Synthesis and Anticancer Activity of Novel Indole Derivatives as Dual EGFR/SRC Kinase Inhibitors


Cite item

Full Text

Abstract

Background:Recent studies showed that the cooperation between c-SRC and EGFR is responsible for more aggressive phenotype in diverse tumors, including glioblastomas and carcinomas of the colon, breast, and lung. Studies show that combination of SRC and EGFR inhibitors can induce apoptosis and delay the acquired resistance to chemotherapy. Therefore, such combination may lead to a new therapeutic strategy for the treatment of EGFR-mutant lung cancer. Osimertinib was developed as a third-generation EGFR-TKI to combat the toxicity of EGFR mutant inhibitors. Due to the resistance and adverse reaction of osimertinib and other kinase inhibitors, 12 novel compounds structurally similar to osimertinib were designed and synthesized.

Methods:Compounds were synthesized by developing novel original synthesis methods and receptor interactions were evaluated through a molecular docking study. To evaluate their inhibitory activities against EGFR and SRC kinase, in vitro enzyme assays were used. Anticancer potencies were determined using lung, breast, prostate (A549, MCF6, PC3) cancer cell lines. Compounds were also tested against normal (HEK293) cell line to evaluate their cyctotoxic effects.

Results:Although, none of compounds showed stronger inhibition compared to osimertinib in the EGFR enzyme inhibition studies, compound 16 showed the highest efficacy with an IC50 of 1.026 µM. It also presented potent activity against SRC kinase with an IC50 of 0.002 µM. Among the tested compounds, the urea containing derivatives 6-11 exhibited a strong inhibition profile (80.12-89.68%) against SRC kinase in comparison to the reference compound dasatinib (93.26%). Most of the compounds caused more than 50% of cell death in breast, lung and prostate cancer cell lines and weak toxicity for normal cells in comparison to reference compounds osimertinib, dasatinib and cisplatin. Compound 16 showed strong cytotoxicity on lung and prostate cancer cells. Treatment of prostate cancer cell lines with the most active compound, 16, significantly increased the caspase-3 (8-fold), caspase-8 (6-fold) and Bax (5.7-fold) levels and decreased the Bcl-2 level (2.3-fold) compared to the control group. These findings revealed that the compound 16 strongly induces apoptosis in the prostate cancer cell lines.

Conclusion:Overall kinase inhibition, cytotoxicity and apoptosis assays presented that compound 16 has dual inhibitory activity against SRC and EGFR kinases while maintaining low toxicity against normal cells. Other compounds also showed considerable activity profiles in kinase and cell culture assays.

About the authors

Sureyya Olgen

Department of Pharmaceutical Chemistry, Faculty of Pharmacy,, Biruni University

Author for correspondence.
Email: info@benthamscience.net

Sevde Kaleli

Department of Pharmaceutical Microbiology, Faculty of Pharmacy,, Istanbul Medipol University

Email: info@benthamscience.net

Banu Karaca

Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Atlas University

Email: info@benthamscience.net

Ural Demirel

Department of Pharmaceutical Chemistry, Faculty of Pharmacy,, Altınbaş University

