Synthesis and Biological Evaluations of Granulatamide B and its Structural Analogues


Cite item

Full Text

Abstract

Background:While granulatamides A and B have been previously isolated, their biological activities have been only partially examined. The aim of this study was to synthesize granulatamide B (4b), a tryptamine-derivative naturally occurring in Eunicella coral species, using the well-known procedure of Sun and Fürstner and its 12 structural analogues by modifying the side chain, which differs in length, degree of saturation as well as number and conjugation of double bonds.

Method:The prepared library of compounds underwent comprehensive assessment for their biological activities, encompassing antioxidative, antiproliferative, and antibacterial properties, in addition to in vivo toxicity evaluation using a Zebrafish model. Compound 4i, which consists of a retinoic acid moiety, exhibited the strongest scavenging activity against ABTS radicals (IC50 = 36 ± 2 µM). In addition, 4b and some of the analogues (4a, 4c and 4i), mostly containing an unsaturated chain and conjugated double bonds, showed moderate but non-selective activity with certain IC50 values in the range of 20-40 µM.

Result:In contrast, the analogue 4l, a derivative of alpha-linolenic acid, was the least toxic towards normal cell lines. Moreover, 4b was also highly active against Gram-positive Bacillus subtilis with an MIC of 125 µM. Nevertheless, both 4b and 4i, known for the best-observed effects, caused remarkable developmental abnormalities in the zebrafish model Danio rerio.

Conclusion:Since modification of the side chain did not significantly alter the change in biological activities compared to the parent compound, granulatamide B (4b), the substitution of the indole ring needs to be considered. Our group is currently carrying out new syntheses focusing on the functionalization of the indole core.

About the authors

Dario Matulja

Department of Biotechnology, University of Rijeka

Email: info@benthamscience.net

Petra Grbčić

Medical Faculty, Juraj Dobrila University of Pula

Email: info@benthamscience.net

Gabrijela Matijević

Laboratory for Biotechnology in Aquaculture, Ruder Bošković Institute

Email: info@benthamscience.net

Sanja Babić

Laboratory for Biotechnology in Aquaculture,, Ruder Bošković Institute

Email: info@benthamscience.net

Krunoslav Bojanić

Laboratory for Biotechnology in Aquaculture,, Ruder Bošković Institute

Email: info@benthamscience.net

Sylvain Laclef

Laboratory of Glycochemistry, Antimicrobials and Agroresources, University of Picardie Jules Verne - Faculty of Sciences

Email: info@benthamscience.net

Valerije Vrček

Department of Organic Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb

Email: info@benthamscience.net

Rozelindra Čož-Rakovac

Laboratory for Biotechnology in Aquaculture, Rudjer Boskovic Institute

Email: info@benthamscience.net

Sandra Pavelić

Faculty of Health Studies, University of Rijeka

Author for correspondence.
Email: info@benthamscience.net

Dean Marković

Department of Biotechnology, University of Rijeka

Author for correspondence.
Email: info@benthamscience.net

References

  1. Barzkar, N.; Tamadoni Jahromi, S.; Poorsaheli, H.B.; vianello, F. Metabolites from marine microorganisms, micro, and macroalgae: Immense scope for pharmacology. Mar. Drugs, 2019, 17(8), 464. doi: 10.3390/md17080464 PMID: 31398953
  2. Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2019, 36(1), 122-173. doi: 10.1039/C8NP00092A PMID: 30663727
  3. Matulja, D.; Vranješević, F.; Kolympadi Markovic, M.; Pavelić, S.K.; Marković, D. Anticancer activities of marine-derived phenolic compounds and their derivatives. Molecules, 2022, 27(4), 1449. doi: 10.3390/molecules27041449 PMID: 35209235
  4. Xu, J.; Yi, M.; Ding, L.; He, S. A review of anti-inflammatory compounds from marine fungi, 2000-2018. Mar. Drugs, 2019, 17(11), 636. doi: 10.3390/md17110636 PMID: 31717541
  5. Habbu, P.; Warad, V.; Shastri, R.; Madagundi, S.; Kulkarni, V.H. Antimicrobial metabolites from marine microorganisms. Chin. J. Nat. Med., 2016, 14(2), 101-116. doi: 10.1016/S1875-5364(16)60003-1 PMID: 26968676
  6. Tziveleka, L.A.; Tammam, M.A.; Tzakou, O.; Roussis, V.; Ioannou, E. Metabolites with antioxidant activity from marine macroalgae. Antioxidants, 2021, 10(9), 1431. doi: 10.3390/antiox10091431 PMID: 34573063
  7. Lindequist, U. Marine-derived pharmaceuticals - challenges and opportunities. Biomol. Ther., 2016, 24(6), 561-571. doi: 10.4062/biomolther.2016.181 PMID: 27795450
  8. Ercolano, G.; De Cicco, P.; Ianaro, A. New drugs from the sea: Pro-apoptotic activity of sponges and algae derived compounds. Mar. Drugs, 2019, 17(1), 31. doi: 10.3390/md17010031 PMID: 30621025
  9. Nigam, M.; Suleria, H.A.R.; Farzaei, M.H.; Mishra, A.P. Marine anticancer drugs and their relevant targets: A treasure from the ocean. Daru, 2019, 27(1), 491-515. doi: 10.1007/s40199-019-00273-4 PMID: 31165439
  10. Matulja, D.; Wittine, K.; Malatesti, N.; Laclef, S.; Turks, M.; Markovic, M.K.; Ambrožić, G.; Marković, D. Marine natural products with high anticancer activities. Curr. Med. Chem., 2020, 27(8), 1243-1307. doi: 10.2174/0929867327666200113154115 PMID: 31931690
  11. Hu, Y.; Chen, S.; Yang, F.; Dong, S. Marine indole alkaloids-isolation, structure and bioactivities. Mar. Drugs, 2021, 19(12), 658. doi: 10.3390/md19120658 PMID: 34940657
  12. Netz, N.; Opatz, T. Marine indole alkaloids. Mar. Drugs, 2015, 13(8), 4814-4914. doi: 10.3390/md13084814 PMID: 26287214
  13. Rocha, J.; Peixe, L.; Gomes, N.C.M.; Calado, R. Cnidarians as a source of new marine bioactive compounds- an overview of the last decade and future steps for bioprospecting. Mar. Drugs, 2011, 9(10), 1860-1886. doi: 10.3390/md9101860 PMID: 22073000
  14. Ma, Q.; Zhang, X.; Qu, Y. Biodegradation and biotransformation of indole: Advances and perspectives. Front. Microbiol., 2018, 9, 2625. doi: 10.3389/fmicb.2018.02625 PMID: 30443243
  15. Cariello, L.; Prota, G. Occurence of 3-hydroxy-l-kynurenine in gorgonians. Comp. Biochem. Physiol. B, 1972, 41(1), 195-199. doi: 10.1016/0305-0491(72)90022-3 PMID: 4403888
  16. Gao, C.; Yi, X.; Huang, R.; Yan, F.; He, B.; Chen, B. Alkaloids from corals. Chem. Biodivers., 2013, 10(8), 1435-1447. doi: 10.1002/cbdv.201100276 PMID: 23939792
  17. Reyes, F.; Martín, R.; Fernández, R. Granulatamides A and B, cytotoxic tryptamine derivatives from the soft coral Eunicella granulata. J. Nat. Prod., 2006, 69(4), 668-670. doi: 10.1021/np050382s PMID: 16643049
  18. Chávez, D.; Acevedo, L.A.; Mata, R. Tryptamine derived amides and acetogenins from the seeds of Rollinia mucosa. J. Nat. Prod., 1999, 62(8), 1119-1122. doi: 10.1021/np990118x PMID: 10479316
  19. Maeda, U.; Hara, N.; Fujimoto, Y.; Srivastava, A.; Gupra, Y.K.; Sahai, M. N-fatty acyl tryptamines from Annona reticulata. Phytochemistry, 1993, 34(6), 1633-1635. doi: 10.1016/S0031-9422(00)90860-4 PMID: 7763559
  20. Wu, Y.C.; Chang, F.R.; Chen, C.Y. Tryptamine-derived amides and alkaloids from the seeds of Annona atemoya. J. Nat. Prod., 2005, 68(3), 406-408. doi: 10.1021/np040177x PMID: 15787445
  21. Schmidt, F.; Douaron, G.L.; Champy, P.; Amar, M.; Séon-Méniel, B.; Raisman-Vozari, R.; Figadère, B. Tryptamine-derived alkaloids from Annonaceae exerting neurotrophin-like properties on primary dopaminergic neurons. Bioorg. Med. Chem., 2010, 18(14), 5103-5113. doi: 10.1016/j.bmc.2010.05.067 PMID: 20579892
  22. Venepally, V.; Prasad, R.; Poornachandra, Y.; Kumar, C.; Jala, R. Synthesis and biological evaluation of some new N-fatty acyl derivatives of 4,5-Dimethoxy tryptamine. IJC-B, 2017, 56B(5), 531-41.
  23. Marot, C.; Chavatte, P.; Morin-Allory, L.; viaud, M.C.; Guillaumet, G.; Renard, P.; Lesieur, D.; Michel, A. Pharmacophoric search and 3D-QSAR comparative molecular field analysis studies on agonists of melatonin sheep receptors. J. Med. Chem., 1998, 41(23), 4453-4465. doi: 10.1021/jm980026p PMID: 9804685
  24. Chang, F.Y.; Siuti, P.; Laurent, S.; Williams, T.; Glassey, E.; Sailer, A.W.; Gordon, D.B.; Hemmerle, H.; Voigt, C.A. Gut-inhabiting Clostridia build human GPCR ligands by conjugating neurotransmitters with diet- and human-derived fatty acids. Nat. Microbiol., 2021, 6(6), 792-805. doi: 10.1038/s41564-021-00887-y PMID: 33846627
  25. Pakhare, D.; Kusurkar, R. Application of Horner–Wadsworth–Emmons olefination for the synthesis of granulatamide A, its E isomer and other amides of tryptamine. New J. Chem., 2016, 40(6), 5428-5431. doi: 10.1039/C5NJ03533C
  26. Sun, C.L.; Fürstner, A. Formal ring-opening/cross-coupling reactions of 2-pyrones: iron-catalyzed entry into stereodefined dienyl carboxylates. Angew. Chem. Int. Ed., 2013, 52(49), 13071-13075. doi: 10.1002/anie.201307028 PMID: 24123891
  27. Kumar, S.; Ritika. A brief review of the biological potential of indole derivatives. Fut. J. Pharmaceut. Sci., 2020, 6(1), 121. doi: 10.1186/s43094-020-00141-y
  28. Bentz, E.N.; Lobayan, R.M.; Martínez, H.; Redondo, P.; Largo, A. Intrinsic antioxidant potential of the aminoindole structure: A computational kinetics study of tryptamine. J. Phys. Chem. B, 2018, 122(24), 6386-6395. doi: 10.1021/acs.jpcb.8b03807 PMID: 29775059
  29. Dhuguru, J.; Skouta, R. Role of indole scaffolds as pharmacophores in the development of anti-lung cancer agents. Molecules, 2020, 25(7), 1615. doi: 10.3390/molecules25071615 PMID: 32244744
  30. Kumari, A.; Singh, R.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg. Chem., 2019, 89, 103021. doi: 10.1016/j.bioorg.2019.103021 PMID: 31176854
  31. Pal, C.; Bindu, S.; Dey, S.; Alam, A.; Goyal, M.; Iqbal, M.S.; Sarkar, S.; Kumar, R.; Halder, K.K.; Debnath, M.C.; Adhikari, S.; Bandyopadhyay, U. Tryptamine-gallic acid hybrid prevents non-steroidal anti-inflammatory drug-induced gastropathy: correction of mitochondrial dysfunction and inhibition of apoptosis in gastric mucosal cells. J. Biol. Chem., 2012, 287(5), 3495-3509. doi: 10.1074/jbc.M111.307199 PMID: 22157011
  32. Laclef, S.; Kolympadi Marković, M.; Marković, D. Amide synthesis by transamidation of primary carboxamides. Synthesis, 2020, 52(21), 3231-3242. doi: 10.1055/s-0040-1707133
  33. Jóźwiak, M.; Filipowska, A.; Fiorino, F.; Struga, M. Anticancer activities of fatty acids and their heterocyclic derivatives. Eur. J. Pharmacol., 2020, 871, 172937. doi: 10.1016/j.ejphar.2020.172937 PMID: 31958454
  34. Mukerjee, S.; Saeedan, A.S.; Ansari, M.N.; Singh, M. Polyunsaturated fatty acids mediated regulation of membrane biochemistry and tumor cell membrane integrity. Membranes, 2021, 11(7), 479. doi: 10.3390/membranes11070479 PMID: 34203433
  35. Richard, D.; Kefi, K.; Barbe, U.; Bausero, P.; Visioli, F. Polyunsaturated fatty acids as antioxidants. Pharmacol. Res., 2008, 57(6), 451-455. doi: 10.1016/j.phrs.2008.05.002 PMID: 18583147
  36. Oppedisano, F.; Macrì, R.; Gliozzi, M.; Musolino, V.; Carresi, C.; Maiuolo, J.; Bosco, F.; Nucera, S.; Caterina Zito, M.; Guarnieri, L.; Scarano, F.; Nicita, C.; Coppoletta, A.R.; Ruga, S.; Scicchitano, M.; Mollace, R.; Palma, E.; Mollace, V. The anti-inflammatory and antioxidant properties of n-3 pufas: Their role in cardiovascular protection. Biomedicines, 2020, 8(9), 306. doi: 10.3390/biomedicines8090306 PMID: 32854210
  37. Matulja, D.; Kolympadi Markovic, M.; Ambrožić, G.; Laclef, S.; Pavelić, S.K.; Marković, D. Secondary metabolites from gorgonian corals of the genus eunicella: Structural characterizations, biological activities, and synthetic approaches. Molecules, 2019, 25(1), 129. doi: 10.3390/molecules25010129 PMID: 31905691
  38. Matulja, D.; Grbčić, P.; Bojanić, K.; Topić-Popović, N.; Čož-Rakovac, R.; Laclef, S.; Šmuc, T.; Jović, O.; Marković, D.; Pavelić, S.K. Chemical evaluation, antioxidant, antiproliferative, anti-inflammatory and antibacterial activities of organic extract and semi-purified fractions of the adriatic sea fan, eunicella cavolini. Molecules, 2021, 26(19), 5751. doi: 10.3390/molecules26195751 PMID: 34641295
  39. Yoshida, T.; Kawamura, S.; Nakata, K. Chemoselective N-acetylation of primary aliphatic amines promoted by pivalic or acetic acid using ethyl acetate as an acetyl donor. Tetrahedron Lett., 2017, 58(12), 1181-1184. doi: 10.1016/j.tetlet.2017.02.015
  40. Zheleva-Dimitrova, D.; Nedialkov, P.; Kitanov, G. Radical scavenging and antioxidant activities of methanolic extracts from Hypericum species growing in Bulgaria. Pharmacogn. Mag., 2010, 6(22), 74-78. doi: 10.4103/0973-1296.62889 PMID: 20668569
  41. Gazivoda, T.; Raić-Malić, S.; Krištafor, V.; Makuc, D.; Plavec, J.; Bratulić, S.; Kraljević-Pavelić, S.; Pavelić, K.; Naesens, L.; Andrei, G.; Snoeck, R.; Balzarini, J.; Mintas, M. Synthesis, cytostatic and anti-HIV evaluations of the new unsaturated acyclic C-5 pyrimidine nucleoside analogues. Bioorg. Med. Chem., 2008, 16(10), 5624-5634. doi: 10.1016/j.bmc.2008.03.074 PMID: 18424155
  42. Rashidi, M.; Seghatoleslam, A.; Namavari, M.; Amiri, A.; Fahmidehkar, M.A.; Ramezani, A.; Eftekhar, E.; Hosseini, A.; Erfani, N.; Fakher, S. Selective cytotoxicity and apoptosis-induction of Cyrtopodion scabrum extract against digestive cancer cell lines. Int. J. Cancer Manag., 2017, 10(5), e8633. doi: 10.5812/ijcm.8633
  43. Babić, S.; Čižmek, L.; Maršavelski, A.; Malev, O.; Pflieger, M.; Strunjak-Perović, I.; Popović, N.T.; Čož-Rakovac, R.; Trebše, P. Utilization of the zebrafish model to unravel the harmful effects of biomass burning during Amazonian wildfires. Sci. Rep., 2021, 11(1), 2527. doi: 10.1038/s41598-021-81789-1 PMID: 33510260
  44. DIRECTIVE. 2010/63/EU of the European parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes (Text with EEA Relevance). 2010. Available from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF
  45. Legros, J.; Figadère, B. Iron-promoted C–C bond formation in the total synthesis of natural products and drugs. Nat. Prod. Rep., 2015, 32(11), 1541-1555. doi: 10.1039/C5NP00059A PMID: 26395292
  46. Riemer, B.; Hofer, O.; Greger, H. Tryptamine derived amides from Clausena indica. Phytochemistry, 1997, 45(2), 337-341. doi: 10.1016/S0031-9422(96)00848-5 PMID: 9004546
  47. Folstar, P.; Schols, H.A.; Van der Plas, H.C.; Pilnik, W.; Landheer, C.A.; Van Veldhuizen, A. New tryptamine derivatives isolated from wax of green coffee beans. J. Agric. Food Chem., 1980, 28(4), 872-874. doi: 10.1021/jf60230a022 PMID: 7462501
  48. Shirinzadeh, H.; Eren, B.; Gurer-Orhan, H.; Suzen, S.; Özden, S. Novel indole-based analogs of melatonin: synthesis and in vitro antioxidant activity studies. Molecules, 2010, 15(4), 2187-2202. doi: 10.3390/molecules15042187 PMID: 20428037
  49. Kruk, I.; Aboul-Enein, H.Y.; Michalska, T.; Lichszteld, K.; Kubasik-Kladna, K.; Ölgen, S. In vitro scavenging activity for reactive oxygen species by N-substituted indole-2-carboxylic acid esters. Luminescence, 2007, 22(4), 379-386. doi: 10.1002/bio.974 PMID: 17471487
  50. Yang, R.; Chung, H.Y.; Shin, D.B.; Cho, T.Y.; Yang, S.H. Melatonin-related compounds have high free radical scavenging activity. Ann. N. Y. Acad. Sci., 2001, 928(1), 369-369. doi: 10.1111/j.1749-6632.2001.tb05688.x
  51. Álvarez-Diduk, R.; Galano, A.; Tan, D.X.; Reiter, R.J. N -acetylserotonin and 6-hydroxymelatonin against oxidative stress: implications for the overall protection exerted by melatonin. J. Phys. Chem. B, 2015, 119(27), 8535-8543. doi: 10.1021/acs.jpcb.5b04920 PMID: 26079042
  52. Sofic, E.; Rimpapa, Z.; Kundurovic, Z.; Sapcanin, A.; Tahirovic, I.; Rustembegovic, A.; Cao, G. Antioxidant capacity of the neurohormone melatonin. J. Neural Transm., 2005, 112(3), 349-358. doi: 10.1007/s00702-004-0270-4 PMID: 15666035
  53. Mor, M.; Spadoni, G.; Diamantini, G.; Bedini, A.; Tarzia, G.; Silva, C.; Vacondio, F.; Rivara, M.; Plazzi, P.V.; Franceschini, D. Antioxidant and cytoprotective activity of indole derivatives related to melatonin. In: Advances in Experimental Medicine and Biology; Allegri, G.; Costa, C.V.L.; Ragazzi, E.; Steinhart, H.; Varesio, L., Eds.; Kluwer Academic/Plenum Publishers: Springer: Boston, MA, 2003; pp. 567-575.
  54. Jasiewicz, B.; Kozanecka-Okupnik, W.; Przygodzki, M.; Warżajtis, B.; Rychlewska, U.; Pospieszny, T.; Mrówczyńska, L. Synthesis, antioxidant and cytoprotective activity evaluation of C-3 substituted indole derivatives. Sci. Rep., 2021, 11(1), 15425. doi: 10.1038/s41598-021-94904-z PMID: 34326403
  55. Lobayan, R.M.; Pérez Schmit, M.C.; Jubert, A.H.; Vitale, A. Conformational and stereoelectronic investigation of tryptamine. An AIM/NBO study. J. Mol. Model., 2012, 18(6), 2577-2588. doi: 10.1007/s00894-011-1271-5 PMID: 22072379
  56. Galano, A.; Reiter, R.J. Melatonin and its metabolites vs oxidative stress: From individual actions to collective protection. J. Pineal Res., 2018, 65(1), e12514. doi: 10.1111/jpi.12514 PMID: 29888508
  57. Kousara, S.; Anjuma, S.N.; Jaleela, F.; Khana, J.; Naseema, S. Biomedical significance of tryptamine: A review. J. Pharmacovigil., 2017, 5(5), 1-6. doi: 10.4172/2329-6887.1000239
  58. Herraiz, T.; Galisteo, J. Endogenous and dietary indoles: A class of antioxidants and radical scavengers in the ABTS assay. Free Radic. Res., 2004, 38(3), 323-331. doi: 10.1080/10611860310001648167 PMID: 15129740
  59. Gürkök, G.; Coban, T.; Suzen, S. Melatonin analogue new indole hydrazide/hydrazone derivatives with antioxidant behavior: Synthesis and structure-activity relationships. J. Enzyme Inhib. Med. Chem., 2009, 24(2), 506-515. doi: 10.1080/14756360802218516 PMID: 18972245
  60. Gozzo, A.; Lesieur, D.; Duriez, P.; Fruchart, J.C.; Teissier, E. Structure-activity relationships in a series of melatonin analogues with the low-density lipoprotein oxidation model. Free Radic. Biol. Med., 1999, 26(11-12), 1538-1543. doi: 10.1016/S0891-5849(99)00020-9 PMID: 10401620
  61. Estevão, M.S.; Carvalho, L.C.; Ribeiro, D.; Couto, D.; Freitas, M.; Gomes, A.; Ferreira, L.M.; Fernandes, E.; Marques, M.M.B. Antioxidant activity of unexplored indole derivatives: Synthesis and screening. Eur. J. Med. Chem., 2010, 45(11), 4869-4878. doi: 10.1016/j.ejmech.2010.07.059 PMID: 20727623
  62. Wojtunik-Kulesza, K.A.; Cieśla, Ł.M.; Waksmundzka-Hajnos, M. Approach to determination a structure - Antioxidant activity relationship of selected common terpenoids evaluated by ABTS •+ radical cation assay. Nat. Prod. Commun., 2018, 13(3), 1934578X1801300. doi: 10.1177/1934578X1801300308
  63. Jin, M.C.; Yoo, J.M.; Sok, D.E.; Kim, M.R. Neuroprotective effect of N-acyl 5-hydroxytryptamines on glutamate-induced cytotoxicity in HT-22 cells. Neurochem. Res., 2014, 39(12), 2440-2451. doi: 10.1007/s11064-014-1448-2 PMID: 25307111
  64. Henry, G.E.; Momin, R.A.; Nair, M.G.; Dewitt, D.L. Antioxidant and cyclooxygenase activities of fatty acids found in food. J. Agric. Food Chem., 2002, 50(8), 2231-2234. doi: 10.1021/jf0114381 PMID: 11929276
  65. Wang, W.; Yang, H.; Johnson, D.; Gensler, C.; Decker, E.; Zhang, G. Chemistry and biology of ω-3 PUFA peroxidation-derived compounds. Prostaglandins Other Lipid Mediat., 2017, 132, 84-91. doi: 10.1016/j.prostaglandins.2016.12.004 PMID: 28049021
  66. Fagali, N.; Catalá, A. Antioxidant activity of conjugated linoleic acid isomers, linoleic acid and its methyl ester determined by photoemission and DPPH techniques. Biophys. Chem., 2008, 137(1), 56-62. doi: 10.1016/j.bpc.2008.07.001 PMID: 18656302
  67. Francenia Santos-Sánchez, N.; Salas-Coronado, R.; Villanueva-Cañongo, C.; Hernández-Carlos, B. Antioxidant compounds and their antioxidant mechanism. In: Antioxidant Compounds and their Antioxidant Mechanism; Shalaby, E., Ed.; IntechOpen: London, United Kingdom, 2019; pp. 1-28. doi: 10.5772/intechopen.85270
  68. Pu, J.; Chen, D.; Tian, G.; He, J.; Huang, Z.; Zheng, P.; Mao, X.; Yu, J.; Luo, J.; Luo, Y. All-trans retinoic acid attenuates transmissible gastroenteritis virus-induced inflammation in IPEC-J2 cells via suppressing the RLRs/NF-κB signaling pathway. Antioxidants, 2022, 11(2), 345. doi: 10.3390/antiox11020345 PMID: 35204227
  69. Khafaga, A.F.; El-Sayed, Y.S. All-trans-retinoic acid ameliorates doxorubicin-induced cardiotoxicity: in vivo potential involvement of oxidative stress, inflammation, and apoptosis via caspase-3 and p53 down-expression. Naunyn Schmiedebergs Arch. Pharmacol., 2018, 391(1), 59-70. doi: 10.1007/s00210-017-1437-5 PMID: 29085977
  70. Rao, J.; Zhang, C.; Wang, P.; Lu, L.; Zhang, F. All-trans retinoic acid alleviates hepatic ischemia/reperfusion injury by enhancing manganese superoxide dismutase in rats. Biol. Pharm. Bull., 2010, 33(5), 869-875. doi: 10.1248/bpb.33.869 PMID: 20460768
  71. Siddikuzzaman; Grace, V.M.B. Antioxidant potential of all- trans retinoic acid (ATRA) and enhanced activity of liposome encapsulated ATRA against inflammation and tumor-directed angiogenesis. Immunopharmacol. Immunotoxicol., 2013, 35(1), 164-173. doi: 10.3109/08923973.2012.736520 PMID: 23116338
  72. Chambers, C.S.; Biedermann, D.; Valentová, K.; Petrásková, L.; Viktorová, J.; Kuzma, M.; Křen, V. Preparation of retinoyl-flavonolignan hybrids and their antioxidant properties. Antioxidants, 2019, 8(7), 236. doi: 10.3390/antiox8070236 PMID: 31340489
  73. Gurkan, A.S.; Karabay, A.; Buyukbingol, Z.; Adejare, A.; Buyukbingol, E. Syntheses of novel indole lipoic acid derivatives and their antioxidant effects on lipid peroxidation. Arch. Pharm., 2005, 338(2-3), 67-73. doi: 10.1002/ardp.200400932 PMID: 15765493
  74. Pecnard, S.; Hamze, A.; Bignon, J.; Prost, B.; Deroussent, A.; Gallego-Yerga, L.; Peláez, R.; Paik, J.Y.; Diederich, M.; Alami, M.; Provot, O. Anticancer properties of indole derivatives as Iso Combretastatin A-4 analogues. Eur. J. Med. Chem., 2021, 223, 113656. doi: 10.1016/j.ejmech.2021.113656 PMID: 34171660
  75. Sachdeva, H.; Mathur, J.; Guleria, A. Indole derivatives as potential anticancer agents: A review. J. Chil. Chem. Soc., 2020, 65(3), 4900-4907. doi: 10.4067/s0717-97072020000204900
  76. Orellana, E.; Kasinski, A.; Sulforhodamine, B. Sulforhodamine B (SRB) assay in cell culture to investigate cell proliferation. Bio Protoc., 2016, 6(21), e1984. doi: 10.21769/BioProtoc.1984 PMID: 28573164
  77. Wyld, L.; Smith, O.; Lawry, J.; Reed, M.W.R.; Brown, N.J. Cell cycle phase influences tumour cell sensitivity to aminolaevulinic acid-induced photodynamic therapy in vitro. Br. J. Cancer, 1998, 78(1), 50-55. doi: 10.1038/bjc.1998.441 PMID: 9662250
  78. Qian, S.Y.; Xu, Y. Anti-cancer activities of ω-6 polyunsaturated fatty acids. Biomed. J., 2014, (0), 0. doi: 10.4103/2319-4170.131378 PMID: 24923568
  79. Huang, W.; Guo, X.; Wang, C.; Alzhan, A.; Liu, Z.; Ma, X.; Shu, Q. α-Linolenic acid induces apoptosis, inhibits the invasion and metastasis, and arrests cell cycle in human breast cancer cells by inhibiting fatty acid synthase. J. Funct. Foods, 2022, 92, 105041. doi: 10.1016/j.jff.2022.105041
  80. González-Fernández, M.J.; Ortea, I.; Guil-Guerrero, J.L. α-Linolenic and γ-linolenic acids exercise differential antitumor effects on HT-29 human colorectal cancer cells. Toxicol. Res. (Camb.), 2020, 9(4), 474-483. doi: 10.1093/toxres/tfaa046 PMID: 32905142
  81. Borges, G.S.M.; Lima, F.A.; Carneiro, G.; Goulart, G.A.C.; Ferreira, L.A.M. All-trans retinoic acid in anticancer therapy: how nanotechnology can enhance its efficacy and resolve its drawbacks. Expert Opin. Drug Deliv., 2021, 18(10), 1335-1354. doi: 10.1080/17425247.2021.1919619 PMID: 33896323
  82. Schenk, T.; Stengel, S.; Zelent, A. Unlocking the potential of retinoic acid in anticancer therapy. Br. J. Cancer, 2014, 111(11), 2039-2045. doi: 10.1038/bjc.2014.412 PMID: 25412233
  83. Chen, M.C.; Hsu, S.L.; Lin, H.; Yang, T.Y. Retinoic acid and cancer treatment. Biomedicine, 2014, 4(4), 22. doi: 10.7603/s40681-014-0022-1 PMID: 25520935
  84. di Masi, A.; Leboffe, L.; De Marinis, E.; Pagano, F.; Cicconi, L.; Rochette-Egly, C.; Lo-Coco, F.; Ascenzi, P.; Nervi, C. Retinoic acid receptors: From molecular mechanisms to cancer therapy. Mol. Aspects Med., 2015, 41, 1-115. doi: 10.1016/j.mam.2014.12.003 PMID: 25543955
  85. Hunsu, V.O.; Facey, C.O.B.; Fields, J.Z.; Boman, B.M. Retinoids as chemo-preventive and molecular-targeted anti-cancer therapies. Int. J. Mol. Sci., 2021, 22(14), 7731. doi: 10.3390/ijms22147731 PMID: 34299349
  86. Mohrbacher, A.M.; Yang, A.S.; Groshen, S.; Kummar, S.; Gutierrez, M.E.; Kang, M.H.; Tsao-Wei, D.; Reynolds, C.P.; Newman, E.M.; Maurer, B.J.; Phase, I. Phase i study of fenretinide delivered intravenously in patients with relapsed or refractory hematologic malignancies: A california cancer consortium trial. Clin. Cancer Res., 2017, 23(16), 4550-4555. doi: 10.1158/1078-0432.CCR-17-0234 PMID: 28420721
  87. Maurer, B.J.; Kang, M.H.; Villablanca, J.G.; Janeba, J.; Groshen, S.; Matthay, K.K.; Sondel, P.M.; Maris, J.M.; Jackson, H.A.; Goodarzian, F.; Shimada, H.; Czarnecki, S.; Hasenauer, B.; Reynolds, C.P.; Marachelian, A. Phase I trial of fenretinide delivered orally in a novel organized lipid complex in patients with relapsed/refractory neuroblastoma: A report from the new approaches to neuroblastoma therapy (NANT) consortium. Pediatr. Blood Cancer, 2013, 60(11), 1801-1808. doi: 10.1002/pbc.24643 PMID: 23813912
  88. Cooper, J.P.; Reynolds, C.P.; Cho, H.; Kang, M.H. Clinical development of fenretinide as an antineoplastic drug: Pharmacology perspectives. Exp. Biol. Med., 2017, 242(11), 1178-1184. doi: 10.1177/1535370217706952 PMID: 28429653
