, R.; Denkert, C.; Savas, P.; Combs, S.; Rimm, D.L.; Giltnane, J.M.; Estrada, M.V.; Sánchez, V.; Sanders, M.E.; Cook, R.S.; Pilkinton, M.A.; Mallal, S.A.; Wang, K.; Miller, V.A.; Stephens, P.J.; Yelensky, R.; Doimi, F.D.; Gómez, H.; Ryzhov, S.V.; Darcy, P.K.; Arteaga, C.L.; Balko, J.M. RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: Therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin. Cancer Res., 2016, 22(6), 1499-1509. doi: 10.1158/1078-0432.CCR-15-1125 PMID: 26515496
- Ebert, P.J.R.; Cheung, J.; Yang, Y.; McNamara, E.; Hong, R.; Moskalenko, M.; Gould, S.E.; Maecker, H.; Irving, B.A.; Kim, J.M.; Belvin, M.; Mellman, I. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity, 2016, 44(3), 609-621. doi: 10.1016/j.immuni.2016.01.024 PMID: 26944201
- An investigational immuno-therapy study of nivolumab, and nivolumab in combination with other anti-cancer drugs, in colon cancer that has come back or has spread. Patent NCT02060188., Available from: https://clinicaltrials.gov/ct2/show/NCT02060188
- Study of nivolumab and relatlimab in patients with microsatellite stable (mss) advanced colorectal cancer. Patent NCT03642067., Available from: https://clinicaltrials.gov/ct2/show/NCT03642067
- Study of TSR-033 with an anti-programmed cell death-1 receptor (PD-1) in participants with advanced solid tumors. Patent NCT03250832., Available from: https://clinicaltrials. gov/ct2/show/NCT03250832
- Smith, C.M.; Li, A.; Krishnamurthy, N.; Lemmon, M.A. Phosphatidylserine binding directly regulates TIM-3 function. Biochem. J., 2021, 478(17), 3331-3349. doi: 10.1042/BCJ20210425 PMID: 34435619
- Wolf, Y.; Anderson, A.C.; Kuchroo, V.K. TIM3 comes of age as an inhibitory receptor. Nat. Rev. Immunol., 2020, 20(3), 173-185. doi: 10.1038/s41577-019-0224-6 PMID: 31676858
- Yang, R.; Sun, L.; Li, C.F.; Wang, Y.H.; Yao, J.; Li, H.; Yan, M.; Chang, W.C.; Hsu, J.M.; Cha, J.H.; Hsu, J.L.; Chou, C.W.; Sun, X.; Deng, Y.; Chou, C.K.; Yu, D.; Hung, M.C. Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat. Commun., 2021, 12(1), 832. doi: 10.1038/s41467-021-21099-2 PMID: 33547304
- Huang, H.; Wang, X.; Zhang, Y.; Zheng, X.; Wei, H.; Sun, R. Up-regulation of NKG2F receptor, a functionally unknown killer receptor, of human natural killer cells by interleukin-2 and interleukin-15. Oncol. Rep., 2010, 24(4), 1043-1048. PMID: 20811687
- Rodriguez-Salas, N.; Dominguez, G.; Barderas, R.; Mendiola, M.; García-Albéniz, X.; Maurel, J.; Batlle, J.F. Clinical relevance of colorectal cancer molecular subtypes. Crit. Rev. Oncol. Hematol., 2017, 109, 9-19. doi: 10.1016/j.critrevonc.2016.11.007 PMID: 28010901
- Peltomäki, P. Role of DNA mismatch repair defects in the pathogenesis of human cancer. J. Clin. Oncol., 2003, 21(6), 1174-1179. doi: 10.1200/JCO.2003.04.060 PMID: 12637487