Email: info@benthamscience.net

Hacer Bristow

Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University

Email: info@benthamscience.net

References

  1. Olgen, S. Overview on anticancer drug design and development. Curr. Med. Chem., 2018, 25(15), 1704-1719. doi: 10.2174/0929867325666171129215610 PMID: 29189124
  2. Pancewicz-Wojtkiewicz, J.; Bernatowicz, P.L. The effect of afatinib tratment in non-small cell lung cancer cells. Anticancer Res., 2017, 37(7), 3543-3546. doi: 10.21873/anticanres.11723 PMID: 28668844
  3. Bedi, S.; Khan, S.A.; AbuKhader, M.M.; Alam, P.; Siddiqui, N.A.; Husain, A. A comprehensive review on Brigatinib – A wonder drug for targeted cancer therapy in non-small cell lung cancer. Saudi Pharm. J., 2018, 26(6), 755-763. doi: 10.1016/j.jsps.2018.04.010 PMID: 30202213
  4. Arora, A.; Scholar, E.M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther., 2005, 315(3), 971-979. doi: 10.1124/jpet.105.084145 PMID: 16002463
  5. Traxler, P.; Furet, P. Strategies toward the design of novel and selective protein tyrosine kinase inhibitors. Pharmacol. Ther., 1999, 82(2-3), 195-206. doi: 10.1016/S0163-7258(98)00044-8 PMID: 10454197
  6. Zhang, J.; Yang, P.L.; Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer, 2009, 9(1), 28-39. doi: 10.1038/nrc2559 PMID: 19104514
  7. Olgen, S. Design strategies, structures and molecular interacions of small molecule Src inhibitors. Anticancer. Agents Med. Chem., 2016, 16(8), 992-1002. doi: 10.2174/1871520616666160223111800 PMID: 26902603
  8. Ramalingam, S.S.; Jänne, P.A.; Mok, T.; O’Byrne, K.; Boyer, M.J.; Von Pawel, J.; Pluzanski, A.; Shtivelband, M.; Docampo, L.I.; Bennouna, J.; Zhang, H.; Liang, J.Q.; Doherty, J.P.; Taylor, I.; Mather, C.B.; Goldberg, Z.; O’Connell, J.; Paz-Ares, L. Dacomitinib versus erlotinib in patients with advanced-stage, previously treated non-small-cell lung cancer (ARCHER 1009): A randomised, double-blind, phase 3 trial. Lancet Oncol., 2014, 15(12), 1369-1378. doi: 10.1016/S1470-2045(14)70452-8 PMID: 25439691
  9. Metibemu, D.S.; Akinloye, O.A.; Akamo, A.J.; Ojo, D.A.; Okeowo, O.T.; Omotuyi, I.O. Exploring receptor tyrosine kinases-inhibitors in cancer treatments. Egypt. J. Med. Hum. Genet., 2019, 20(1), 35. doi: 10.1186/s43042-019-0035-0
  10. Waring, M.J. The discovery of osimertinib (Tagrisso): An irreversible inhibitor of activating and T790M resistant forms of the epidermal growth factor receptor tyrosine kinase for the treatment of non-small cell lung cancer. In: Successful Drug Discover; , 2018; 3, pp. 341-357. doi: 10.1002/9783527808694.ch12
  11. Yan, X.E.; Ayaz, P.; Zhu, S.J.; Zhao, P.; Liang, L.; Zhang, C.H.; Wu, Y.C.; Li, J.L.; Choi, H.G.; Huang, X.; Shan, Y.; Shaw, D.E.; Yun, C.H. Structural basis of AZD9291 selectivity for EGFR T790M. J. Med. Chem., 2020, 63(15), 8502-8511. doi: 10.1021/acs.jmedchem.0c00891 PMID: 32672461
  12. Butterworth, S.; Cross, D.A.E.; Finlay, M.R.V.; Ward, R.A.; Waring, M.J. The structure-guided discovery of osimertinib: The first U.S. FDA approved mutant selective inhibitor of EGFR T790M. MedChemComm, 2017, 8(5), 820-822. doi: 10.1039/C7MD90012K PMID: 30108799
  13. An, B.; Pan, T.; Hu, J.; Pang, Y.; Huang, L.; Chan, A.S.C.; Li, X.; Yan, J. The discovery of a potent and selective third-generation EGFR kinase inhibitor as a therapy for EGFR L858R/T790M double mutant non-small cell lung cancer. Eur. J. Med. Chem., 2019, 183, 111709-111729. doi: 10.1016/j.ejmech.2019.111709 PMID: 31581004
  14. Ishizawar, R.; Parsons, S.J. c-Src and cooperating partners in human cancer. Cancer Cell, 2004, 6(3), 209-214. doi: 10.1016/j.ccr.2004.09.001 PMID: 15380511
  15. Belli, S.; Esposito, D.; Servetto, A.; Pesapane, A.; Formisano, L.; Bianco, R. c-Src and EGFR inhibition in molecular cancer therapy: What else can we improve? Cancers, 2020, 12(6), 1489. doi: 10.3390/cancers12061489. PMID: 32517369
  16. Ichihara, E.; Westover, D.; Meador, C.B.; Yan, Y.; Bauer, J.A.; Lu, P.; Ye, F.; Kulick, A.; de Stanchina, E.; McEwen, R.; Ladanyi, M.; Cross, D.; Pao, W.; Lovly, C.M. SFK/FAK signaling attenuates osimertinib efficacy in both drug- sensitive and drug-resistant models of EGFR-mutant lung cancer. Cancer Res., 2017, 77(11), 2990-3000. doi: 10.1158/0008-5472.CAN-16-2300 PMID: 28416483
  17. Ghosh, A.K.; Brindisi, M. Urea derivatives in modern drug discovery and medicinal chemistry. J Med Chem., 2020, 63(6), 2751-2788. doi: 10.1021/acs.jmedchem.9b01541 PMID: 31789518
  18. Sahin, Z.; Biltekin, S.N.; Yurttas, L.; Berk, B.; Özhan, Y.; Sipahi, H.; Gao, Z.G.; Jacobson, K.A.; Demirayak, Ş. Novel cyanothiouracil and cyanothiocytosine derivatives as concentration-dependent selective inhibitors of U87MG glioblastomas: Adenosine receptor binding and potent PDE4 inhibition. Eur. J. Med. Chem., 2021, 212, 113125. doi: 10.1016/j.ejmech.2020.113125 PMID: 33422981
  19. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63. doi: 10.1016/0022-1759(83)90303-4 PMID: 6606682
  20. Gong, L.; Tang, Y.; An, R.; Lin, M.; Chen, L.; Du, J. RTN1-C mediates cerebral ischemia/reperfusion injury via ER stress and mitochondria-associated apoptosis pathways. Cell Death Dis., 2017, 8(10), e3080. doi: 10.1038/cddis.2017.465 PMID: 28981095
  21. El-Dash, Y.; Elzayat, E.; Abdou, A.M.; Hassan, R.A. Novel thienopyrimidine-aminothiazole hybrids: Design, synthesis, antimicrobial screening, anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis and VEGFR-2 inhibition. Bioorg. Chem., 2021, 114, 105137. doi: 10.1016/j.bioorg.2021.105137 PMID: 34237644
  22. Lambuk, L.; Iezhitsa, I.; Agarwal, R.; Bakar, N.S.; Agarwal, P.; Ismail, N.M. Antiapoptotic effect of taurine against NMDA-induced retinal excitotoxicity in rats. Neurotoxicology, 2019, 70, 62-71. doi: 10.1016/j.neuro.2018.10.009 PMID: 30385388
  23. Donepudi, M.; Sweeney, A.M.; Briand, C.; Grütter, M.G. Insights into the regulatory mechanism for caspase-8 activation. Mol. Cell, 2003, 11(2), 543-549. doi: 10.1016/S1097-2765(03)00059-5 PMID: 12620240
  24. Dolka, I.; Król, M.; Sapierzyński, R. Evaluation of apoptosis-associated protein (Bcl-2, Bax, cleaved caspase-3 and p53) expression in canine mammary tumors: An immunohistochemical and prognostic study. Res. Vet. Sci., 2016, 105, 124-133. doi: 10.1016/j.rvsc.2016.02.004 PMID: 27033920
  25. Cheng, C.; Wen, S.; Li, H.J. Fluorine- and/or deuterium-containing compounds for treating non-small cell lung cancer and related diseases. US Patent 2019/0169171 Al,, 2019.
  26. Jiang, Y.P. Pyrimidine or pyridine compounds, preparation method therefor and pharmaceutical uses thereof. EP Patent 3 216 786 A1,, 2017.
  27. Alves, J.; Goueli, S.A.; Zegzouti, H. www.promega.com/tbs/tm313/tm313.html.
  28. Fritsch, M.; Günther, S.D.; Schwarzer, R.; Albert, M.C.; Schorn, F.; Werthenbach, J.P.; Schiffmann, L.M.; Stair, N.; Stocks, H.; Seeger, J.M.; Lamkanfi, M.; Krönke, M.; Pasparakis, M.; Kashkar, H. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature, 2019, 575(7784), 683-687. doi: 10.1038/s41586-019-1770-6 PMID: 31748744
  29. Ma, C.; MacKenzie, S.H.; Clay Clark, A. Redesigning the procaspase-8 dimer interface for improved dimerization. Protein Sci., 2014, 23(4), 442-453. doi: 10.1002/pro.2426 PMID: 24442640

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers