Synthesis and Biological Evaluations of Granulatamide B and its Structural Analogues
- Authors: Matulja D.1, Grbčić P.2, Matijević G.3, Babić S.4, Bojanić K.4, Laclef S.5, Vrček V.6, Čo-Rakovac R.7, Pavelić S.8, Marković D.1
-
Affiliations:
- Department of Biotechnology, University of Rijeka
- Medical Faculty, Juraj Dobrila University of Pula
- Laboratory for Biotechnology in Aquaculture, Ruder Boković Institute
- Laboratory for Biotechnology in Aquaculture,, Ruder Boković Institute
- Laboratory of Glycochemistry, Antimicrobials and Agroresources, University of Picardie Jules Verne - Faculty of Sciences
- Department of Organic Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb
- Laboratory for Biotechnology in Aquaculture, Rudjer Boskovic Institute
- Faculty of Health Studies, University of Rijeka
- Issue: Vol 31, No 25 (2024)
- Pages: 3997-4021
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjmseer.com/0929-8673/article/view/644909
- DOI: https://doi.org/10.2174/0109298673272687231226111132
- ID: 644909
Cite item
Full Text
Abstract
Background:While granulatamides A and B have been previously isolated, their biological activities have been only partially examined. The aim of this study was to synthesize granulatamide B (4b), a tryptamine-derivative naturally occurring in Eunicella coral species, using the well-known procedure of Sun and Fürstner and its 12 structural analogues by modifying the side chain, which differs in length, degree of saturation as well as number and conjugation of double bonds.
Method:The prepared library of compounds underwent comprehensive assessment for their biological activities, encompassing antioxidative, antiproliferative, and antibacterial properties, in addition to in vivo toxicity evaluation using a Zebrafish model. Compound 4i, which consists of a retinoic acid moiety, exhibited the strongest scavenging activity against ABTS radicals (IC50 = 36 ± 2 µM). In addition, 4b and some of the analogues (4a, 4c and 4i), mostly containing an unsaturated chain and conjugated double bonds, showed moderate but non-selective activity with certain IC50 values in the range of 20-40 µM.
Result:In contrast, the analogue 4l, a derivative of alpha-linolenic acid, was the least toxic towards normal cell lines. Moreover, 4b was also highly active against Gram-positive Bacillus subtilis with an MIC of 125 µM. Nevertheless, both 4b and 4i, known for the best-observed effects, caused remarkable developmental abnormalities in the zebrafish model Danio rerio.
Conclusion:Since modification of the side chain did not significantly alter the change in biological activities compared to the parent compound, granulatamide B (4b), the substitution of the indole ring needs to be considered. Our group is currently carrying out new syntheses focusing on the functionalization of the indole core.
About the authors
Dario Matulja
Department of Biotechnology, University of Rijeka
Email: info@benthamscience.net
Petra Grbčić
Medical Faculty, Juraj Dobrila University of Pula
Email: info@benthamscience.net
Gabrijela Matijević
Laboratory for Biotechnology in Aquaculture, Ruder Boković Institute
Email: info@benthamscience.net
Sanja Babić
Laboratory for Biotechnology in Aquaculture,, Ruder Boković Institute
Email: info@benthamscience.net
Krunoslav Bojanić
Laboratory for Biotechnology in Aquaculture,, Ruder Boković Institute
Email: info@benthamscience.net
Sylvain Laclef
Laboratory of Glycochemistry, Antimicrobials and Agroresources, University of Picardie Jules Verne - Faculty of Sciences
Email: info@benthamscience.net
Valerije Vrček
Department of Organic Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb
Email: info@benthamscience.net
Rozelindra Čo-Rakovac
Laboratory for Biotechnology in Aquaculture, Rudjer Boskovic Institute
Email: info@benthamscience.net
Sandra Pavelić
Faculty of Health Studies, University of Rijeka
Author for correspondence.
Email: info@benthamscience.net
Dean Marković
Department of Biotechnology, University of Rijeka
Author for correspondence.
Email: info@benthamscience.net
References
- Barzkar, N.; Tamadoni Jahromi, S.; Poorsaheli, H.B.; vianello, F. Metabolites from marine microorganisms, micro, and macroalgae: Immense scope for pharmacology. Mar. Drugs, 2019, 17(8), 464. doi: 10.3390/md17080464 PMID: 31398953
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2019, 36(1), 122-173. doi: 10.1039/C8NP00092A PMID: 30663727
- Matulja, D.; Vranjeević, F.; Kolympadi Markovic, M.; Pavelić, S.K.; Marković, D. Anticancer activities of marine-derived phenolic compounds and their derivatives. Molecules, 2022, 27(4), 1449. doi: 10.3390/molecules27041449 PMID: 35209235
- Xu, J.; Yi, M.; Ding, L.; He, S. A review of anti-inflammatory compounds from marine fungi, 2000-2018. Mar. Drugs, 2019, 17(11), 636. doi: 10.3390/md17110636 PMID: 31717541
- Habbu, P.; Warad, V.; Shastri, R.; Madagundi, S.; Kulkarni, V.H. Antimicrobial metabolites from marine microorganisms. Chin. J. Nat. Med., 2016, 14(2), 101-116. doi: 10.1016/S1875-5364(16)60003-1 PMID: 26968676
- Tziveleka, L.A.; Tammam, M.A.; Tzakou, O.; Roussis, V.; Ioannou, E. Metabolites with antioxidant activity from marine macroalgae. Antioxidants, 2021, 10(9), 1431. doi: 10.3390/antiox10091431 PMID: 34573063
- Lindequist, U. Marine-derived pharmaceuticals - challenges and opportunities. Biomol. Ther., 2016, 24(6), 561-571. doi: 10.4062/biomolther.2016.181 PMID: 27795450
- Ercolano, G.; De Cicco, P.; Ianaro, A. New drugs from the sea: Pro-apoptotic activity of sponges and algae derived compounds. Mar. Drugs, 2019, 17(1), 31. doi: 10.3390/md17010031 PMID: 30621025
- Nigam, M.; Suleria, H.A.R.; Farzaei, M.H.; Mishra, A.P. Marine anticancer drugs and their relevant targets: A treasure from the ocean. Daru, 2019, 27(1), 491-515. doi: 10.1007/s40199-019-00273-4 PMID: 31165439
- Matulja, D.; Wittine, K.; Malatesti, N.; Laclef, S.; Turks, M.; Markovic, M.K.; Ambroić, G.; Marković, D. Marine natural products with high anticancer activities. Curr. Med. Chem., 2020, 27(8), 1243-1307. doi: 10.2174/0929867327666200113154115 PMID: 31931690
- Hu, Y.; Chen, S.; Yang, F.; Dong, S. Marine indole alkaloids-isolation, structure and bioactivities. Mar. Drugs, 2021, 19(12), 658. doi: 10.3390/md19120658 PMID: 34940657
- Netz, N.; Opatz, T. Marine indole alkaloids. Mar. Drugs, 2015, 13(8), 4814-4914. doi: 10.3390/md13084814 PMID: 26287214
- Rocha, J.; Peixe, L.; Gomes, N.C.M.; Calado, R. Cnidarians as a source of new marine bioactive compounds- an overview of the last decade and future steps for bioprospecting. Mar. Drugs, 2011, 9(10), 1860-1886. doi: 10.3390/md9101860 PMID: 22073000
- Ma, Q.; Zhang, X.; Qu, Y. Biodegradation and biotransformation of indole: Advances and perspectives. Front. Microbiol., 2018, 9, 2625. doi: 10.3389/fmicb.2018.02625 PMID: 30443243
- Cariello, L.; Prota, G. Occurence of 3-hydroxy-l-kynurenine in gorgonians. Comp. Biochem. Physiol. B, 1972, 41(1), 195-199. doi: 10.1016/0305-0491(72)90022-3 PMID: 4403888
- Gao, C.; Yi, X.; Huang, R.; Yan, F.; He, B.; Chen, B. Alkaloids from corals. Chem. Biodivers., 2013, 10(8), 1435-1447. doi: 10.1002/cbdv.201100276 PMID: 23939792
- Reyes, F.; Martín, R.; Fernández, R. Granulatamides A and B, cytotoxic tryptamine derivatives from the soft coral Eunicella granulata. J. Nat. Prod., 2006, 69(4), 668-670. doi: 10.1021/np050382s PMID: 16643049
- Chávez, D.; Acevedo, L.A.; Mata, R. Tryptamine derived amides and acetogenins from the seeds of Rollinia mucosa. J. Nat. Prod., 1999, 62(8), 1119-1122. doi: 10.1021/np990118x PMID: 10479316
- Maeda, U.; Hara, N.; Fujimoto, Y.; Srivastava, A.; Gupra, Y.K.; Sahai, M. N-fatty acyl tryptamines from Annona reticulata. Phytochemistry, 1993, 34(6), 1633-1635. doi: 10.1016/S0031-9422(00)90860-4 PMID: 7763559
- Wu, Y.C.; Chang, F.R.; Chen, C.Y. Tryptamine-derived amides and alkaloids from the seeds of Annona atemoya. J. Nat. Prod., 2005, 68(3), 406-408. doi: 10.1021/np040177x PMID: 15787445
- Schmidt, F.; Douaron, G.L.; Champy, P.; Amar, M.; Séon-Méniel, B.; Raisman-Vozari, R.; Figadère, B. Tryptamine-derived alkaloids from Annonaceae exerting neurotrophin-like properties on primary dopaminergic neurons. Bioorg. Med. Chem., 2010, 18(14), 5103-5113. doi: 10.1016/j.bmc.2010.05.067 PMID: 20579892
- Venepally, V.; Prasad, R.; Poornachandra, Y.; Kumar, C.; Jala, R. Synthesis and biological evaluation of some new N-fatty acyl derivatives of 4,5-Dimethoxy tryptamine. IJC-B, 2017, 56B(5), 531-41.