- Pawlik, T.M.; Raut, C.P.; Rodriguez-Bigas, M.A. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis. Markers, 2004, 20(4-5), 199-206. doi: 10.1155/2004/368680 PMID: 15528785
- Salipante, S.J.; Scroggins, S.M.; Hampel, H.L.; Turner, E.H.; Pritchard, C.C. Microsatellite instability detection by next generation sequencing. Clin. Chem., 2014, 60(9), 1192-1199. doi: 10.1373/clinchem.2014.223677 PMID: 24987110
- Ganesh, K.; Zsofia, K.S.; Andrea, C.; Robin, B.; Mendelsohn, J.S.; Neil, H.S.; Luis, A. Diaz Jr. Immunotherapy in colorectal cancer: Rationale, challenges and potential. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(6), 361-375. doi: 10.1038/s41575-019-0126-x PMID: 30886395
- Ooki, A.; Shinozaki, E.; Yamaguchi, K. Immunotherapy in colorectal cancer: current and future strategies. J. Anus Rectum Colon, 2021, 5(1), 11-24. doi: 10.23922/jarc.2020-064 PMID: 33537496
- Ries, C.H.; Cannarile, M.A.; Hoves, S.; Benz, J.; Wartha, K.; Runza, V.; Rey-Giraud, F.; Pradel, L.P.; Feuerhake, F.; Klaman, I.; Jones, T.; Jucknischke, U.; Scheiblich, S.; Kaluza, K.; Gorr, I.H.; Walz, A.; Abiraj, K.; Cassier, P.A.; Sica, A.; Gomez-Roca, C.; de Visser, K.E.; Italiano, A.; Le Tourneau, C.; Delord, J.P.; Levitsky, H.; Blay, J.Y.; Rüttinger, D. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell, 2014, 25(6), 846-859. doi: 10.1016/j.ccr.2014.05.016 PMID: 24898549
- Ciardiello, D.; Vitiello, P.P.; Cardone, C.; Martini, G.; Troiani, T.; Martinelli, E.; Ciardiello, F. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat. Rev., 2019, 76, 22-32. doi: 10.1016/j.ctrv.2019.04.003 PMID: 31079031
- Beatty, G.L.; ODwyer, P.J.; Clark, J.; Shi, J.G.; Bowman, K.J.; Scherle, P. First-inhuman phase 1 study of the oral inhibitor of indoleamine 2,3-dioxygenase-1 epacadostat (INCB024360) in patients with advanced solid malignancies. Clincanres.2272.2016. Clin. Cancer Res., 2017. doi: 10.1158/1078-0432.CCR-16-2272
- Croft, M.; So, T.; Duan, W.; Soroosh, P. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol. Rev., 2009, 229(1), 173-191. doi: 10.1111/j.1600-065X.2009.00766.x PMID: 19426222
- Kalyan, A.; Kircher, S.; Shah, H.; Mulcahy, M.; Benson, A. Updates on immunotherapy for colorectal cancer. J. Gastrointest. Oncol., 2018, 9(1), 160-169. doi: 10.21037/jgo.2018.01.17 PMID: 29564182
- Petty, J.K.; He, K.; Corless, C.L.; Vetto, J.T.; Weinberg, A.D. Survival in human colorectal cancer correlates with expression of the T-cell costimulatory molecule OX-40 (CD134). Am. J. Surg., 2002, 183(5), 512-518. doi: 10.1016/S0002-9610(02)00831-0 PMID: 12034383
- Vijayan, D.; Young, A.; Teng, M.W.L.; Smyth, M.J. Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer, 2017, 17, 70.
- Mariathasan, S.; Turley, S.J.; Nickles, D.; Castiglioni, A.; Yuen, K.; Wang, Y.; Kadel, E.E., III; Koeppen, H.; Astarita, J.L.; Cubas, R.; Jhunjhunwala, S.; Banchereau, R.; Yang, Y.; Guan, Y.; Chalouni, C.; Ziai, J.; Şenbabaoğlu, Y.; Santoro, S.; Sheinson, D.; Hung, J.; Giltnane, J.M.; Pierce, A.A.; Mesh, K.; Lianoglou, S.; Riegler, J.; Carano, R.A.D.; Eriksson, P.; Höglund, M.; Somarriba, L.; Halligan, D.L.; van der Heijden, M.S.; Loriot, Y.; Rosenberg, J.E.; Fong, L.; Mellman, I.; Chen, D.S.; Green, M.; Derleth, C.; Fine, G.D.; Hegde, P.S.; Bourgon, R.; Powles, T. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature, 2018, 554(7693), 544-548. doi: 10.1038/nature25501 PMID: 29443960
- Keenan, T.E.; Burke, K.P.; Van Allen, E.M. Genomic correlates of response to immune checkpoint blockade. Nat. Med., 2019, 25(3), 389-402. doi: 10.1038/s41591-019-0382-x PMID: 30842677
- Kopetz, S SA; Wertheim, M; Kim, E M7824 (MSB0011359 C), a bifunctional fusion protein targeting PD-L1 and TGF-β, in patients with heavily pretreated CRC: Preliminary results from a phase I trial. Clin Cancer Res., 2018, 36(S4), 1287-1295. doi: 10.1158/1078-0432.CCR-17-2653 PMID: 29298798
- Vanneman, M.; Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer, 2012, 12(4), 237-251. doi: 10.1038/nrc3237 PMID: 22437869
- Troiani, T; Martinelli, E; Ciardiello, D Phase II study of avelumab in combination with cetuximab in pre-treated RAS wild type metastatic colorectal cancer patients: CAVE (cetuximabavelumab) Colon. Clin. Oncol., 2019, 37(4), TPS731. doi: 10.1200/JCO.2019.37.4_suppl.TPS731
- Bendell, JC PJ; Lieu, CH Safety and efficacy of MPDL3280A (anti-PDL1) in combination with bevacizumab (bev) and/or FOLFOX in patients (pts) with metastatic colorectal cancer (mCRC). Clin. Oncol., 2015, 33(3) doi: 10.1200/jco.2015.33.3_suppl.704
- Lee, JJ; Yothers, G; Jacobs, SA Colorectal Cancer Metastatic dMMR Immuno-Therapy (COMMIT) study (NRGGI004/SWOG-S1610): A randomized phase III study of mFOLFOX6/bevacizumab combination chemotherapy with or without atezolizumab or atezolizumab monotherapy in the first-line treatment of patients (pts) with deficient DNA mismatch repair (dMMR) metastatic colorectal cancer (mCRC). Clin. Oncol., 2019, 37(4), TPS3647-TPS3647. doi: 10.1200/JCO.2022.40.16_suppl.TPS3647
- Antoniotti, C.; Borelli, B.; Rossini, D.; Pietrantonio, F.; Morano, F.; Salvatore, L.; Lonardi, S.; Marmorino, F.; Tamberi, S.; Corallo, S.; Tortora, G.; Bergamo, F.; Brunella, D.S.; Boccaccino, A.; Grassi, E.; Racca, P.; Tamburini, E.; Aprile, G.; Moretto, R.; Boni, L.; Falcone, A.; Cremolini, C. AtezoTRIBE: a randomised phase II study of FOLFOXIRI plus bevacizumab alone or in combination with atezolizumab as initial therapy for patients with unresectable metastatic colorectal cancer. BMC Cancer, 2020, 20(1), 683. doi: 10.1186/s12885-020-07169-6 PMID: 32698790
- Fukuoka, S.; Hara, H.; Takahashi, N.; Kojima, T.; Kawazoe, A.; Asayama, M.; Yoshii, T.; Kotani, D.; Tamura, H.; Mikamoto, Y.; Hirano, N.; Wakabayashi, M.; Nomura, S.; Sato, A.; Kuwata, T.; Togashi, Y.; Nishikawa, H.; Shitara, K. Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phase Ib trial (REGONIVO, EPOC1603). J. Clin. Oncol., 2020, 38(18), 2053-2061. doi: 10.1200/JCO.19.03296 PMID: 32343640
- Wang, Q.; Yang, S.; Wang, K.; Sun, S.Y. MET inhibitors for targeted therapy of EGFR TKI-resistant lung cancer. J. Hematol. Oncol., 2019, 12(1), 63. doi: 10.1186/s13045-019-0759-9 PMID: 31227004
- Reid, J.C.; Bennett, N.C.; Stephens, C.R.; Carroll, M.L.; Magdolen, V.; Clements, J.A.; Hooper, J.D. In vitro evidence that KLK14 regulates the components of the HGF/Met axis, pro-HGF and HGF-activator inhibitor 1A and 1B. Biol. Chem., 2016, 397(12), 1299-1305. doi: 10.1515/hsz-2016-0163 PMID: 27533117
- Van Cutsem, E.; Eng, C.; Nowara, E.; Świeboda-Sadlej, A.; Tebbutt, N.C.; Mitchell, E.; Davidenko, I.; Stephenson, J.; Elez, E.; Prenen, H.; Deng, H.; Tang, R.; McCaffery, I.; Oliner, K.S.; Chen, L.; Gansert, J.; Loh, E.; Smethurst, D.; Tabernero, J. Randomized phase Ib/II trial of rilotumumab or ganitumab with panitumumab versus panitumumab alone in patients with wild-type KRAS metastatic colorectal cancer. Clin. Cancer Res., 2014, 20(16), 4240-4250. doi: 10.1158/1078-0432.CCR-13-2752 PMID: 24919569
- Shah, M.A.; Bang, Y.J.; Lordick, F.; Alsina, M.; Chen, M.; Hack, S.P.; Bruey, J.M.; Smith, D.; McCaffery, I.; Shames, D.S.; Phan, S.; Cunningham, D. Effect of fluorouracil, leucovorin, and oxaliplatin with or without onartuzumab in HER2-negative, MET-positive gastroesophageal adenocarcinoma: the METGastric Randomized Clinical Trial. JAMA Oncol., 2017, 3(5), 620-627. doi: 10.1001/jamaoncol.2016.5580 PMID: 27918764
- Xie, Y.H.; Chen, Y.X.; Fang, J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther., 2020, 5(1), 22. doi: 10.1038/s41392-020-0116-z PMID: 32296018
- Mirlekar, B.; Pylayeva-Gupta, Y. IL-12 family cytokines in cancer and immunotherapy. Cancers, 2021, 13(2), 167. doi: 10.3390/cancers13020167 PMID: 33418929
- Ward-Kavanagh, L.K.; Lin, W.W.; edý, J.R.; Ware, C.F. The TNF receptor superfamily in co-stimulating and co-inhibitory responses. Immunity, 2016, 44(5), 1005-1019. doi: 10.1016/j.immuni.2016.04.019 PMID: 27192566
- Akdis, M.; Aab, A.; Altunbulakli, C.; Azkur, K.; Costa, R.A.; Crameri, R.; Duan, S.; Eiwegger, T.; Eljaszewicz, A.; Ferstl, R.; Frei, R.; Garbani, M.; Globinska, A.; Hess, L.; Huitema, C.; Kubo, T.; Komlosi, Z.; Konieczna, P.; Kovacs, N.; Kucuksezer, U.C.; Meyer, N.; Morita, H.; Olzhausen, J.; OMahony, L.; Pezer, M.; Prati, M.; Rebane, A.; Rhyner, C.; Rinaldi, A.; Sokolowska, M.; Stanic, B.; Sugita, K.; Treis, A.; van de Veen, W.; Wanke, K.; Wawrzyniak, M.; Wawrzyniak, P.; Wirz, O.F.; Zakzuk, J.S.; Akdis, C.A. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: Receptors, functions, and roles in diseases. J. Allergy Clin. Immunol., 2016, 138(4), 984-1010. doi: 10.1016/j.jaci.2016.06.033 PMID: 27577879
- Parker, B.S.; Rautela, J.; Hertzog, P.J. Antitumour actions of interferons: Implications for cancer therapy. Nat. Rev. Cancer, 2016, 16(3), 131-144. doi: 10.1038/nrc.2016.14 PMID: 26911188
- Kim, D.S.; Endo, A.; Fang, F.G.; Huang, K.C.; Bao, X.; Choi, H.; Majumder, U.; Shen, Y.Y.; Mathieu, S.; Zhu, X.; Sanders, K.; Noland, T.; Hao, M.H.; Chen, Y.; Wang, J.Y.; Yasui, S.; TenDyke, K.; Wu, J.; Ingersoll, C.; Loiacono, K.A.; Hutz, J.E.; Sarwar, N. E7766, a macrocycle‐bridged stimulator of interferon genes (STING) agonist with potent pan‐genotypic activity. ChemMedChem, 2021, 16(11), 1741-1744. doi: 10.1002/cmdc.202100068 PMID: 33522135
- Stewart, A.K. Medicine. How thalidomide works against cancer. Science, 2014, 343(6168), 256-257. doi: 10.1126/science.1249543 PMID: 24436409
- Ruella, M.; Kalos, M. Adoptive immunotherapy for cancer. Immunol. Rev., 2014, 257(1), 14-38. doi: 10.1111/imr.12136 PMID: 24329787
- Turin, I.; Delfanti, S.; Ferulli, F.; Brugnatelli, S.; Tanzi, M.; Maestri, M.; Cobianchi, L.; Lisini, D.; Luinetti, O.; Paulli, M.; Perotti, C.; Todisco, E.; Pedrazzoli, P.; Montagna, D. In vitro killing of colorectal carcinoma cells by autologous activated NK cells are boosted by anti-epidermal growth factor receptor-induced ADCC regardless of RAS mutation status. J. Immunother., 2018, 41(4), 190-200. doi: 10.1097/CJI.0000000000000205 PMID: 29293164
- Rosenberg, S.A.; Spiess, P.; Lafreniere, R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science, 1986, 233(4770), 1318-1321. doi: 10.1126/science.3489291 PMID: 3489291
- Carlsen, L.; Huntington, K.E.; El-Deiry, W.S. Immunotherapy for colorectal cancer: Mechanisms and predictive biomarkers. Cancers, 2022, 14(4), 1028. doi: 10.3390/cancers14041028 PMID: 35205776
- Nor, A.J.; Nur, F.S. Colorectal cancer immunotherapy: Options and strategies. Front Immunol, 2020, 11, 1624. doi: 10.3389/fimmu.2020.01624
- Barrett, D.M.; Grupp, S.A.; June, C.H. Chimeric antigen receptor and TCR Modified T cells enter main street and wall street. J. Immunol., 2015, 195(3), 755-761. doi: 10.4049/jimmunol.1500751 PMID: 26188068
- Geevarghese, S.K.; Geller, D.A.; de Haan, H.A.; Hörer, M.; Knoll, A.E.; Mescheder, A.; Nemunaitis, J.; Reid, T.R.; Sze, D.Y.; Tanabe, K.K.; Tawfik, H. Phase I/II study of oncolytic herpes simplex virus NV1020 in patients with extensively pretreated refractory colorectal cancer metastatic to the liver. Hum. Gene Ther., 2010, 21(9), 1119-1128. doi: 10.1089/hum.2010.020 PMID: 20486770
- Fifis, T.; Lam, I.; Lin, D.; Malcontenti-Wilson, C.; Christophi, C.; Loveland, B. Vaccination with in vitro grown whole tumor cells induces strong immune responses and retards tumor growth in a murine model of colorectal liver metastases. Vaccine, 2008, 26(2), 241-249. doi: 10.1016/j.vaccine.2007.10.068 PMID: 18069095
- Wrobel, P.; Ahmed, S. Current status of immunotherapy in metastatic colorectal cancer. Int. J. Colorectal Dis., 2019, 34(1), 13-25. doi: 10.1007/s00384-018-3202-8 PMID: 30465238
- Blank, C.; Brown, I.; Peterson, A.C.; Spiotto, M.; Iwai, Y.; Honjo, T.; Gajewski, T.F. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res., 2004, 64(3), 1140-1145. doi: 10.1158/0008-5472.CAN-03-3259 PMID: 14871849
- Tsuruma, T.; Hata, F.; Torigoe, T.; Furuhata, T.; Idenoue, S.; Kurotaki, T.; Yamamoto, M.; Yagihashi, A.; Ohmura, T.; Yamaguchi, K.; Katsuramaki, T.; Yasoshima, T.; Sasaki, K.; Mizushima, Y.; Minamida, H.; Kimura, H.; Akiyama, M.; Hirohashi, Y.; Asanuma, H.; Tamura, Y.; Shimozawa, K.; Sato, N.; Hirata, K. Phase I clinical study of anti-apoptosis protein, survivin-derived peptide vaccine therapy for patients with advanced or recurrent colorectal cancer. J. Transl. Med., 2004, 2(1), 19. doi: 10.1186/1479-5876-2-19 PMID: 15193151
- Moulton, H.M.; Yoshihara, P.H.; Mason, D.H.; Iversen, P.L.; Triozzi, P.L. Active specific immunotherapy with a beta-human chorionic gonadotropin peptide vaccine in patients with metastatic colorectal cancer: Antibody response is associated with improved survival. Clin. Cancer Res., 2002, 8(7), 2044-2051. PMID: 12114402
- Okuno, K.; Sugiura, F.; Hida, J.I.; Tokoro, T.; Ishimaru, E.; Sukegawa, Y.; Ueda, K. Phase I clinical trial of a novel peptide vaccine in combination with UFT/LV for metastatic colorectal cancer. Exp. Ther. Med., 2011, 2(1), 73-79. doi: 10.3892/etm.2010.182 PMID: 22977472
- Miyagi, Y.; Imai, N.; Sasatomi, T.; Yamada, A.; Mine, T.; Katagiri, K.; Nakagawa, M.; Muto, A.; Okouchi, S.; Isomoto, H.; Shirouzu, K.; Yamana, H.; Itoh, K. Induction of cellular immune responses to tumor cells and peptides in colorectal cancer patients by vaccination with SART3 peptides. Clin. Cancer Res., 2001, 7(12), 3950-3962. PMID: 11751487
- Toubaji, A.; Achtar, M.; Provenzano, M.; Herrin, V.E.; Behrens, R.; Hamilton, M.; Bernstein, S.; Venzon, D.; Gause, B.; Marincola, F.; Khleif, S.N. Pilot study of mutant ras peptide-based vaccine as an adjuvant treatment in pancreatic and colorectal cancers. Cancer Immunol. Immunother., 2008, 57(9), 1413-1420. doi: 10.1007/s00262-008-0477-6 PMID: 18297281
- Koido, S.; Ohkusa, T.; Homma, S.; Namiki, Y.; Takakura, K.; Saito, K.; Ito, Z.; Kobayashi, H.; Kajihara, M.; Uchiyama, K.; Arihiro, S.; Arakawa, H.; Okamoto, M.; Gong, J.; Tajiri, H. Immunotherapy for colorectal cancer. World J. Gastroenterol., 2013, 19(46), 8531-8542. doi: 10.3748/wjg.v19.i46.8531 PMID: 24379570
- Hörig, H.; Lee, D.S.; Conkright, W.; Divito, J.; Hasson, H.; LaMare, M.; Rivera, A.; Park, D.; Tine, J.; Guito, K.; Tsang, K.W.Y.; Schlom, J.; Kaufman, H.L. Phase I clinical trial of a recombinant canarypoxvirus (ALVAC) vaccine expressing human carcinoembryonic antigen and the B7.1 co-stimulatory molecule. Cancer Immunol. Immunother., 2000, 49(9), 504-514. doi: 10.1007/s002620000146 PMID: 11092617
- Kaufman, H.L.; Lenz, H.J.; Marshall, J.; Singh, D.; Garett, C.; Cripps, C.; Moore, M.; von Mehren, M.; Dalfen, R.; Heim, W.J.; Conry, R.M.; Urba, W.J.; Benson, A.B., III; Yu, M.; Caterini, J.; Kim-Schulze, S.; DeBenedette, M.; Salha, D.; Vogel, T.; Elias, I.; Berinstein, N.L. Combination chemotherapy and ALVAC-CEA/B7.1 vaccine in patients with metastatic colorectal cancer. Clin. Cancer Res., 2008, 14(15), 4843-4849. doi: 10.1158/1078-0432.CCR-08-0276 PMID: 18676757
- Redmond, W.L.; Ruby, C.E.; Weinberg, A.D. The role of OX40-mediated co-stimulation in T-cell activation and survival. Crit. Rev. Immunol., 2009, 29(3), 187-201. doi: 10.1615/CritRevImmunol.v29.i3.10 PMID: 19538134
- Morse, M.A.; Chaudhry, A.; Gabitzsch, E.S.; Hobeika, A.C.; Osada, T.; Clay, T.M.; Amalfitano, A.; Burnett, B.K.; Devi, G.R.; Hsu, D.S.; Xu, Y.; Balcaitis, S.; Dua, R.; Nguyen, S.; Balint, J.P., Jr; Jones, F.R.; Lyerly, H.K. Novel adenoviral vector induces T-cell responses despite anti-adenoviral neutralizing antibodies in colorectal cancer patients. Cancer Immunol. Immunother., 2013, 62(8), 1293-1301. doi: 10.1007/s00262-013-1400-3 PMID: 23624851
- Fong, L.; Hou, Y.; Rivas, A.; Benike, C.; Yuen, A.; Fisher, G.A.; Davis, M.M.; Engleman, E.G. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc. Natl. Acad. Sci., 2001, 98(15), 8809-8814. doi: 10.1073/pnas.141226398 PMID: 11427731
- Boland, P.; Ma, W. Immunotherapy for colorectal cancer. Cancers, 2017, 9(12), 50. doi: 10.3390/cancers9050050 PMID: 28492495
- Sinicrope, F.A.; Ou, F-S.; Shi, Q.; Nixon, A.B.; Mody, K.; Levasseur, A.; Dueck, A.C.; Dhanarajan, A.R.; Lieu, C.H.; Cohen, D.J.; Innocenti, F.; Behrens, R.J.; Peters, W.; Sargent, D.J.; Sommer, N.; OReilly, E.M.; Meyerhardt, J. Randomized trial of FOLFOX alone or combined with atezolizumab as adjuvant therapy for patients with stage III colon cancer and deficient DNA mismatch repair or microsatellite instability (ATOMIC, Alliance A021502). J. Clin. Oncol., 2017, 35(15_suppl), TPS3630. doi: 10.1200/JCO.2017.35.15_suppl.TPS3630
- García-Martínez, E.; Smith, M.; Buqué, A.; Aranda, F.; Peña, F.A.; Ivars, A.; Cánovas, M.S.; Conesa, M.A.V.; Fucikova, J.; Spisek, R.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial watch: Immunostimulation with recombinant cytokines for cancer therapy. OncoImmunology, 2018, 7(6), e1433982. doi: 10.1080/2162402X.2018.1433982 PMID: 29872569
- Rejhová, A.; Opattová, A.; Čumová, A.; Slíva, D.; Vodička, P. Natural compounds and combination therapy in colorectal cancer treatment. Eur J Med Chem., 2017, 144, 582-594.
- Mármol, I.; Sánchez-de-Diego, C.; Pradilla Dieste, A.; Cerrada, E.; Rodriguez Yoldi, M. Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. Int. J. Mol. Sci., 2017, 18(1), 197. doi: 10.3390/ijms18010197 PMID: 28106826
Supplementary files