  89. Bildziukevich, U.; Kvasnicová, M.; Šaman, D.; Rárová, L.; Wimmer, Z. Novel oleanolic acid-tryptamine and -fluorotryptamine amides: From adaptogens to agents targeting in vitro cell apoptosis. Plants, 2021, 10(10), 2082. doi: 10.3390/plants10102082 PMID: 34685891
  90. Rani, P.; Pal, D.; Hegde, R.R.; Hashim, S.R. Acetamides: Chemotherapeutic agents for inflammation-associated cancers. J. Chemother., 2016, 28(4), 255-265. doi: 10.1179/1973947815Y.0000000060 PMID: 26198312
  91. Li, Y.; Li, S.; Zhou, Y.; Meng, X.; Zhang, J.J.; Xu, D.P.; Li, H.B.; Li, Y.; Li, S.; Zhou, Y. Melatonin for the prevention and treatment of cancer. Oncotarget, 2017, 8(24), 39896-39921. doi: 10.18632/oncotarget.16379 PMID: 28415828
  92. Samec, M.; Liskova, A.; Koklesova, L.; Zhai, K.; Varghese, E.; Samuel, S.M.; Šudomová, M.; Lucansky, V.; Kassayova, M.; Pec, M.; Biringer, K.; Brockmueller, A.; Kajo, K.; Hassan, S.T.S.; Shakibaei, M.; Golubnitschaja, O.; Büsselberg, D.; Kubatka, P. Metabolic anti-cancer effects of melatonin: Clinically relevant prospects. Cancers, 2021, 13(12), 3018. doi: 10.3390/cancers13123018 PMID: 34208645
  93. Bojková, B.; Kubatka, P.; Qaradakhi, T.; Zulli, A.; Kajo, K. Melatonin may increase anticancer potential of pleiotropic drugs. Int. J. Mol. Sci., 2018, 19(12), 3910. doi: 10.3390/ijms19123910 PMID: 30563247
  94. Himmler, T.; Pirro, F.; Schmeer, N. Synthesis and antibacterial in vitro activity of novel analogues of nematophin. Bioorg. Med. Chem. Lett., 1998, 8(15), 2045-2050. doi: 10.1016/S0960-894X(98)00358-8 PMID: 9873483
  95. Campos, P.E.; Pichon, E.; Moriou, C.; Clerc, P.; Trépos, R.; Frederich, M.; De Voogd, N.; Hellio, C.; Gauvin-Bialecki, A.; Al-Mourabit, A. New antimalarial and antimicrobial tryptamine derivatives from the marine sponge Fascaplysinopsis reticulata. Mar. Drugs, 2019, 17(3), 167. doi: 10.3390/md17030167 PMID: 30875899
  96. Li, J.; Chen, G.; Webster, J.M. Nematophin, a novel antimicrobial substance produced by Xenorhabdus nematophilus (Enterobactereaceae). Can. J. Microbiol., 1997, 43(8), 770-773. doi: 10.1139/m97-110 PMID: 9304787
  97. Wesche, F.; Adihou, H.; Wichelhaus, T.A.; Bode, H.B. Synthesis and SAR of the antistaphylococcal natural product nematophin from Xenorhabdus nematophila. Beilstein J. Org. Chem., 2019, 15, 535-541. doi: 10.3762/bjoc.15.47 PMID: 30873237
  98. He, F.; Wu, X.; Zhang, Q.; Li, Y.; Ye, Y.; Li, P.; Chen, S.; Peng, Y.; Hardeland, R.; Xia, Y. Bacteriostatic potential of melatonin: Therapeutic standing and mechanistic insights. Front. Immunol., 2021, 12, 683879. doi: 10.3389/fimmu.2021.683879 PMID: 34135911
  99. Hunt, L.R.; Smith, S.M.; Downum, K.R.; Mydlarz, L.D. Microbial regulation in gorgonian corals. Mar. Drugs, 2012, 10(12), 1225-1243. doi: 10.3390/md10061225 PMID: 22822369
  100. Li, J.; Chen, G.; Webster, J.M.; Czyzewska, E. Antimicrobial metabolites from a bacterial symbiont. J. Nat. Prod., 1995, 58(7), 1081-1086. doi: 10.1021/np50121a016 PMID: 7561900
  101. Desbois, A.P.; Smith, V.J. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol., 2010, 85(6), 1629-1642. doi: 10.1007/s00253-009-2355-3 PMID: 19956944
  102. Ramlawi, S.; Abusharkh, S.; Carroll, A.; McMullin, D.R.; Avis, T.J. Biological and chemical characterization of antimicrobial activity in Arthrobacter spp. isolated from disease-suppressive compost. J. Basic Microbiol., 2021, 61(8), 745-756. doi: 10.1002/jobm.202100213 PMID: 34228381
  103. Zhang, W.; Wei, S.; Zhang, J.; Wu, W. Antibacterial activity composition of the fermentation broth of Streptomyces djakartensis NW35. Molecules, 2013, 18(3), 2763-2768. doi: 10.3390/molecules18032763 PMID: 23455667
  104. Casillas-Vargas, G.; Ocasio-Malavé, C.; Medina, S.; Morales-Guzmán, C.; Del Valle, R.G.; Carballeira, N.M.; Sanabria-Ríos, D.J. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog. Lipid Res., 2021, 82, 101093. doi: 10.1016/j.plipres.2021.101093 PMID: 33577909
  105. Badawy, M.E.I. Structure and antimicrobial activity relationship of quaternary N -alkyl chitosan derivatives against some plant pathogens. J. Appl. Polym. Sci., 2010, 117(2), 960-969. doi: 10.1002/app.31492
  106. Sahariah, P.; Benediktssdóttir, B.E.; Hjálmarsdóttir, M.Á.; Sigurjonsson, O.E.; Sørensen, K.K.; Thygesen, M.B.; Jensen, K.J.; Másson, M. Impact of chain length on antibacterial activity and hemocompatibility of quaternary N-alkyl and n,n-dialkyl chitosan derivatives. Biomacromolecules, 2015, 16(5), 1449-1460. doi: 10.1021/acs.biomac.5b00163 PMID: 25830631
  107. Lin, P.A.; Cheng, C.H.; Hsieh, K.T.; Lin, J.C. Effect of alkyl chain length and fluorine content on the surface characteristics and antibacterial activity of surfaces grafted with brushes containing quaternized ammonium and fluoro-containing monomers. Colloids Surf. B Biointerfaces, 2021, 202, 111674. doi: 10.1016/j.colsurfb.2021.111674 PMID: 33690062
  108. Goswami, S.; Adhikari, M.D.; Kar, C.; Thiyagarajan, D.; Das, G.; Ramesh, A. Synthetic amphiphiles as therapeutic antibacterials: Lessons on bactericidal efficacy and cytotoxicity and potential application as an adjuvant in antimicrobial chemotherapy. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(20), 2612-2623. doi: 10.1039/c3tb20226g PMID: 32260949
  109. Cassar, S.; Adatto, I.; Freeman, J.L.; Gamse, J.T.; Iturria, I.; Lawrence, C.; Muriana, A.; Peterson, R.T.; Van Cruchten, S.; Zon, L.I. Use of zebrafish in drug discovery toxicology. Chem. Res. Toxicol., 2020, 33(1), 95-118. doi: 10.1021/acs.chemrestox.9b00335 PMID: 31625720
  110. Herrmann, K. Teratogenic effects of retinoic acid and related substances on the early development of the zebrafish (Brachydanio rerio) as assessed by a novel scoring system. Toxicol. In vitro, 1995, 9(3), 267-283. doi: 10.1016/0887-2333(95)00012-W PMID: 20650088
  111. Kin Ting Kam, R.; Deng, Y.; Chen, Y.; Zhao, H. Retinoic acid synthesis and functions in early embryonic development. Cell Biosci., 2012, 2(1), 11. doi: 10.1186/2045-3701-2-11 PMID: 22439772
  112. Wang, Y.; Chen, J.; Du, C.; Li, C.; Huang, C.; Dong, Q. Characterization of retinoic acid–induced neurobehavioral effects in developing zebrafish. Environ. Toxicol. Chem., 2014, 33(2), 431-437. doi: 10.1002/etc.2453 PMID: 24395056
  113. Navarro-Martín, L.; Oliveira, E.; Casado, M.; Barata, C.; Piña, B. Dysregulatory effects of retinoic acid isomers in late zebrafish embryos. Environ. Sci. Pollut. Res. Int., 2018, 25(4), 3849-3859. doi: 10.1007/s11356-017-0732-5 PMID: 29178002
  114. Curtis, R.F.; Coxon, D.T.; Levett, G. Toxicity of fatty acids in assays for mycotoxins using the brine shrimp (Artemia salina). Food Cosmet. Toxicol., 1974, 12(2), 233-235. doi: 10.1016/0015-6264(74)90369-1 PMID: 4459239
  115. Quinlivan, V.H.; Farber, S.A. Lipid uptake, metabolism, and transport in the larval zebrafish. Front. Endocrinol., 2017, 8, 319. doi: 10.3389/fendo.2017.00319 PMID: 29209275
  116. Adam, A.C.; Skjærven, K.H.; Whatmore, P.; Moren, M.; Lie, K.K. Parental high dietary arachidonic acid levels modulated the hepatic transcriptome of adult zebrafish (Danio rerio) progeny. PLoS One, 2018, 13(8), e0201278. doi: 10.1371/journal.pone.0201278 PMID: 30070994
  117. de Vrieze, E.; Moren, M.; Metz, J.R.; Flik, G.; Lie, K.K. Arachidonic acid enhances turnover of the dermal skeleton: Studies on zebrafish scales. PLoS One, 2014, 9(2), e89347. doi: 10.1371/journal.pone.0089347 PMID: 24586706
  118. Nayak, S.; Khozin-Goldberg, I.; Cohen, G.; Zilberg, D. Dietary supplementation with ω6 LC-PUFA-Rich algae modulates zebrafish immune function and improves resistance to streptococcal infection. Front. Immunol., 2018, 9, 1960. doi: 10.3389/fimmu.2018.01960 PMID: 30237797
  119. Zhang, Y.; Guo, S.Y.; Zhu, X.Y.; Zhou, J.; Liao, W.H. Arachidonic acid induced thrombosis in zebrafish larvae for assessing human anti-thrombotic drugs. JSM Cell Dev. Biol., 2017, 5(1), 1023.
  120. Adam, A.C.; Lie, K.K.; Moren, M.; Skjærven, K.H. High dietary arachidonic acid levels induce changes in complex lipids and immune-related eicosanoids and increase levels of oxidised metabolites in zebrafish ( Danio rerio ). Br. J. Nutr., 2017, 117(8), 1075-1085. doi: 10.1017/S0007114517000903 PMID: 28485254
  121. Savoldi, R.; Polari, D.; Pinheiro-da-Silva, J.; Silva, P.F.; Lobao-Soares, B.; Yonamine, M.; Freire, F.A.M.; Luchiari, A.C. Behavioral changes over time following ayahuasca exposure in zebrafish. Front. Behav. Neurosci., 2017, 11, 139. doi: 10.3389/fnbeh.2017.00139 PMID: 28804451
  122. Zhong, H.J.; Liu, L.J.; Chong, C.M.; Lu, L.; Wang, M.; Chan, D.S.H.; Chan, P.W.H.; Lee, S.M.Y.; Ma, D.L.; Leung, C.H. Discovery of a natural product-like iNOS inhibitor by molecular docking with potential neuroprotective effects in vivo. PLoS One, 2014, 9(4), e92905. doi: 10.1371/journal.pone.0092905 PMID: 24690920
  123. Kumari, S.; Mazumder, A.G.; Bhardwaj, A.; Singh, D. Early α-linolenic acid exposure to embryo reduces pentylenetetrazol-induced seizures in zebrafish larva. Prostaglandins Leukot. Essent. Fatty Acids, 2019, 143, 15-20. doi: 10.1016/j.plefa.2019.02.002 PMID: 30975378

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers