The Application of Graphene Oxide Nanoarchitectures in the Treatment of Cancer: Phototherapy, Immunotherapy, and the Development of Vaccines
- Authors: Bhattacharya S.1, Belemkar S.2, Prajapati B.3
-
Affiliations:
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMS NMIMS Deemed-to-be University
- Department of Pharmaceutics, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University
- Issue: Vol 31, No 27 (2024)
- Pages: 4320-4339
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjmseer.com/0929-8673/article/view/644973
- DOI: https://doi.org/10.2174/0109298673288750240117115141
- ID: 644973
Cite item
Full Text
Abstract
Nanoparticles have been crucial in redesigning tumour eradication techniques, and recent advances in cancer research have accelerated the creation and integration of multifunctional nanostructures. In the fight against treatment resistance, which has reduced the effectiveness of traditional radiation and chemotherapy, this paradigm change is of utmost importance. Graphene oxide (GO) is one of several nanoparticles made of carbon that has made a splash in the medical field. It offers potential new ways to treat cancer thanks to its nanostructures, which can precisely transfer genetic elements and therapeutic chemicals to tumour areas. Encapsulating genes, protecting them from degradation, and promoting effective genetic uptake by cancer cells are two of GO nanostructures' greatest strengths, in addition to improving drug pharmacokinetics and bioavailability by concentrating therapeutic compounds at particular tumour regions. In addition, photodynamic treatment (PDT) and photothermal therapy (PTT), which use GO nanoparticles to reduce carcinogenesis, have greatly slowed tumour growth due to GO's phototherapy capabilities. In addition to their potential medical uses, GO nanoparticles are attractive vaccine candidates due to their ability to stimulate cellular and innate immunity. These nanoparticles can be used to detect, diagnose, and eradicate cancer because they respond to certain stimuli. The numerous advantages of GO nanoparticles for tumour eradication are attributed in large part to their primary route of internalisation through endocytosis, which guarantees accurate delivery to target locations. The revolutionary potential of multifunctional nanostructures in cancer treatment is highlighted in this extensive compendium that examines current oncological breakthroughs.
About the authors
Sankha Bhattacharya
Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University
Author for correspondence.
Email: info@benthamscience.net
Sateesh Belemkar
Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMS NMIMS Deemed-to-be University
Email: info@benthamscience.net
Bhupendra Prajapati
Department of Pharmaceutics, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University
Author for correspondence.
Email: info@benthamscience.net
References
- Blickle, P.; Schmidt, M.E.; Steindorf, K. Post-traumatic growth in cancer survivors: What is its extent and what are important determinants? Int. J. Clin. Health Psychol., 2024, 24(1), 100418. doi: 10.1016/j.ijchp.2023.100418 PMID: 37867603
- Cerverò-Varona, A.; Canciello, A.; Peserico, A.; Haidar Montes, A.A.; Citeroni, M.R.; Mauro, A.; Russo, V.; Moffa, S.; Pilato, S.; Di Giacomo, S.; Dufrusine, B.; Dainese, E.; Fontana, A.; Barboni, B. Graphene oxide accelerates TGFβ-mediated epithelial-mesenchymal transition and stimulates pro-inflammatory immune response in amniotic epithelial cells. Mater. Today Bio, 2023, 22, 100758. doi: 10.1016/j.mtbio.2023.100758 PMID: 37600353
- Rath, G.; Halder, J.; Mishra, A.; Kar, B.; Ghosh, G. Recent advances in chemical composition and transdermal delivery systems for topical bio-actives in skin cancer. Curr. Top. Med. Chem., 2023, 23(1), 31-43. doi: 10.2174/1568026622666220902104906 PMID: 36056871
- Eftekhari, A.; Kryschi, C.; Pamies, D.; Gulec, S.; Ahmadian, E.; Janas, D.; Davaran, S.; Khalilov, R. Natural and synthetic nanovectors for cancer therapy. Nanotheranostics, 2023, 7(3), 236-257. doi: 10.7150/ntno.77564 PMID: 37064613
- Yang, W.; Wang, S.; Tong, S.; Zhang, W.D.; Qin, J.J. Expanding the ubiquitin code in pancreatic cancer. Biochim. Biophys. Acta Mol. Basis Dis., 2024, 1870(1), 166884. doi: 10.1016/j.bbadis.2023.166884 PMID: 37704111
- Tan, M.; He, Y.; Shi, M.; Lee, K.C.H.; Abdullah, H.R. Systematic review and meta-analysis of short-term and long-term smoking abstinence rates of intensive perioperative smoking cessation programs vs brief interventions for smoking cessation. Addict. Behav., 2024, 148, 107832. doi: 10.1016/j.addbeh.2023.107832 PMID: 37660498
- Liu, G.; Huang, W.; Chen, L.; Tayier, N.; You, L.; Hamza, M.; Tian, X.; Wang, H.; Nie, G.; Zhu, M.; Yang, Y. Commensal bacterial hybrid nanovesicles improve immune checkpoint therapy in pancreatic cancer through immune and metabolic reprogramming. Nano Today, 2023, 52, 101993. doi: 10.1016/j.nantod.2023.101993
- Lv, T.; Hong, X.; Liu, Y.; Miao, K.; Sun, H.; Li, L.; Deng, C.; Jiang, C.; Pan, X. AI-powered interpretable imaging phenotypes noninvasively characterize tumor microenvironment associated with diverse molecular signatures and survival in breast cancer. Comput. Methods Programs Biomed., 2024, 243, 107857. doi: 10.1016/j.cmpb.2023.107857 PMID: 37865058
- Xia, Y.; Gu, M.; Wang, J.; Zhang, X.; Shen, T.; Shi, X.; Yuan, W.E. Tumor microenvironment-activated, immunomodulatory nanosheets loaded with copper(II) and 5-FU for synergistic chemodynamic therapy and chemotherapy. J. Colloid Interface Sci., 2024, 653(Pt A), 137-147. doi: 10.1016/j.jcis.2023.09.042 PMID: 37713912
- Shi, Z.; Yang, Y.; Guo, Z.; Feng, S.; Wan, Y. A cathepsin B/GSH dual-responsive fluorinated peptide for effective siRNA delivery to cancer cells. Bioorg. Chem., 2023, 135, 106485. doi: 10.1016/j.bioorg.2023.106485 PMID: 36963370
- Sahoo, S.K.; Dilnawaz, F. Graphene oxide/reduced graphene oxide nanomaterials for targeted photothermal cancer therapy. Curr. Org. Chem., 2023, 27(10), 844-851. doi: 10.2174/1385272827666230821102638
- Uliankina, A.I.; Gorbunov, V.A.; Calatayud, M. Ab initio characterization of hybrid MOF-MXenes surfaces: The case of Cu-pyridyl on Ti2CO2. Catal. Today, 2024, 426, 114396. doi: 10.1016/j.cattod.2023.114396
- Wang, L.H.; Liu, J.Y.; Sui, L.; Zhao, P.H.; Ma, H.D.; Wei, Z.; Wang, Y.L. Folate-modified graphene oxide as the drug delivery system to load temozolomide. Curr. Pharm. Biotechnol., 2020, 21(11), 1088-1098. doi: 10.2174/1389201021666200226122742 PMID: 32101121
- Baran, A.; Baran, M.F.; Keskin, C.; Kandemir, S.I.; Valiyeva, M.; Mehraliyeva, S.; Khalilov, R.; Eftekhari, A. Ecofriendly/rapid synthesis of silver nanoparticles using extract of waste parts of artichoke (Cynara scolymus l.) and evaluation of their cytotoxic and antibacterial activities. J. Nanomater., 2021, 2021, 1-10. doi: 10.1155/2021/2270472
- Nasibova, A.J.A.B.E.S. Generation of nanoparticles in biological systems and their application prospects. 2023, 8(2), 140-146.
- Abakumov, A.A.; Bychko, I.B.; Voitsihovska, O.O.; Rudenko, R.M.; Strizhak, P.E. Tuning the surface area of reduced graphene oxide by modulating graphene oxide concentration during hydrazine reduction. Mater. Lett., 2024, 354, 135417. doi: 10.1016/j.matlet.2023.135417
- Jawanjal, P.M.; Patil, P.B.; Patil, J.; Waghulde, M.; Naik, J.B. Development of graphene oxide-trihexyphenidyl hydrochloride nanohybrid and release behavior. Curr. Environ. Eng., 2019, 6(2), 134-140. doi: 10.2174/2212717806666190313153239
- Chen, G.; Yang, Z.; Yu, X.; Yu, C.; Sui, S.; Zhang, C.; Bao, C.; Zeng, X.; Chen, Q.; Peng, Q. Intratumor delivery of amino-modified graphene oxide as a multifunctional photothermal agent for efficient antitumor phototherapy. J. Colloid Interface Sci., 2023, 652(Pt B), 1108-1116. doi: 10.1016/j.jcis.2023.08.126 PMID: 37657211
- Silva, F.A.L.S.; Timochenco, L.; Costa-Almeida, R.; Fernandes, J.R.; Santos, S.G.; Magalhães, F.D.; Pinto, A.M. UV-C driven reduction of nanographene oxide opens path for new applications in phototherapy. Colloids Surf. B Biointerfaces, 2024, 233, 113594. doi: 10.1016/j.colsurfb.2023.113594 PMID: 37979484
- Khan, A.A.P.; Khan, A.; Asiri, A.M.; Ashraf, G.M.; Alhogbia, B.G. Graphene oxide based metallic nanoparticles and their some biological and environmental application. Curr. Drug Metab., 2018, 18(11), 1020-1029. doi: 10.2174/1389200218666171016100507 PMID: 29034831
- Işıklan, N.; Hussien, N.A.; Türk, M. Hydroxypropyl cellulose functionalized magnetite graphene oxide nanobiocomposite for chemo/photothermal therapy. Colloids Surf. A Physicochem. Eng. Asp., 2023, 656, 130322. doi: 10.1016/j.colsurfa.2022.130322
- Ren, C.; Yan, R.; Yuan, Z.; Yin, L.; Li, H.; Ding, J.; Wu, T.; Chen, R. Maternal exposure to sunlight-irradiated graphene oxide induces neurodegeneration-like symptoms in zebrafish offspring through intergenerational translocation and genomic DNA methylation alterations. Environ. Int., 2023, 179, 108188. doi: 10.1016/j.envint.2023.108188 PMID: 37690221
- Shahnaz, T.; Hayder, G.; Shah, M.A.; Ramli, M.Z.; Ismail, N.; Hua, C.K.; Zahari, N.M.; Mardi, N.H.; Selamat, F.E.; Kabilmiharbi, N.; Aziz, H.A. Graphene-based nanoarchitecture as a potent cushioning/filler in polymer composites and their applications. J. Mater. Res. Technol., 2024, 28(4), 2671-2698.
- Karim, M.; Takehira, H.; Matsui, T.; Murashima, Y.; Ohtani, R.; Nakamura, M.; Hayami, S. Graphene and graphene oxide as super materials. Curr. Inorg. Chem., 2014, 4(3), 191-219. doi: 10.2174/187794410403141117161134
- Zhao, Y.; Qiu, Y.; Fang, Z.; Pu, F.; Sun, R.; Chen, K.; Tang, Y. Preparation and characterization of Sr-substituted hydroxyapatite/reduced graphene oxide 3D scaffold as drug carrier for alendronate sodium delivery. Ceram. Int., 2022, 48(24), 36601-36608. doi: 10.1016/j.ceramint.2022.08.219
- Zhou, W.; He, X.; Wang, J.; He, S.; Xie, C.; Fan, Q.; Pu, K. Semiconducting polymer nanoparticles for photoactivatable cancer immunotherapy and imaging of immunoactivation. Biomacromolecules, 2022, 23(4), 1490-1504. doi: 10.1021/acs.biomac.2c00065 PMID: 35286085
- Kanth Kadiyala, N.; Mandal, B.K.; Kumar Reddy, L.V.; Barnes, C.H.W.; De Los Santos Valladares, L.; Maddinedi, S.B.; Sen, D. Biofabricated palladium nanoparticle-decorated reduced graphene oxide nanocomposite using the Punica granatum (pomegranate) peel extract: Investigation of potent in vivo hepatoprotective activity against acetaminophen-induced liver injury in Wistar albino rats. ACS Omega, 2023, 8(27), 24524-24543. doi: 10.1021/acsomega.3c02643 PMID: 37457483
- Ghulam, A.N.; dos Santos, O.A.L.; Hazeem, L.; Pizzorno Backx, B.; Bououdina, M.; Bellucci, S. Graphene oxide (GO) materials-applications and toxicity on living organisms and environment. J. Funct. Biomater., 2022, 13(2), 77. doi: 10.3390/jfb13020077 PMID: 35735932
- Zhou, A.; Yu, T.; Liang, X.; Yin, S. H2O2-free strategy derived from Hummers method for preparing graphene oxide with high oxidation degree. FlatChem, 2023, 38, 100487. doi: 10.1016/j.flatc.2023.100487
- Liu, Y.; Liu, H.; Guo, S.; Zhao, Y.; Qi, J.; Zhang, R.; Ren, J.; Cheng, H.; Zong, M.; Wu, X.; Li, B. A review of carbon nanomaterials/bacterial cellulose composites for nanomedicine applications. Carbohydr. Polym., 2024, 323, 121445. doi: 10.1016/j.carbpol.2023.121445 PMID: 37940307
- Bouazzi, D.; Chérif, I.; Mehri, A.; Touati, H.; Teresa Caccamo, M.; Magazù, S.; Ayachi, S.; Clacens, J.M.; Badraoui, B. A joint experimental and theoretical study on structural, vibrational and morphological properties of newly synthesized nanocomposites involving Hydroxyapatite-alt-Polyethylene Glycol (HAP/PEG). J. Mol. Liq., 2023, 390, 123192. doi: 10.1016/j.molliq.2023.123192
- Kaur, N. An innovative outlook on utilization of agro waste in fabrication of functional nanoparticles for industrial and biological applications: A review. Talanta, 2024, 267, 125114. doi: 10.1016/j.talanta.2023.125114 PMID: 37683321
- Soni, J.; Teli, P.; Agarwal, S. Recent advances in the green reduction of graphene oxide and its potential applications. Curr. Nanosci., 2024, 20(2), 146-156. doi: 10.2174/1573413719666230329104621
- Ma, C.; Xie, Y.; Huang, X.; Zhang, L.; Julian McClements, D.; Zou, L.; Liu, W. Encapsulation of (-)-epigallocatechin gallate (EGCG) within phospholipid-based nanovesicles using W/O emulsion-transfer methods: Masking bitterness and delaying release of EGCG. Food Chem., 2024, 437(Pt 2), 137913. doi: 10.1016/j.foodchem.2023.137913 PMID: 37939421
- Jha, A.; Nikam, A.N.; Kulkarni, S.; Mutalik, S.P.; Pandey, A.; Hegde, M.; Rao, B.S.S.; Mutalik, S. Biomimetic nanoarchitecturing: A disguised attack on cancer cells. J. Control. Release, 2021, 329, 413-433. doi: 10.1016/j.jconrel.2020.12.005 PMID: 33301837
- Kiani Shahvandi, M.; Souri, M.; Tavasoli, S.; Moradi Kashkooli, F.; Kar, S.; Soltani, M. A comparative study between conventional chemotherapy and photothermal activated nano-sized targeted drug delivery to solid tumor. Comput. Biol. Med., 2023, 166, 107574. doi: 10.1016/j.compbiomed.2023.107574 PMID: 37839220
- Yang, H.; Zhang, Z.; Zhou, X.; Binbr Abe Menen, N.; Rouhi, O. Achieving enhanced sensitivity and accuracy in carcinoembryonic antigen (CEA) detection as an indicator of cancer monitoring using thionine/chitosan/graphene oxide nanocomposite-modified electrochemical immunosensor. Environ. Res., 2023, 238(Pt 1), 117163. doi: 10.1016/j.envres.2023.117163 PMID: 37722583
- Wang, X.; Mohammadzadehsaliani, S.; Vafaei, S.; Ahmadi, L.; Iqbal, A.; Alreda, B.A.; Talib Al-Naqeeb, B.Z.; Kheradjoo, H. Synthesis and electrochemical study of enzymatic graphene oxide-based nanocomposite as stable biosensor for determination of bevacizumab as a medicine in colorectal cancer in human serum and waste water fluids. Chemosphere, 2023, 336, 139012. doi: 10.1016/j.chemosphere.2023.139012 PMID: 37224975
- Cui, X.; Li, M.; Wei, F.; Tang, X.; Xu, W.; Li, M.; Han, X. Biomimetic light-activatable graphene-based nanoarchitecture for synergistic chemophotothermal therapy. Chem. Eng. J., 2021, 420, 127710. doi: 10.1016/j.cej.2020.127710