- Marot, C.; Chavatte, P.; Morin-Allory, L.; viaud, M.C.; Guillaumet, G.; Renard, P.; Lesieur, D.; Michel, A. Pharmacophoric search and 3D-QSAR comparative molecular field analysis studies on agonists of melatonin sheep receptors. J. Med. Chem., 1998, 41(23), 4453-4465. doi: 10.1021/jm980026p PMID: 9804685
- Chang, F.Y.; Siuti, P.; Laurent, S.; Williams, T.; Glassey, E.; Sailer, A.W.; Gordon, D.B.; Hemmerle, H.; Voigt, C.A. Gut-inhabiting Clostridia build human GPCR ligands by conjugating neurotransmitters with diet- and human-derived fatty acids. Nat. Microbiol., 2021, 6(6), 792-805. doi: 10.1038/s41564-021-00887-y PMID: 33846627
- Pakhare, D.; Kusurkar, R. Application of HornerWadsworthEmmons olefination for the synthesis of granulatamide A, its E isomer and other amides of tryptamine. New J. Chem., 2016, 40(6), 5428-5431. doi: 10.1039/C5NJ03533C
- Sun, C.L.; Fürstner, A. Formal ring-opening/cross-coupling reactions of 2-pyrones: iron-catalyzed entry into stereodefined dienyl carboxylates. Angew. Chem. Int. Ed., 2013, 52(49), 13071-13075. doi: 10.1002/anie.201307028 PMID: 24123891
- Kumar, S.; Ritika. A brief review of the biological potential of indole derivatives. Fut. J. Pharmaceut. Sci., 2020, 6(1), 121. doi: 10.1186/s43094-020-00141-y
- Bentz, E.N.; Lobayan, R.M.; Martínez, H.; Redondo, P.; Largo, A. Intrinsic antioxidant potential of the aminoindole structure: A computational kinetics study of tryptamine. J. Phys. Chem. B, 2018, 122(24), 6386-6395. doi: 10.1021/acs.jpcb.8b03807 PMID: 29775059
- Dhuguru, J.; Skouta, R. Role of indole scaffolds as pharmacophores in the development of anti-lung cancer agents. Molecules, 2020, 25(7), 1615. doi: 10.3390/molecules25071615 PMID: 32244744
- Kumari, A.; Singh, R.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg. Chem., 2019, 89, 103021. doi: 10.1016/j.bioorg.2019.103021 PMID: 31176854
- Pal, C.; Bindu, S.; Dey, S.; Alam, A.; Goyal, M.; Iqbal, M.S.; Sarkar, S.; Kumar, R.; Halder, K.K.; Debnath, M.C.; Adhikari, S.; Bandyopadhyay, U. Tryptamine-gallic acid hybrid prevents non-steroidal anti-inflammatory drug-induced gastropathy: correction of mitochondrial dysfunction and inhibition of apoptosis in gastric mucosal cells. J. Biol. Chem., 2012, 287(5), 3495-3509. doi: 10.1074/jbc.M111.307199 PMID: 22157011
- Laclef, S.; Kolympadi Marković, M.; Marković, D. Amide synthesis by transamidation of primary carboxamides. Synthesis, 2020, 52(21), 3231-3242. doi: 10.1055/s-0040-1707133
- Jóźwiak, M.; Filipowska, A.; Fiorino, F.; Struga, M. Anticancer activities of fatty acids and their heterocyclic derivatives. Eur. J. Pharmacol., 2020, 871, 172937. doi: 10.1016/j.ejphar.2020.172937 PMID: 31958454
- Mukerjee, S.; Saeedan, A.S.; Ansari, M.N.; Singh, M. Polyunsaturated fatty acids mediated regulation of membrane biochemistry and tumor cell membrane integrity. Membranes, 2021, 11(7), 479. doi: 10.3390/membranes11070479 PMID: 34203433
- Richard, D.; Kefi, K.; Barbe, U.; Bausero, P.; Visioli, F. Polyunsaturated fatty acids as antioxidants. Pharmacol. Res., 2008, 57(6), 451-455. doi: 10.1016/j.phrs.2008.05.002 PMID: 18583147
- Oppedisano, F.; Macrì, R.; Gliozzi, M.; Musolino, V.; Carresi, C.; Maiuolo, J.; Bosco, F.; Nucera, S.; Caterina Zito, M.; Guarnieri, L.; Scarano, F.; Nicita, C.; Coppoletta, A.R.; Ruga, S.; Scicchitano, M.; Mollace, R.; Palma, E.; Mollace, V. The anti-inflammatory and antioxidant properties of n-3 pufas: Their role in cardiovascular protection. Biomedicines, 2020, 8(9), 306. doi: 10.3390/biomedicines8090306 PMID: 32854210
- Matulja, D.; Kolympadi Markovic, M.; Ambroić, G.; Laclef, S.; Pavelić, S.K.; Marković, D. Secondary metabolites from gorgonian corals of the genus eunicella: Structural characterizations, biological activities, and synthetic approaches. Molecules, 2019, 25(1), 129. doi: 10.3390/molecules25010129 PMID: 31905691
- Matulja, D.; Grbčić, P.; Bojanić, K.; Topić-Popović, N.; Čo-Rakovac, R.; Laclef, S.; muc, T.; Jović, O.; Marković, D.; Pavelić, S.K. Chemical evaluation, antioxidant, antiproliferative, anti-inflammatory and antibacterial activities of organic extract and semi-purified fractions of the adriatic sea fan, eunicella cavolini. Molecules, 2021, 26(19), 5751. doi: 10.3390/molecules26195751 PMID: 34641295
- Yoshida, T.; Kawamura, S.; Nakata, K. Chemoselective N-acetylation of primary aliphatic amines promoted by pivalic or acetic acid using ethyl acetate as an acetyl donor. Tetrahedron Lett., 2017, 58(12), 1181-1184. doi: 10.1016/j.tetlet.2017.02.015
- Zheleva-Dimitrova, D.; Nedialkov, P.; Kitanov, G. Radical scavenging and antioxidant activities of methanolic extracts from Hypericum species growing in Bulgaria. Pharmacogn. Mag., 2010, 6(22), 74-78. doi: 10.4103/0973-1296.62889 PMID: 20668569
- Gazivoda, T.; Raić-Malić, S.; Kritafor, V.; Makuc, D.; Plavec, J.; Bratulić, S.; Kraljević-Pavelić, S.; Pavelić, K.; Naesens, L.; Andrei, G.; Snoeck, R.; Balzarini, J.; Mintas, M. Synthesis, cytostatic and anti-HIV evaluations of the new unsaturated acyclic C-5 pyrimidine nucleoside analogues. Bioorg. Med. Chem., 2008, 16(10), 5624-5634. doi: 10.1016/j.bmc.2008.03.074 PMID: 18424155
- Rashidi, M.; Seghatoleslam, A.; Namavari, M.; Amiri, A.; Fahmidehkar, M.A.; Ramezani, A.; Eftekhar, E.; Hosseini, A.; Erfani, N.; Fakher, S. Selective cytotoxicity and apoptosis-induction of Cyrtopodion scabrum extract against digestive cancer cell lines. Int. J. Cancer Manag., 2017, 10(5), e8633. doi: 10.5812/ijcm.8633
- Babić, S.; Čimek, L.; Maravelski, A.; Malev, O.; Pflieger, M.; Strunjak-Perović, I.; Popović, N.T.; Čo-Rakovac, R.; Trebe, P. Utilization of the zebrafish model to unravel the harmful effects of biomass burning during Amazonian wildfires. Sci. Rep., 2021, 11(1), 2527. doi: 10.1038/s41598-021-81789-1 PMID: 33510260
- DIRECTIVE. 2010/63/EU of the European parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes (Text with EEA Relevance). 2010. Available from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF
- Legros, J.; Figadère, B. Iron-promoted CC bond formation in the total synthesis of natural products and drugs. Nat. Prod. Rep., 2015, 32(11), 1541-1555. doi: 10.1039/C5NP00059A PMID: 26395292
- Riemer, B.; Hofer, O.; Greger, H. Tryptamine derived amides from Clausena indica. Phytochemistry, 1997, 45(2), 337-341. doi: 10.1016/S0031-9422(96)00848-5 PMID: 9004546
- Folstar, P.; Schols, H.A.; Van der Plas, H.C.; Pilnik, W.; Landheer, C.A.; Van Veldhuizen, A. New tryptamine derivatives isolated from wax of green coffee beans. J. Agric. Food Chem., 1980, 28(4), 872-874. doi: 10.1021/jf60230a022 PMID: 7462501
- Shirinzadeh, H.; Eren, B.; Gurer-Orhan, H.; Suzen, S.; Özden, S. Novel indole-based analogs of melatonin: synthesis and in vitro antioxidant activity studies. Molecules, 2010, 15(4), 2187-2202. doi: 10.3390/molecules15042187 PMID: 20428037
- Kruk, I.; Aboul-Enein, H.Y.; Michalska, T.; Lichszteld, K.; Kubasik-Kladna, K.; Ölgen, S. In vitro scavenging activity for reactive oxygen species by N-substituted indole-2-carboxylic acid esters. Luminescence, 2007, 22(4), 379-386. doi: 10.1002/bio.974 PMID: 17471487
- Yang, R.; Chung, H.Y.; Shin, D.B.; Cho, T.Y.; Yang, S.H. Melatonin-related compounds have high free radical scavenging activity. Ann. N. Y. Acad. Sci., 2001, 928(1), 369-369. doi: 10.1111/j.1749-6632.2001.tb05688.x
- Álvarez-Diduk, R.; Galano, A.; Tan, D.X.; Reiter, R.J. N -acetylserotonin and 6-hydroxymelatonin against oxidative stress: implications for the overall protection exerted by melatonin. J. Phys. Chem. B, 2015, 119(27), 8535-8543. doi: 10.1021/acs.jpcb.5b04920 PMID: 26079042
- Sofic, E.; Rimpapa, Z.; Kundurovic, Z.; Sapcanin, A.; Tahirovic, I.; Rustembegovic, A.; Cao, G. Antioxidant capacity of the neurohormone melatonin. J. Neural Transm., 2005, 112(3), 349-358. doi: 10.1007/s00702-004-0270-4 PMID: 15666035
- Mor, M.; Spadoni, G.; Diamantini, G.; Bedini, A.; Tarzia, G.; Silva, C.; Vacondio, F.; Rivara, M.; Plazzi, P.V.; Franceschini, D. Antioxidant and cytoprotective activity of indole derivatives related to melatonin. In: Advances in Experimental Medicine and Biology; Allegri, G.; Costa, C.V.L.; Ragazzi, E.; Steinhart, H.; Varesio, L., Eds.; Kluwer Academic/Plenum Publishers: Springer: Boston, MA, 2003; pp. 567-575.
- Jasiewicz, B.; Kozanecka-Okupnik, W.; Przygodzki, M.; Warżajtis, B.; Rychlewska, U.; Pospieszny, T.; Mrówczyńska, L. Synthesis, antioxidant and cytoprotective activity evaluation of C-3 substituted indole derivatives. Sci. Rep., 2021, 11(1), 15425. doi: 10.1038/s41598-021-94904-z PMID: 34326403
- Lobayan, R.M.; Pérez Schmit, M.C.; Jubert, A.H.; Vitale, A. Conformational and stereoelectronic investigation of tryptamine. An AIM/NBO study. J. Mol. Model., 2012, 18(6), 2577-2588. doi: 10.1007/s00894-011-1271-5 PMID: 22072379
- Galano, A.; Reiter, R.J. Melatonin and its metabolites vs oxidative stress: From individual actions to collective protection. J. Pineal Res., 2018, 65(1), e12514. doi: 10.1111/jpi.12514 PMID: 29888508
- Kousara, S.; Anjuma, S.N.; Jaleela, F.; Khana, J.; Naseema, S. Biomedical significance of tryptamine: A review. J. Pharmacovigil., 2017, 5(5), 1-6. doi: 10.4172/2329-6887.1000239
- Herraiz, T.; Galisteo, J. Endogenous and dietary indoles: A class of antioxidants and radical scavengers in the ABTS assay. Free Radic. Res., 2004, 38(3), 323-331. doi: 10.1080/10611860310001648167 PMID: 15129740
- Gürkök, G.; Coban, T.; Suzen, S. Melatonin analogue new indole hydrazide/hydrazone derivatives with antioxidant behavior: Synthesis and structure-activity relationships. J. Enzyme Inhib. Med. Chem., 2009, 24(2), 506-515. doi: 10.1080/14756360802218516 PMID: 18972245
- Gozzo, A.; Lesieur, D.; Duriez, P.; Fruchart, J.C.; Teissier, E. Structure-activity relationships in a series of melatonin analogues with the low-density lipoprotein oxidation model. Free Radic. Biol. Med., 1999, 26(11-12), 1538-1543. doi: 10.1016/S0891-5849(99)00020-9 PMID: 10401620
- Estevão, M.S.; Carvalho, L.C.; Ribeiro, D.; Couto, D.; Freitas, M.; Gomes, A.; Ferreira, L.M.; Fernandes, E.; Marques, M.M.B. Antioxidant activity of unexplored indole derivatives: Synthesis and screening. Eur. J. Med. Chem., 2010, 45(11), 4869-4878. doi: 10.1016/j.ejmech.2010.07.059 PMID: 20727623
- Wojtunik-Kulesza, K.A.; Cieśla, Ł.M.; Waksmundzka-Hajnos, M. Approach to determination a structure - Antioxidant activity relationship of selected common terpenoids evaluated by ABTS + radical cation assay. Nat. Prod. Commun., 2018, 13(3), 1934578X1801300. doi: 10.1177/1934578X1801300308
- Jin, M.C.; Yoo, J.M.; Sok, D.E.; Kim, M.R. Neuroprotective effect of N-acyl 5-hydroxytryptamines on glutamate-induced cytotoxicity in HT-22 cells. Neurochem. Res., 2014, 39(12), 2440-2451. doi: 10.1007/s11064-014-1448-2 PMID: 25307111
- Henry, G.E.; Momin, R.A.; Nair, M.G.; Dewitt, D.L. Antioxidant and cyclooxygenase activities of fatty acids found in food. J. Agric. Food Chem., 2002, 50(8), 2231-2234. doi: 10.1021/jf0114381 PMID: 11929276
- Wang, W.; Yang, H.; Johnson, D.; Gensler, C.; Decker, E.; Zhang, G. Chemistry and biology of ω-3 PUFA peroxidation-derived compounds. Prostaglandins Other Lipid Mediat., 2017, 132, 84-91. doi: 10.1016/j.prostaglandins.2016.12.004 PMID: 28049021
- Fagali, N.; Catalá, A. Antioxidant activity of conjugated linoleic acid isomers, linoleic acid and its methyl ester determined by photoemission and DPPH techniques. Biophys. Chem., 2008, 137(1), 56-62. doi: 10.1016/j.bpc.2008.07.001 PMID: 18656302
- Francenia Santos-Sánchez, N.; Salas-Coronado, R.; Villanueva-Cañongo, C.; Hernández-Carlos, B. Antioxidant compounds and their antioxidant mechanism. In: Antioxidant Compounds and their Antioxidant Mechanism; Shalaby, E., Ed.; IntechOpen: London, United Kingdom, 2019; pp. 1-28. doi: 10.5772/intechopen.85270
- Pu, J.; Chen, D.; Tian, G.; He, J.; Huang, Z.; Zheng, P.; Mao, X.; Yu, J.; Luo, J.; Luo, Y. All-trans retinoic acid attenuates transmissible gastroenteritis virus-induced inflammation in IPEC-J2 cells via suppressing the RLRs/NF-κB signaling pathway. Antioxidants, 2022, 11(2), 345. doi: 10.3390/antiox11020345 PMID: 35204227
- Khafaga, A.F.; El-Sayed, Y.S. All-trans-retinoic acid ameliorates doxorubicin-induced cardiotoxicity: in vivo potential involvement of oxidative stress, inflammation, and apoptosis via caspase-3 and p53 down-expression. Naunyn Schmiedebergs Arch. Pharmacol., 2018, 391(1), 59-70. doi: 10.1007/s00210-017-1437-5 PMID: 29085977
- Rao, J.; Zhang, C.; Wang, P.; Lu, L.; Zhang, F. All-trans retinoic acid alleviates hepatic ischemia/reperfusion injury by enhancing manganese superoxide dismutase in rats. Biol. Pharm. Bull., 2010, 33(5), 869-875. doi: 10.1248/bpb.33.869 PMID: 20460768
- Siddikuzzaman; Grace, V.M.B. Antioxidant potential of all- trans retinoic acid (ATRA) and enhanced activity of liposome encapsulated ATRA against inflammation and tumor-directed angiogenesis. Immunopharmacol. Immunotoxicol., 2013, 35(1), 164-173. doi: 10.3109/08923973.2012.736520 PMID: 23116338
- Chambers, C.S.; Biedermann, D.; Valentová, K.; Petrásková, L.; Viktorová, J.; Kuzma, M.; Křen, V. Preparation of retinoyl-flavonolignan hybrids and their antioxidant properties. Antioxidants, 2019, 8(7), 236. doi: 10.3390/antiox8070236 PMID: 31340489
- Gurkan, A.S.; Karabay, A.; Buyukbingol, Z.; Adejare, A.; Buyukbingol, E. Syntheses of novel indole lipoic acid derivatives and their antioxidant effects on lipid peroxidation. Arch. Pharm., 2005, 338(2-3), 67-73. doi: 10.1002/ardp.200400932 PMID: 15765493
- Pecnard, S.; Hamze, A.; Bignon, J.; Prost, B.; Deroussent, A.; Gallego-Yerga, L.; Peláez, R.; Paik, J.Y.; Diederich, M.; Alami, M.; Provot, O. Anticancer properties of indole derivatives as Iso Combretastatin A-4 analogues. Eur. J. Med. Chem., 2021, 223, 113656. doi: 10.1016/j.ejmech.2021.113656 PMID: 34171660
- Sachdeva, H.; Mathur, J.; Guleria, A. Indole derivatives as potential anticancer agents: A review. J. Chil. Chem. Soc., 2020, 65(3), 4900-4907. doi: 10.4067/s0717-97072020000204900
- Orellana, E.; Kasinski, A.; Sulforhodamine, B. Sulforhodamine B (SRB) assay in cell culture to investigate cell proliferation. Bio Protoc., 2016, 6(21), e1984. doi: 10.21769/BioProtoc.1984 PMID: 28573164
- Wyld, L.; Smith, O.; Lawry, J.; Reed, M.W.R.; Brown, N.J. Cell cycle phase influences tumour cell sensitivity to aminolaevulinic acid-induced photodynamic therapy in vitro. Br. J. Cancer, 1998, 78(1), 50-55. doi: 10.1038/bjc.1998.441 PMID: 9662250
- Qian, S.Y.; Xu, Y. Anti-cancer activities of ω-6 polyunsaturated fatty acids. Biomed. J., 2014, (0), 0. doi: 10.4103/2319-4170.131378 PMID: 24923568
- Huang, W.; Guo, X.; Wang, C.; Alzhan, A.; Liu, Z.; Ma, X.; Shu, Q. α-Linolenic acid induces apoptosis, inhibits the invasion and metastasis, and arrests cell cycle in human breast cancer cells by inhibiting fatty acid synthase. J. Funct. Foods, 2022, 92, 105041. doi: 10.1016/j.jff.2022.105041
- González-Fernández, M.J.; Ortea, I.; Guil-Guerrero, J.L. α-Linolenic and γ-linolenic acids exercise differential antitumor effects on HT-29 human colorectal cancer cells. Toxicol. Res. (Camb.), 2020, 9(4), 474-483. doi: 10.1093/toxres/tfaa046 PMID: 32905142
- Borges, G.S.M.; Lima, F.A.; Carneiro, G.; Goulart, G.A.C.; Ferreira, L.A.M. All-trans retinoic acid in anticancer therapy: how nanotechnology can enhance its efficacy and resolve its drawbacks. Expert Opin. Drug Deliv., 2021, 18(10), 1335-1354. doi: 10.1080/17425247.2021.1919619 PMID: 33896323
- Schenk, T.; Stengel, S.; Zelent, A. Unlocking the potential of retinoic acid in anticancer therapy. Br. J. Cancer, 2014, 111(11), 2039-2045. doi: 10.1038/bjc.2014.412 PMID: 25412233
- Chen, M.C.; Hsu, S.L.; Lin, H.; Yang, T.Y. Retinoic acid and cancer treatment. Biomedicine, 2014, 4(4), 22. doi: 10.7603/s40681-014-0022-1 PMID: 25520935
- di Masi, A.; Leboffe, L.; De Marinis, E.; Pagano, F.; Cicconi, L.; Rochette-Egly, C.; Lo-Coco, F.; Ascenzi, P.; Nervi, C. Retinoic acid receptors: From molecular mechanisms to cancer therapy. Mol. Aspects Med., 2015, 41, 1-115. doi: 10.1016/j.mam.2014.12.003 PMID: 25543955
- Hunsu, V.O.; Facey, C.O.B.; Fields, J.Z.; Boman, B.M. Retinoids as chemo-preventive and molecular-targeted anti-cancer therapies. Int. J. Mol. Sci., 2021, 22(14), 7731. doi: 10.3390/ijms22147731 PMID: 34299349
- Mohrbacher, A.M.; Yang, A.S.; Groshen, S.; Kummar, S.; Gutierrez, M.E.; Kang, M.H.; Tsao-Wei, D.; Reynolds, C.P.; Newman, E.M.; Maurer, B.J.; Phase, I. Phase i study of fenretinide delivered intravenously in patients with relapsed or refractory hematologic malignancies: A california cancer consortium trial. Clin. Cancer Res., 2017, 23(16), 4550-4555. doi: 10.1158/1078-0432.CCR-17-0234 PMID: 28420721
- Maurer, B.J.; Kang, M.H.; Villablanca, J.G.; Janeba, J.; Groshen, S.; Matthay, K.K.; Sondel, P.M.; Maris, J.M.; Jackson, H.A.; Goodarzian, F.; Shimada, H.; Czarnecki, S.; Hasenauer, B.; Reynolds, C.P.; Marachelian, A. Phase I trial of fenretinide delivered orally in a novel organized lipid complex in patients with relapsed/refractory neuroblastoma: A report from the new approaches to neuroblastoma therapy (NANT) consortium. Pediatr. Blood Cancer, 2013, 60(11), 1801-1808. doi: 10.1002/pbc.24643 PMID: 23813912
- Cooper, J.P.; Reynolds, C.P.; Cho, H.; Kang, M.H. Clinical development of fenretinide as an antineoplastic drug: Pharmacology perspectives. Exp. Biol. Med., 2017, 242(11), 1178-1184. doi: 10.1177/1535370217706952 PMID: 28429653
- Bildziukevich, U.; Kvasnicová, M.; aman, D.; Rárová, L.; Wimmer, Z. Novel oleanolic acid-tryptamine and -fluorotryptamine amides: From adaptogens to agents targeting in vitro cell apoptosis. Plants, 2021, 10(10), 2082. doi: 10.3390/plants10102082 PMID: 34685891
- Rani, P.; Pal, D.; Hegde, R.R.; Hashim, S.R. Acetamides: Chemotherapeutic agents for inflammation-associated cancers. J. Chemother., 2016, 28(4), 255-265. doi: 10.1179/1973947815Y.0000000060 PMID: 26198312
- Li, Y.; Li, S.; Zhou, Y.; Meng, X.; Zhang, J.J.; Xu, D.P.; Li, H.B.; Li, Y.; Li, S.; Zhou, Y. Melatonin for the prevention and treatment of cancer. Oncotarget, 2017, 8(24), 39896-39921. doi: 10.18632/oncotarget.16379 PMID: 28415828
- Samec, M.; Liskova, A.; Koklesova, L.; Zhai, K.; Varghese, E.; Samuel, S.M.; udomová, M.; Lucansky, V.; Kassayova, M.; Pec, M.; Biringer, K.; Brockmueller, A.; Kajo, K.; Hassan, S.T.S.; Shakibaei, M.; Golubnitschaja, O.; Büsselberg, D.; Kubatka, P. Metabolic anti-cancer effects of melatonin: Clinically relevant prospects. Cancers, 2021, 13(12), 3018. doi: 10.3390/cancers13123018 PMID: 34208645
- Bojková, B.; Kubatka, P.; Qaradakhi, T.; Zulli, A.; Kajo, K. Melatonin may increase anticancer potential of pleiotropic drugs. Int. J. Mol. Sci., 2018, 19(12), 3910. doi: 10.3390/ijms19123910 PMID: 30563247
- Himmler, T.; Pirro, F.; Schmeer, N. Synthesis and antibacterial in vitro activity of novel analogues of nematophin. Bioorg. Med. Chem. Lett., 1998, 8(15), 2045-2050. doi: 10.1016/S0960-894X(98)00358-8 PMID: 9873483
- Campos, P.E.; Pichon, E.; Moriou, C.; Clerc, P.; Trépos, R.; Frederich, M.; De Voogd, N.; Hellio, C.; Gauvin-Bialecki, A.; Al-Mourabit, A. New antimalarial and antimicrobial tryptamine derivatives from the marine sponge Fascaplysinopsis reticulata. Mar. Drugs, 2019, 17(3), 167. doi: 10.3390/md17030167 PMID: 30875899
- Li, J.; Chen, G.; Webster, J.M. Nematophin, a novel antimicrobial substance produced by Xenorhabdus nematophilus (Enterobactereaceae). Can. J. Microbiol., 1997, 43(8), 770-773. doi: 10.1139/m97-110 PMID: 9304787
- Wesche, F.; Adihou, H.; Wichelhaus, T.A.; Bode, H.B. Synthesis and SAR of the antistaphylococcal natural product nematophin from Xenorhabdus nematophila. Beilstein J. Org. Chem., 2019, 15, 535-541. doi: 10.3762/bjoc.15.47 PMID: 30873237
- He, F.; Wu, X.; Zhang, Q.; Li, Y.; Ye, Y.; Li, P.; Chen, S.; Peng, Y.; Hardeland, R.; Xia, Y. Bacteriostatic potential of melatonin: Therapeutic standing and mechanistic insights. Front. Immunol., 2021, 12, 683879. doi: 10.3389/fimmu.2021.683879 PMID: 34135911
- Hunt, L.R.; Smith, S.M.; Downum, K.R.; Mydlarz, L.D. Microbial regulation in gorgonian corals. Mar. Drugs, 2012, 10(12), 1225-1243. doi: 10.3390/md10061225 PMID: 22822369
- Li, J.; Chen, G.; Webster, J.M.; Czyzewska, E. Antimicrobial metabolites from a bacterial symbiont. J. Nat. Prod., 1995, 58(7), 1081-1086. doi: 10.1021/np50121a016 PMID: 7561900
- Desbois, A.P.; Smith, V.J. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol., 2010, 85(6), 1629-1642. doi: 10.1007/s00253-009-2355-3 PMID: 19956944
- Ramlawi, S.; Abusharkh, S.; Carroll, A.; McMullin, D.R.; Avis, T.J. Biological and chemical characterization of antimicrobial activity in Arthrobacter spp. isolated from disease-suppressive compost. J. Basic Microbiol., 2021, 61(8), 745-756. doi: 10.1002/jobm.202100213 PMID: 34228381
- Zhang, W.; Wei, S.; Zhang, J.; Wu, W. Antibacterial activity composition of the fermentation broth of Streptomyces djakartensis NW35. Molecules, 2013, 18(3), 2763-2768. doi: 10.3390/molecules18032763 PMID: 23455667
- Casillas-Vargas, G.; Ocasio-Malavé, C.; Medina, S.; Morales-Guzmán, C.; Del Valle, R.G.; Carballeira, N.M.; Sanabria-Ríos, D.J. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog. Lipid Res., 2021, 82, 101093. doi: 10.1016/j.plipres.2021.101093 PMID: 33577909
- Badawy, M.E.I. Structure and antimicrobial activity relationship of quaternary N -alkyl chitosan derivatives against some plant pathogens. J. Appl. Polym. Sci., 2010, 117(2), 960-969. doi: 10.1002/app.31492
- Sahariah, P.; Benediktssdóttir, B.E.; Hjálmarsdóttir, M.Á.; Sigurjonsson, O.E.; Sørensen, K.K.; Thygesen, M.B.; Jensen, K.J.; Másson, M. Impact of chain length on antibacterial activity and hemocompatibility of quaternary N-alkyl and n,n-dialkyl chitosan derivatives. Biomacromolecules, 2015, 16(5), 1449-1460. doi: 10.1021/acs.biomac.5b00163 PMID: 25830631
- Lin, P.A.; Cheng, C.H.; Hsieh, K.T.; Lin, J.C. Effect of alkyl chain length and fluorine content on the surface characteristics and antibacterial activity of surfaces grafted with brushes containing quaternized ammonium and fluoro-containing monomers. Colloids Surf. B Biointerfaces, 2021, 202, 111674. doi: 10.1016/j.colsurfb.2021.111674 PMID: 33690062
- Goswami, S.; Adhikari, M.D.; Kar, C.; Thiyagarajan, D.; Das, G.; Ramesh, A. Synthetic amphiphiles as therapeutic antibacterials: Lessons on bactericidal efficacy and cytotoxicity and potential application as an adjuvant in antimicrobial chemotherapy. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(20), 2612-2623. doi: 10.1039/c3tb20226g PMID: 32260949
- Cassar, S.; Adatto, I.; Freeman, J.L.; Gamse, J.T.; Iturria, I.; Lawrence, C.; Muriana, A.; Peterson, R.T.; Van Cruchten, S.; Zon, L.I. Use of zebrafish in drug discovery toxicology. Chem. Res. Toxicol., 2020, 33(1), 95-118. doi: 10.1021/acs.chemrestox.9b00335 PMID: 31625720
- Herrmann, K. Teratogenic effects of retinoic acid and related substances on the early development of the zebrafish (Brachydanio rerio) as assessed by a novel scoring system. Toxicol. In vitro, 1995, 9(3), 267-283. doi: 10.1016/0887-2333(95)00012-W PMID: 20650088
- Kin Ting Kam, R.; Deng, Y.; Chen, Y.; Zhao, H. Retinoic acid synthesis and functions in early embryonic development. Cell Biosci., 2012, 2(1), 11. doi: 10.1186/2045-3701-2-11 PMID: 22439772
- Wang, Y.; Chen, J.; Du, C.; Li, C.; Huang, C.; Dong, Q. Characterization of retinoic acidinduced neurobehavioral effects in developing zebrafish. Environ. Toxicol. Chem., 2014, 33(2), 431-437. doi: 10.1002/etc.2453 PMID: 24395056
- Navarro-Martín, L.; Oliveira, E.; Casado, M.; Barata, C.; Piña, B. Dysregulatory effects of retinoic acid isomers in late zebrafish embryos. Environ. Sci. Pollut. Res. Int., 2018, 25(4), 3849-3859. doi: 10.1007/s11356-017-0732-5 PMID: 29178002
- Curtis, R.F.; Coxon, D.T.; Levett, G. Toxicity of fatty acids in assays for mycotoxins using the brine shrimp (Artemia salina). Food Cosmet. Toxicol., 1974, 12(2), 233-235. doi: 10.1016/0015-6264(74)90369-1 PMID: 4459239
- Quinlivan, V.H.; Farber, S.A. Lipid uptake, metabolism, and transport in the larval zebrafish. Front. Endocrinol., 2017, 8, 319. doi: 10.3389/fendo.2017.00319 PMID: 29209275
- Adam, A.C.; Skjærven, K.H.; Whatmore, P.; Moren, M.; Lie, K.K. Parental high dietary arachidonic acid levels modulated the hepatic transcriptome of adult zebrafish (Danio rerio) progeny. PLoS One, 2018, 13(8), e0201278. doi: 10.1371/journal.pone.0201278 PMID: 30070994
- de Vrieze, E.; Moren, M.; Metz, J.R.; Flik, G.; Lie, K.K. Arachidonic acid enhances turnover of the dermal skeleton: Studies on zebrafish scales. PLoS One, 2014, 9(2), e89347. doi: 10.1371/journal.pone.0089347 PMID: 24586706
- Nayak, S.; Khozin-Goldberg, I.; Cohen, G.; Zilberg, D. Dietary supplementation with ω6 LC-PUFA-Rich algae modulates zebrafish immune function and improves resistance to streptococcal infection. Front. Immunol., 2018, 9, 1960. doi: 10.3389/fimmu.2018.01960 PMID: 30237797
- Zhang, Y.; Guo, S.Y.; Zhu, X.Y.; Zhou, J.; Liao, W.H. Arachidonic acid induced thrombosis in zebrafish larvae for assessing human anti-thrombotic drugs. JSM Cell Dev. Biol., 2017, 5(1), 1023.
- Adam, A.C.; Lie, K.K.; Moren, M.; Skjærven, K.H. High dietary arachidonic acid levels induce changes in complex lipids and immune-related eicosanoids and increase levels of oxidised metabolites in zebrafish ( Danio rerio ). Br. J. Nutr., 2017, 117(8), 1075-1085. doi: 10.1017/S0007114517000903 PMID: 28485254
- Savoldi, R.; Polari, D.; Pinheiro-da-Silva, J.; Silva, P.F.; Lobao-Soares, B.; Yonamine, M.; Freire, F.A.M.; Luchiari, A.C. Behavioral changes over time following ayahuasca exposure in zebrafish. Front. Behav. Neurosci., 2017, 11, 139. doi: 10.3389/fnbeh.2017.00139 PMID: 28804451
- Zhong, H.J.; Liu, L.J.; Chong, C.M.; Lu, L.; Wang, M.; Chan, D.S.H.; Chan, P.W.H.; Lee, S.M.Y.; Ma, D.L.; Leung, C.H. Discovery of a natural product-like iNOS inhibitor by molecular docking with potential neuroprotective effects in vivo. PLoS One, 2014, 9(4), e92905. doi: 10.1371/journal.pone.0092905 PMID: 24690920
- Kumari, S.; Mazumder, A.G.; Bhardwaj, A.; Singh, D. Early α-linolenic acid exposure to embryo reduces pentylenetetrazol-induced seizures in zebrafish larva. Prostaglandins Leukot. Essent. Fatty Acids, 2019, 143, 15-20. doi: 10.1016/j.plefa.2019.02.002 PMID: 30975378
Supplementary files