- Jasim, L.M.M.; Homayouni Tabrizi, M.; Darabi, E.; Jaseem, M.M.M. The antioxidant, anti-angiogenic, and anticancer impact of chitosan-coated herniarin-graphene oxide nanoparticles (CHG-NPs). Heliyon, 2023, 9(9), e20042. doi: 10.1016/j.heliyon.2023.e20042 PMID: 37809932
- Salimbahrami, S.N.; Ghorbani-HasanSaraei, A.; Tahermansouri, H.; Shahidi, S.A. Synthesis, optimization via response surface methodology, and structural properties of carboxymethylcellulose/curcumin/graphene oxide biocomposite films/coatings for the shelf-life extension of shrimp. Int. J. Biol. Macromol., 2023, 253(Pt 2), 126724. doi: 10.1016/j.ijbiomac.2023.126724 PMID: 37673155
- Granja, A.; Lima-Sousa, R.; Alves, C.G.; de Melo-Diogo, D.; Nunes, C.; Sousa, C.T.; Correia, I.J.; Reis, S. Multifunctional targeted solid lipid nanoparticles for combined photothermal therapy and chemotherapy of breast cancer. Biomaterials Advances, 2023, 151, 213443. doi: 10.1016/j.bioadv.2023.213443 PMID: 37146526
- Hu, L.; Xu, Y.; Zhao, Y.; Mei, Z.; Xiong, C.; Xiao, J.; Zhang, J.; Tian, J. Supramolecular nanovesicles with in-situ switchable photothermal/photodynamic effects for precisely controllable cancer phototherapy. Chem. Eng. J., 2023, 476, 146829. doi: 10.1016/j.cej.2023.146829
- Ding, X.; Min, Y.; Wang, C.; Zhang, Q. Chromium doped broad-band near-infrared emission Mg4Ta2O9: Cr3+ phosphor excited by blue light for NIR-LEDs. Infrared Phys. Technol., 2023, 131, 104697. doi: 10.1016/j.infrared.2023.104697
- Daniyal, M.; Liu, B.; Wang, W. Comprehensive review on graphene oxide for use in drug delivery system. Curr. Med. Chem., 2020, 27(22), 3665-3685. doi: 10.2174/13816128256661902011296290 PMID: 30706776
- Qin, C.; Fei, J.; Cai, P.; Zhao, J.; Li, J. Biomimetic membrane-conjugated graphene nanoarchitecture for light-manipulating combined cancer treatment in vitro. J. Colloid Interface Sci., 2016, 482, 121-130. doi: 10.1016/j.jcis.2016.07.031 PMID: 27497233
- He, Y.; Wang, X. Identifying biomarkers associated with immunotherapy response in melanoma by multi-omics analysis. Comput. Biol. Med., 2023, 167, 107591. doi: 10.1016/j.compbiomed.2023.107591 PMID: 37875043
- Zuchowska, A.; Jastrzebska, E.; Mazurkiewicz-Pawlicka, M.; Malolepszy, A.; Stobinski, L.; Trzaskowski, M.; Brzozka, Z. Well-defined graphene oxide as a potential component in lung cancer therapy. Curr. Cancer Drug Targets, 2020, 20(1), 47-58. doi: 10.2174/1568009619666191021113807 PMID: 31736445
- Pakizeh, M.; Karami, M.; Kooshki, S.; Rahimnia, R. Advanced toluene/n-heptane separation by pervaporation: investigating the potential of graphene oxide (GO)/PVA mixed matrix membrane. J. Taiwan Inst. Chem. Eng., 2023, 150, 105025. doi: 10.1016/j.jtice.2023.105025
- Muthoosamy, K.; Bai, R.; Manickam, S. Graphene and graphene oxide as a docking station for modern drug delivery system. Curr. Drug Deliv., 2014, 11(6), 701-718. doi: 10.2174/1567201811666140605151600 PMID: 24909150
- Theodosopoulos, G.V.; Bilalis, P.; Sakellariou, G. Polymer functionalized graphene oxide: A versatile nanoplatform for drug/gene delivery. Curr. Org. Chem., 2015, 19(18), 1828-1837. doi: 10.2174/1385272819666150526005714
- Le, Q.H.; Neila, F.; Smida, K.; Li, Z.; Abdelmalek, Z.; Tlili, I. pH-responsive anticancer drug delivery systems: Insights into the enhanced adsorption and release of DOX drugs using graphene oxide as a nanocarrier. Eng. Anal. Bound. Elem., 2023, 157, 157-165. doi: 10.1016/j.enganabound.2023.09.008
- Yao, C.; Zhu, J.; Xie, A.; Shen, Y.; Li, H.; Zheng, B.; Wei, Y. Graphene oxide and creatine phosphate disodium dual template-directed synthesis of GO/hydroxyapatite and its application in drug delivery. Mater. Sci. Eng. C, 2017, 73, 709-715. doi: 10.1016/j.msec.2016.11.083 PMID: 28183664
- Kafashan, A.; Joze-Majidi, H.; Babaei, A.; Shahrampour, D.; Arab-Bafrani, Z.; Arefkhani, M. Designing a nanohybrid complex based on graphene oxide for drug delivery purposes; investigating the intermediating capability of carbohydrate polymers. Mater. Today Chem., 2023, 33, 101751. doi: 10.1016/j.mtchem.2023.101751
- Tiwari, S.; Sontakke, A.D.; Baruah, K.; Purkait, M.K. Development of graphene oxide-based nano-delivery system for natural chemotherapeutic agent (caffeic acid). Mater. Today Proc., 2023, 76, 325-335. doi: 10.1016/j.matpr.2022.11.373
- Rai, V.K.; Mahata, S.; Kashyap, H.; Singh, M.; Rai, A. Bio-reduction of graphene oxide: Catalytic applications of (Reduced) GO in organic synthesis. Curr. Org. Synth., 2020, 17(3), 164-191. doi: 10.2174/1570179417666200115110403 PMID: 32538718
- Faridbod, F.; Sanati, A.L. Graphene quantum dots in electrochemical sensors/biosensors. Curr. Anal. Chem., 2019, 15(2), 103-123. doi: 10.2174/1573411014666180319145506
- Berisha, A. Density functional theory and quantum mechanics studies of 2D carbon nanostructures (graphene and graphene oxide) for Lenalidomide anticancer drug delivery. Comput. Theor. Chem., 2023, 1230, 114371. doi: 10.1016/j.comptc.2023.114371
- Najafabadi, A.P.; Pourmadadi, M.; Yazdian, F.; Rashedi, H.; Rahdar, A.; Díez-Pascual, A.M. pH-sensitive ameliorated quercetin delivery using graphene oxide nanocarriers coated with potential anticancer gelatin-polyvinylpyrrolidone nanoemulsion with bitter almond oil. J. Drug Deliv. Sci. Technol., 2023, 82, 104339. doi: 10.1016/j.jddst.2023.104339
- Dhas, N.; Kudarha, R.; Garkal, A.; Ghate, V.; Sharma, S.; Panzade, P.; Khot, S.; Chaudhari, P.; Singh, A.; Paryani, M.; Lewis, S.; Garg, N.; Singh, N.; Bangar, P.; Mehta, T. Molybdenum-based hetero-nanocomposites for cancer therapy, diagnosis and biosensing application: Current advancement and future breakthroughs. J. Control. Release, 2021, 330, 257-283. doi: 10.1016/j.jconrel.2020.12.015 PMID: 33345832
- Niu, X.; Liu, P.; Zhou, X.; Ou, D.; Wang, X.; Hu, C. Anti-epidermal growth factor receptor (EGFR) monoclonal antibody combined with chemoradiotherapy for induction chemotherapy resistant locally advanced nasopharyngeal carcinoma: A prospective phase II study. Transl. Oncol., 2024, 39, 101797. doi: 10.1016/j.tranon.2023.101797 PMID: 37865048
- Deng, N.; Chen, Y.; Jiang, B.; Wu, Q.; Zhou, Y.; Zhang, X.; Liang, Z.; Zhang, L.; Zhang, Y. A robust and effective intact protein fractionation strategy by GO/PEI/Au/PEG nanocomposites for human plasma proteome analysis. Talanta, 2018, 178, 49-56. doi: 10.1016/j.talanta.2017.08.079 PMID: 29136852
- Lebeau, J.; Saunders, J.M.; Moraes, V.W.R.; Madhavan, A.; Madrazo, N.; Anthony, M.C.; Wiseman, R.L. The PERK arm of the unfolded protein response regulates mitochondrial morphology during acute endoplasmic reticulum stress. Cell Rep., 2018, 22(11), 2827-2836. doi: 10.1016/j.celrep.2018.02.055 PMID: 29539413
- Yang, D.; Su, L.; Li, X.; Xie, C.; Zhang, Y. Evidence that enolase-phosphatase 1 exacerbates early cerebral ischemia injury and bloodbrain barrier breakdown by enhancing extracellular matrix destruction and inhibiting the interaction between ADI1 and MT1-MMP. Exp. Neurol., 2023, 365, 114410. doi: 10.1016/j.expneurol.2023.114410 PMID: 37075968
- Ng, D.C.H.; Zhao, T.T.; Yeap, Y.Y.C.; Ngoei, K.R.; Bogoyevitch, M.A. c-Jun N-terminal kinase phosphorylation of stathmin confers protection against cellular stress. J. Biol. Chem., 2010, 285(37), 29001-29013. doi: 10.1074/jbc.M110.128454 PMID: 20630875
- Li, B.; Feng, C.; Zhang, W.; Sun, S.; Yue, D.; Zhang, X.; Yang, X. Comprehensive non-coding RNA analysis reveals specific lncRNA/circRNAmiRNAmRNA regulatory networks in the cotton response to drought stress. Int. J. Biol. Macromol., 2023, 253(Pt 1), 126558. doi: 10.1016/j.ijbiomac.2023.126558 PMID: 37659489
- Karthikeyan, L.; Vivek, R. Synergistic anti-cancer effects of NIR-light responsive nanotherapeutics for chemo-photothermal therapy and photothermal immunotherapy: A combined therapeutic approach. Adv. Cancer Biol. Metastasis, 2022, 4, 100044.
- Mishra, S.K.; Dhadve, A.C.; Mal, A.; Reddy, B.P.K.; Hole, A.; Chilakapati, M.K.; Ray, P.; Srivastava, R.; De, A. Photothermal therapy (PTT) is an effective treatment measure against solid tumors which fails to respond conventional chemo/radiation therapies in clinic. Biomaterials Advances, 2022, 143, 213153. doi: 10.1016/j.bioadv.2022.213153 PMID: 36343390
- Chen, H.; Wu, L.; Wang, T.; Zhang, F.; Song, J.; Fu, J.; Kong, X.; Shi, J. PTT/ PDT-induced microbial apoptosis and wound healing depend on immune activation and macrophage phenotype transformation. Acta Biomater., 2023, 167, 489-505. doi: 10.1016/j.actbio.2023.06.025 PMID: 37369265
- Pan, N.L.; Liao, J.X.; Huang, M.Y.; Zhang, Y.Q.; Chen, J.X.; Zhang, Z.W.; Yang, Z.X.; Long, X.E.; Wu, X.T.; Sun, J. Lysosome-targeted ruthenium(II) complexes induce both apoptosis and autophagy in HeLa cells. J. Inorg. Biochem., 2022, 229, 111729. doi: 10.1016/j.jinorgbio.2022.111729 PMID: 35066350
- Wu, L.L.; Meng, X.; Zhang, Q.; Han, X.; Yang, F.; Wang, Q.; Yu Hu, H.; Xing, N. Heavy-atom engineered hypoxia-responsive probes for precisive photoacoustic imaging and cancer therapy. Chin. Chem. Lett., 2023, 108663. doi: 10.1016/j.cclet.2023.108663
- Wu, Q.; Chen, G.; Gong, K.; Wang, J.; Ge, X.; Liu, X.; Guo, S.; Wang, F. MnO2-Laden black phosphorus for MRI-Guided Synergistic PDT, PTT, and chemotherapy. Matter, 2019, 1(2), 496-512. doi: 10.1016/j.matt.2019.03.007
- Nagi, R.; Muthukrishnan, A.; Rakesh, N. Effectiveness of photodynamic therapy (PDT) in the management of symptomatic oral lichen planus -A systematic review. J. Oral Biol. Craniofac. Res., 2023, 13(2), 353-359. doi: 10.1016/j.jobcr.2023.03.003 PMID: 36941903
- Hashemzadeh, H.; Khadivi-Khanghah, Z.; Allahverdi, A.; Hadipour, M.M.; Saievar-Iranizad, E.; Naderi-Manesh, H. A novel label-free graphene oxide nano-wall surface decorated with gold nano-flower biosensor for electrochemical detection of brucellosis antibodies in human serum. Talanta Open, 2023, 7, 100215. doi: 10.1016/j.talo.2023.100215
- Kim, J.Y.; Choi, W.I.; Kim, M.; Tae, G. Tumor-targeting nanogel that can function independently for both photodynamic and photothermal therapy and its synergy from the procedure of PDT followed by PTT. J. Control. Release, 2013, 171(2), 113-121. doi: 10.1016/j.jconrel.2013.07.006 PMID: 23860187
- Melo, B.L.; Lima-Sousa, R.; Alves, C.G.; Correia, I.J.; de Melo-Diogo, D. Sulfobetaine methacrylate-coated reduced graphene oxide-IR780 hybrid nanosystems for effective cancer photothermal-photodynamic therapy. Int. J. Pharm., 2023, 647, 123552. doi: 10.1016/j.ijpharm.2023.123552 PMID: 37884216
- Mensah-Darkwa, K.; Tabi, R.N.; Owusu, M.; Ingsel, T.; Kahol, P.K.; Gupta, R.K. Recent advancement in MoS2 for hydrogen evolution reactions. Curr. Graphene Sci., 2020, 3(1), 11-25. doi: 10.2174/2452273204666200303124226
- Li, X.; Wang, H.; Wu, Y.; Zou, L.; Deng, S.; Fu, X.; Huang, T.; Shen, C.; Wu, T.; Cai, W. A novel mouse model of PEDF-associated serious liver inflammation, hepatic tumorigenesis and cardiovascular injury mimics human nonalcoholic steatohepatitis. Genes Dis., 2024, 11(1), 11-14. doi: 10.1016/j.gendis.2023.01.011 PMID: 37588234
- Zhang, H.; Gao, X.D. Nanodelivery systems for enhancing the immunostimulatory effect of CpG oligodeoxynucleotides. Mater. Sci. Eng. C, 2017, 70(Pt 2), 935-946. doi: 10.1016/j.msec.2016.03.045 PMID: 27772724
- Zhang, Y.; Yu, X.; Bao, R.; Huang, H.; Gu, C.; Lv, Q.; Han, Q.; Du, X.; Zhao, X.Y.; Ye, Y.; Zhao, R.; Sun, J.; Zou, Q. Dietary fructose-mediated adipocyte metabolism drives antitumor CD8+ T cell responses. Cell Metab., 2023, 35(12), 2107-2118.e6. doi: 10.1016/j.cmet.2023.09.011 PMID: 37863051
- Russ, B.E.; Barugahare, A.; Dakle, P.; Tsyganov, K.; Quon, S.; Yu, B.; Li, J.; Lee, J.K.C.; Olshansky, M.; He, Z.; Harrison, P.F.; See, M.; Nussing, S.; Morey, A.E.; Udupa, V.A.; Bennett, T.J.; Kallies, A.; Murre, C.; Collas, P.; Powell, D.; Goldrath, A.W.; Turner, S.J. Active maintenance of CD8+ T cell naivety through regulation of global genome architecture. Cell Rep., 2023, 42(10), 113301. doi: 10.1016/j.celrep.2023.113301 PMID: 37858463
- Xu, Z.H.; Zhang, J.C.; Chen, K.; Liu, X.; Li, X.Z.; Yuan, M.; Wang, Y.; Tian, J.Y. Mechanisms of the PD-1/PD-L1 pathway in itch: From acute itch model establishment to the role in chronic itch in mouse. Eur. J. Pharmacol., 2023, 960, 176128. doi: 10.1016/j.ejphar.2023.176128 PMID: 37866747
- Zhang, L.; Xu, L.; Wang, Y.; Liu, J.; Tan, G.; Huang, F.; He, N.; Lu, Z. A novel therapeutic vaccine based on graphene oxide nanocomposite for tumor immunotherapy. Chin. Chem. Lett., 2022, 33(8), 4089-4095. doi: 10.1016/j.cclet.2022.01.071
- Arshad, H.; Lack, G.; Durham, S.R.; Penagos, M.; Larenas-Linneman, D.; Halken, S. Prevention is better than cure: Impact of allergen immunotherapy on the progression of airway disease. J. Allergy. Clin. Immunol. Pract., 2023, 12(1), 45-56.
- Farahzadi, R.; Adibkia, K.; Ehsani, A.; Jodaei, A.; Barzegar-Jalali, M.; Fathi, E. Nanomaterials and stem cell differentiation potential: An overview of biological aspects and biomedical efficacy. Curr. Med. Chem., 2022, 29(10), 1804-1823. doi: 10.2174/0929867328666210712193113 PMID: 34254903
- Gowda, B.H.J.; Ahmed, M.G.; Alshehri, S.A.; Wahab, S.; Vora, L.K.; Singh Thakur, R.R.; Kesharwani, P. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics. Environ. Res., 2023, 237(Pt 1), 116894. doi: 10.1016/j.envres.2023.116894 PMID: 37586450
- Gallagher, L.B.; Dolan, E.B.; OSullivan, J.; Levey, R.; Cavanagh, B.L.; Kovarova, L.; Pravda, M.; Velebny, V.; Farrell, T.; OBrien, F.J.; Duffy, G.P. Pre-culture of mesenchymal stem cells within RGD-modified hyaluronic acid hydrogel improves their resilience to ischaemic conditions. Acta Biomater., 2020, 107, 78-90. doi: 10.1016/j.actbio.2020.02.043 PMID: 32145393
- Kodera, S.; Kimura, T.; Nishioka, T.; Kaneko, Y.K.; Yamaguchi, M.; Kaibuchi, K.; Ishikawa, T. GDP-bound Rab27a regulates clathrin disassembly through HSPA8 after insulin secretion. Arch. Biochem. Biophys., 2023, 749, 109789. doi: 10.1016/j.abb.2023.109789 PMID: 37852426
- Yang, P.; Yang, W.; Wei, Z.; Li, Y.; Yang, Y.; Wang, J. Novel targets for gastric cancer: The tumor microenvironment (TME), N6-methyladenosine (m6A), pyroptosis, autophagy, ferroptosis and cuproptosis. Biomed. Pharmacother., 2023, 163, 114883. doi: 10.1016/j.biopha.2023.114883 PMID: 37196545
- Mariella Babu, A.; Varghese, A. Electrochemical deposition for metal organic frameworks: Advanced energy, catalysis, sensing and separation applications. J. Electroanal. Chem., 2023, 937, 117417. doi: 10.1016/j.jelechem.2023.117417
- Bajwa, R.A.; Farooq, U.; Ullah, S.; Salman, M.; Haider, S.; Hussain, R. Metal-organic framework (MOF) attached and their derived metal oxides (Co, Cu, Zn and Fe) as anode for lithium ion battery: A review. J. Energy Storage, 2023, 72, 108708. doi: 10.1016/j.est.2023.108708
- Pourjavadi, A.; Kashani, F.B.; Doroudian, M.; Amin, S.S. Synthesis and characterization of stimuli responsive micelles from chitosan, starch, and alginate based on graft copolymers with polylactide-poly (methacrylic acid) and polylactide-poly2(dimethyl amino) ethyl methacrylate side chains. Int. J. Biol. Macromol., 2023, 253(Pt 7), 127170. doi: 10.1016/j.ijbiomac.2023.127170 PMID: 37783250
- Zan, J.; Shuai, Y.; Zhang, J.; Zhao, J.; Sun, B.; Yang, L. Hyaluronic acid encapsulated silver metal organic framework for the construction of a slow-controlled bifunctional nanostructure: Antibacterial and anti-inflammatory in intrauterine adhesion repair. Int. J. Biol. Macromol., 2023, 230, 123361. doi: 10.1016/j.ijbiomac.2023.123361 PMID: 36693610
- Njeumen, C.A.; Ejuh, G.W.; Assatse, Y.T.; Kamsi, R.A.Y.; Tekou, C.T.T.; Zekeng, S.S.; Ndjaka, J.M.B. Application of carbon nanostructures toward acetylsalicylic acid adsorption: A comparison between fullerene ylide and graphene oxide by DFT calculations. Comput. Theor. Chem., 2023, 1227, 114221. doi: 10.1016/j.comptc.2023.114221
- Goszczak, A.J.; Cielecki, P.P. A review on anodic aluminum oxide methods for fabrication of nanostructures for organic solar cells. Curr. Nanosci., 2018, 15(1), 64-75. doi: 10.2174/1573413714666180228152018
- Rodrigues, R.O.; Baldi, G.; Doumett, S.; Garcia-Hevia, L.; Gallo, J.; Bañobre-López, M.; Draić, G.; Calhelha, R.C.; Ferreira, I.C.F.R.; Lima, R.; Gomes, H.T.; Silva, A.M.T. Multifunctional graphene-based magnetic nanocarriers for combined hyperthermia and dual stimuli-responsive drug delivery. Mater. Sci. Eng. C, 2018, 93, 206-217. doi: 10.1016/j.msec.2018.07.060 PMID: 30274052
- Wang, J.; Zhang, Q.; Li, Y.; Pan, X.; Shan, Y.; Zhang, J. Remodeling the tumor microenvironment by vascular normalization and GSH-depletion for augmenting tumor immunotherapy. Chin. Chem. Lett., 2023, 108746.
- Nekoueiyfard, E.; Radmanesh, F.; Baharvand, H.; Mahdieh, A.; Sadeghi-Abandansari, H.; Dinarvand, R. Reduction-sensitive flower-like magnetomicelles based on PCL-ss-PEG-ss-PCL triblock copolymer as anti-cancer drug delivery system. Eur. Polym. J., 2023, 189, 111978. doi: 10.1016/j.eurpolymj.2023.111978
- Yang, K.; Zhang, S.; He, J.; Nie, Z. Polymers and inorganic nanoparticles: A winning combination towards assembled nanostructures for cancer imaging and therapy. Nano Today, 2021, 36, 101046. doi: 10.1016/j.nantod.2020.101046
- Jarak, I.; Pereira-Silva, M.; Santos, A.C.; Veiga, F.; Cabral, H.; Figueiras, A. Multifunctional polymeric micelle-based nucleic acid delivery: Current advances and future perspectives. Appl. Mater. Today, 2021, 25, 101217. doi: 10.1016/j.apmt.2021.101217
- Abhishek, N.; Verma, A.; Singh, A.; Vandana, T.; Kumar, T. Metal-conducting polymer hybrid composites: A promising platform for electrochemical sensing. Inorg. Chem. Commun., 2023, 157, 111334. doi: 10.1016/j.inoche.2023.111334
- Raza, A.; Abid, R.; Murtaza, I.; Fan, T. Room temperature NH3 gas sensor based on PMMA/RGO/ZnO nanocomposite films fabricated by in situ solution polymerization. Ceram. Int., 2023, 49(16), 27050-27059. doi: 10.1016/j.ceramint.2023.05.247
- Ashrafizadeh, M.; Delfi, M.; Zarrabi, A.; Bigham, A.; Sharifi, E.; Rabiee, N.; Paiva-Santos, A.C.; Kumar, A.P.; Tan, S.C.; Hushmandi, K.; Ren, J.; Zare, E.N.; Makvandi, P. Stimuli-responsive liposomal nanoformulations in cancer therapy: Pre-clinical & clinical approaches. J. Control. Release, 2022, 351, 50-80. doi: 10.1016/j.jconrel.2022.08.001 PMID: 35934254
- Shariatinia, Z. Big family of nano- and microscale drug delivery systems ranging from inorganic materials to polymeric and stimuli-responsive carriers as well as drug-conjugates. J. Drug Deliv. Sci. Technol., 2021, 66, 102790. doi: 10.1016/j.jddst.2021.102790
- Umar, A.A.; Patah, M.F.A.; Abnisa, F.; Daud, W.M.A.W. Rational design of PEGylated magnetite grafted on graphene oxide with effective heating efficiency for magnetic hyperthermia application. Colloids Surf. A Physicochem. Eng. Asp., 2021, 619, 126545. doi: 10.1016/j.colsurfa.2021.126545
- Sadeghi, M.S.; Sangrizeh, F.H.; Jahani, N.; Abedin, M.S.; Chaleshgari, S.; Ardakan, A.K.; Baeelashaki, R.; Ranjbarpazuki, G.; Rahmanian, P.; Zandieh, M.A.; Nabavi, N.; Aref, A.R.; Salimimoghadam, S.; Rashidi, M.; Rezaee, A.; Hushmandi, K. Graphene oxide nanoarchitectures in cancer therapy: Drug and gene delivery, phototherapy, immunotherapy, and vaccine development. Environ. Res., 2023, 237(Pt 2), 117027. doi: 10.1016/j.envres.2023.117027 PMID: 37659647
- Taheriazam, A.; Abad, G.G.Y.; Hajimazdarany, S.; Imani, M.H.; Ziaolhagh, S.; Zandieh, M.A.; Bayanzadeh, S.D.; Mirzaei, S.; Hamblin, M.R.; Entezari, M.; Aref, A.R.; Zarrabi, A.; Ertas, Y.N.; Ren, J.; Rajabi, R.; Paskeh, M.D.A.; Hashemi, M.; Hushmandi, K. Graphene oxide nanoarchitectures in cancer biology: Nano-modulators of autophagy and apoptosis. J. Control. Release, 2023, 354, 503-522. doi: 10.1016/j.jconrel.2023.01.028 PMID: 36641122
- Bahri, M.; Gebre, S.H.; Elaguech, M.A.; Dajan, F.T.; Sendeku, M.G.; Tlili, C.; Wang, D. Recent advances in chemical vapour deposition techniques for graphene-based nanoarchitectures: From synthesis to contemporary applications. Coord. Chem. Rev., 2023, 475, 214910. doi: 10.1016/j.ccr.2022.214910
- Abdollahiyan, P.; Oroojalian, F.; Mokhtarzadeh, A. The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. J. Control. Release, 2021, 332, 460-492. doi: 10.1016/j.jconrel.2021.02.036 PMID: 33675876
- Yadav, N.; Kumar, N.; Prasad, P.; Shirbhate, S.; Sehrawat, S.; Lochab, B. Stable dispersions of covalently tethered polymer improved graphene oxide nanoconjugates as an effective vector for siRNA delivery. ACS Appl. Mater. Interfaces, 2018, 10(17), 14577-14593. doi: 10.1021/acsami.8b03477 PMID: 29634909
- Uehara, T.M.; Migliorini, F.L.; Facure, M.H.M.; Palma Filho, N.B.; Miranda, P.B.; Zucolotto, V.; Correa, D.S. Nanostructured scaffolds containing graphene oxide for nanomedicine applications. Polym. Adv. Technol., 2022, 33(2), 591-600. doi: 10.1002/pat.5541
- Yang, Y.; Zhang, Y.M.; Chen, Y.; Zhao, D.; Chen, J.T.; Liu, Y. Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery. Chemistry, 2012, 18(14), 4208-4215. doi: 10.1002/chem.201103445 PMID: 22374621
- Grinceviciute, N.; Snopok, B.; Snitka, V. Functional two-dimensional nanoarchitectures based on chemically converted graphene oxide and hematoporphyrin under the sulfuric acid treatment. Chem. Eng. J., 2014, 255, 577-584. doi: 10.1016/j.cej.2014.06.081
- PramaniK, A.; Jones, S.; Gao, Y.; Sweet, C.; Vangara, A.; Begum, S.; Ray, P.C. Multifunctional hybrid graphene oxide for circulating tumor cell isolation and analysis. Adv. Drug Deliv. Rev., 2018, 125, 21-35. doi: 10.1016/j.addr.2018.01.004 PMID: 29329995
- Zhao, Z.; Gao, J.; Cai, W.; Li, J.; Kong, Y.; Zhou, M. Synthesis of oxidized carboxymethyl cellulose/chitosan hydrogels doped with graphene oxide for pH- and NIR-responsive drug delivery. Eur. Polym. J., 2023, 199, 112437. doi: 10.1016/j.eurpolymj.2023.112437
- Low, L.E.; Wu, J.; Lee, J.; Tey, B.T.; Goh, B.H.; Gao, J.; Li, F.; Ling, D. Tumor-responsive dynamic nanoassemblies for targeted imaging, therapy and microenvironment manipulation. J. Control. Release, 2020, 324, 69-103. doi: 10.1016/j.jconrel.2020.05.014 PMID: 32423874
- Agwa, M.M.; Elmotasem, H.; Elsayed, H.; Abdelsattar, A.S.; Omer, A.M.; Gebreel, D.T.; Mohy-Eldin, M.S.; Fouda, M.M.G. Carbohydrate ligands-directed active tumor targeting of combinatorial chemotherapy/phototherapy-based nanomedicine: A review. Int. J. Biol. Macromol., 2023, 239, 124294. doi: 10.1016/j.ijbiomac.2023.124294 PMID: 37004933
- Liu, X.; Yu, B.; Shen, Y.; Cong, H. Design of NIR-II high performance organic small molecule fluorescent probes and summary of their biomedical applications. Coord. Chem. Rev., 2022, 468, 214609. doi: 10.1016/j.ccr.2022.214609
- Alexander, C.A.; Yang, Y.Y. Harnessing the combined potential of cancer immunotherapy and nanomedicine: A new paradigm in cancer treatment. Nanomedicine, 2022, 40, 102492. doi: 10.1016/j.nano.2021.102492 PMID: 34775062
- Rostami, M.; Rahimi-Nasrabadi, M.; Ghaderi, A.; Hajiabdollah, A.; Banafshe, H.R.; Nasab, A.S. ZnFe2O4@L-cysteine-N/RGO as efficient nano-sonosensitizers, pH-responsive drug carriers and surface charge switchable drug delivery system for targeted chemo-sonodynamic therapy of cancer. Diamond Related Materials, 2023, 133, 109701. doi: 10.1016/j.diamond.2023.109701
Supplementary files
