An Update on Glutathione's Biosynthesis, Metabolism, Functions, and Medicinal Purposes
- Authors: Gasmi A.1, Nasreen A.2, Lenchyk L.3, Lysiuk R.4, Peana M.5, Shapovalova N.4, Piscopo S.1, Komisarenko M.3, Shanaida M.6, Smetanina K.7, Antonyak H.8, Fira L.6, Lykhatskyi P.6, Fira D.6, Bjørklund G.9
-
Affiliations:
- Department of Research, Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée
- Department of Physiology, King Edward Medical University
- Department of Chemistry of Natural Compounds, National University of Pharmacy
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University
- Department of Chemical, Physics, Mathematics and Natural Sciences, University of Sassari
- Department of Pharmacognosy and Medical Botany, Ternopil State Medical University
- Department of Organic Chemistry and Pharmacy, Lutsk National Technical University
- Department of Ecology, Ivan Franko National University of Lviv
- Department of Research, Council for Nutritional and Environmental Medicine
- Issue: Vol 31, No 29 (2024)
- Pages: 4579-4601
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjmseer.com/0929-8673/article/view/645000
- DOI: https://doi.org/10.2174/0109298673251025230919105818
- ID: 645000
Cite item
Full Text
Abstract
Glutathione (GSH) has been the focus of increased scientific interest in the last decades. It plays a crucial role in all major physiological processes by supplying antioxidant defenses through participating in cellular redox reactions in the human body and other living organisms. GSH also participates in detoxifying xenobiotics, protecting protein thiols from crosslinking and oxidation, regulating the cell cycle, storing cysteine, etc. The significant role of GSH in the most important physiological processes has been highlighted, such as maintaining the redox balance and reducing oxidative stress due to its ability to inactivate the reactive oxygen, nitrogen, and sulfur species. It can also enhance metabolic detoxification and regulate the function of the immune system. All of these characteristics make it a universal biomarker since its proper balance is essential for improving health and treating some age-related disorders. This review presents a current concept of the synthesis and metabolism of GSH; its main functions in a living organism, and as a precursor and cofactor; data on the use of GSH for medicinal purposes in the prevention and treatment of some diseases, as well as a nutritional strategy to maintain a normal pool of GSH in the body. The data were gathered by searching relevant information in multiple databases, such as PubMed, Scopus, ScienceDirect, and Google Scholar.
About the authors
Amin Gasmi
Department of Research, Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée
Email: info@benthamscience.net
Aniqa Nasreen
Department of Physiology, King Edward Medical University
Email: info@benthamscience.net
Larysa Lenchyk
Department of Chemistry of Natural Compounds, National University of Pharmacy
Email: info@benthamscience.net
Roman Lysiuk
Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University
Email: info@benthamscience.net
Massimiliano Peana
Department of Chemical, Physics, Mathematics and Natural Sciences, University of Sassari
Email: info@benthamscience.net
Nataliya Shapovalova
Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University
Email: info@benthamscience.net
Salva Piscopo
Department of Research, Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée
Email: info@benthamscience.net
Mykola Komisarenko
Department of Chemistry of Natural Compounds, National University of Pharmacy
Email: info@benthamscience.net
Mariia Shanaida
Department of Pharmacognosy and Medical Botany, Ternopil State Medical University
Email: info@benthamscience.net
Kateryna Smetanina
Department of Organic Chemistry and Pharmacy, Lutsk National Technical University
Email: info@benthamscience.net
Halyna Antonyak
Department of Ecology, Ivan Franko National University of Lviv
Email: info@benthamscience.net
Liudmyla Fira
Department of Pharmacognosy and Medical Botany, Ternopil State Medical University
Email: info@benthamscience.net
Petro Lykhatskyi
Department of Pharmacognosy and Medical Botany, Ternopil State Medical University
Email: info@benthamscience.net
Dmytro Fira
Department of Pharmacognosy and Medical Botany, Ternopil State Medical University
Email: info@benthamscience.net
Geir Bjørklund
Department of Research, Council for Nutritional and Environmental Medicine
Author for correspondence.
Email: info@benthamscience.net
References
- Lushchak, V.I. Glutathione homeostasis and functions: Potential targets for medical interventions. J. Amino Acids, 2012, 2012, 1-26. doi: 10.1155/2012/736837 PMID: 22500213
- Meister, A.; Anderson, M.E. Glutathione. Annu. Rev. Biochem., 1984, 52, 711-760.
- Forman, H.J.; Zhang, H.; Rinna, A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Aspects Med., 2009, 30(1-2), 1-12. doi: 10.1016/j.mam.2008.08.006 PMID: 18796312
- Vaková, J.; Kočan, L.; Vako, L.; Perjési, P. Glutathione-related enzymes and proteins: A review. Molecules, 2023, 28(3), 1447. doi: 10.3390/molecules28031447 PMID: 36771108
- Forman, H.J.; Thomas, M.J. Oxidant production and bactericidal activity of phagocytes. Annu. Rev. Physiol., 1986, 48(1), 669-680. doi: 10.1146/annurev.ph.48.030186.003321 PMID: 3010830
- Korost, Y.V.; Sokurenko, O.O.; Kalashchenko, S.I.; Odynetsʹ, M.O. Understanding biochemical processes as the proposal of successful disease treatment. State-Art Technol. Med., 2016, 3-4(129-130), 20-23.
- Marí, M.; de Gregorio, E.; de Dios, C.; Roca-Agujetas, V.; Cucarull, B.; Tutusaus, A.; Morales, A.; Colell, A. Mitochondrial glutathione: Recent insights and role in disease. Antioxidants, 2020, 9(10), 909. doi: 10.3390/antiox9100909 PMID: 32987701
- Gao, X.; Yu, X.; Zhang, C.; Wang, Y.; Sun, Y.; Sun, H.; Zhang, H.; Shi, Y.; He, X. Telomeres and mitochondrial metabolism: Implications for cellular senescence and age-related diseases. Stem Cell Rev. Rep., 2022, 18(7), 2315-2327. doi: 10.1007/s12015-022-10370-8 PMID: 35460064
- Roger, L.; Tomas, F.; Gire, V. Mechanisms and regulation of cellular senescence. Int. J. Mol. Sci., 2021, 22(23), 13173. doi: 10.3390/ijms222313173 PMID: 34884978
- Martini, H.; Passos, J. Cellular senescence: All roads lead to mitochondria. FEBS J., 2022, 290(5), 1186-1202. PMID: 35048548
- Meister, A. Glutathione metabolism and its selective modification. J. Biol. Chem., 1988, 263(33), 17205-17208. doi: 10.1016/S0021-9258(19)77815-6 PMID: 3053703
- Cantin, A.M.; North, S.L.; Hubbard, R.C.; Crystal, R.G. Normal alveolar epithelial lining fluid contains high levels of glutathione. J Appl Physiol, 1987, 63(1), 152-157.
- Venglarik, C.J.; Giron-Calle, J.; Wigley, A.F.; Malle, E.; Watanabe, N.; Forman, H.J. Hypochlorous acid alters bronchial epithelial cell membrane properties and prevention by extracellular glutathione. J. Appl. Physiol., 2003, 95(6), 2444-2452.
- Pizzorno, J. Glutathione! Integr. Med., 2014, 13(1), 8-12. PMID: 26770075
- Ruiz-Capillas, C., Eds.; Nollet., L.M.L., Eds.; Flow Injection Analysis of Food Additives; Shpigun, L.K.CRC Press: C.Ruiz-Capillas, 2015, p. 736.
- Iskusnykh, I.Y.; Zakharova, A.A.; Pathak, D. Glutathione in brain disorders and aging. Molecules., 2022, 27(1), 324. doi: 10.3390/molecules27010324 PMID: 35011559
- Hajam, Y.A.; Rani, R.; Ganie, S.Y.; Sheikh, T.A.; Javaid, D.; Qadri, S.S.; Pramodh, S.; Alsulimani, A.; Alkhanani, M.F.; Harakeh, S.; Hussain, A.; Haque, S.; Reshi, M.S. Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives. Cells., 2022, 11(3), 552. doi: 10.3390/cells11030552 PMID: 35159361
- Kulinsky, V.I.; Kolesnichenko, L.S. Nuclear glutathione and its functions. Biomed. Khim., 2010, 56(6), 657-662. doi: 10.18097/PBMC20105606657 PMID: 21395068
- Ranganna, K.; Mathew, O.P.; Yatsu, F.M.; Yousefipour, Z.; Hayes, B.E.; Milton, S.G. Involvement of glutathione/glutathione S-transferase antioxidant system in butyrate-inhibited vascular smooth muscle cell proliferation. FEBS J., 2007, 274(22), 5962-5978. doi: 10.1111/j.1742-4658.2007.06119.x PMID: 17961182
- Sies, H.; Ketterer, B. Glutathione conjugation. Mechanisms and biological significance; Academic Press: London, 1988.
- Sies, H. Glutathione and its role in cellular functions. Free Radic. Biol. Med., 1999, 27(9-10), 916-921. doi: 10.1016/S0891-5849(99)00177-X PMID: 10569624
- Potęga, A. Glutathione-mediated conjugation of anticancer drugs: An overview of reaction mechanisms and biological significance for drug detoxification and bioactivation. Molecules., 2022, 27(16), 5252. doi: 10.3390/molecules27165252 PMID: 36014491
- Hatem, E.; El Banna, N.; Huang, M.E. Multifaceted roles of glutathione and glutathione-based systems in carcinogenesis and anticancer drug resistance. Antioxid. Redox Signal., 2017, 27(15), 1217-1234. doi: 10.1089/ars.2017.7134 PMID: 28537430
- Bansal, A.; Simon, M.C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol., 2018, 217(7), 2291-2298. doi: 10.1083/jcb.201804161 PMID: 29915025
- Tew, K.D. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res., 2016, 76(1), 7-9. doi: 10.1158/0008-5472.CAN-15-3143 PMID: 26729789
- Ennis, S.R.; Kawai, N.; Ren, X.; Abdelkarim, G.E.; Keep, R.F. Glutamine uptake at the blood-brain barrier is mediated by N-system transport. J. Neurochem., 1998, 71(6), 2565-2573. doi: 10.1046/j.1471-4159.1998.71062565.x PMID: 9832157
- Dringen, R.; Kranich, O.; Hamprecht, B. The γ-glutamyl transpeptidase inhibitor acivicin preserves glutathione released by astroglial cells in culture. Neurochem. Res., 1997, 22(6), 727-733. doi: 10.1023/A:1027310328310 PMID: 9178957
- Dringen, R. Metabolism and functions of glutathione in brain. Prog. Neurobiol., 2000, 62(6), 649-671. doi: 10.1016/S0301-0082(99)00060-X PMID: 10880854
- Aoyama, K. Glutathione in the Brain. Int. J. Mol. Sci., 2021, 22(9), 5010. doi: 10.3390/ijms22095010 PMID: 34065042
- Bjørklund, G.; Peana, M.; Maes, M.; Dadar, M.; Severin, B. The glutathione system in Parkinsons disease and its progression. Neurosci. Biobehav. Rev., 2021, 120, 470-478. doi: 10.1016/j.neubiorev.2020.10.004 PMID: 33068556
- Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr. J., 2015, 15(1), 71. doi: 10.1186/s12937-016-0186-5 PMID: 27456681
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126. doi: 10.4103/0973-7847.70902 PMID: 22228951
- Estrela, J.M.; Ortega, A.; Obrador, E. Glutathione in cancer biology and therapy. Crit. Rev. Clin. Lab. Sci., 2006, 43(2), 143-181. doi: 10.1080/10408360500523878 PMID: 16517421
- Lu, S.C. Regulation of glutathione synthesis. Mol. Aspects Med., 2009, 30(1-2), 42-59. doi: 10.1016/j.mam.2008.05.005 PMID: 18601945
- White, C.C.; Viernes, H.; Krejsa, C.M.; Botta, D.; Kavanagh, T.J. Fluorescence-based microtiter plate assay for glutamatecysteine ligase activity. Anal. Biochem., 2003, 318(2), 175-180. doi: 10.1016/S0003-2697(03)00143-X PMID: 12814619
- Oppenheimer, L.; Wellner, V.P.; Griffith, O.W.; Meister, A. Glutathione synthetase. Purification from rat kidney and mapping of the substrate binding sites. J. Biol. Chem., 1979, 254(12), 5184-5190. doi: 10.1016/S0021-9258(18)50577-9 PMID: 447639
- Wu, G.; Lupton, J.R.; Turner, N.D.; Fang, Y-Z.; Yang, S. Glutathione metabolism and its implications for health. J. Nutr., 2004, 134(3), 489-492. doi: 10.1093/jn/134.3.489 PMID: 14988435
- Griffith, O.W. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic. Biol. Med., 1999, 27(9-10), 922-935. doi: 10.1016/S0891-5849(99)00176-8 PMID: 10569625
- Garlitska, N.; Fira, L.; Lykhatskyi, P.; Boyko, L. Biochemical mechanisms of oxidative stress in animals exposed to hexavalent chromium compounds in the case of isoniazidrifampicin hepatitis. Farmacia, 2021, 69(2), 253-259. doi: 10.31925/farmacia.2021.2.9
- Gontova, T.; Koshovyi, O.; Shanaida, M.; Vlasova, I.; Grytsyk, L.; Zhumashova, G.; Sayakova, G.; Boshkayeva, A. Determination of standardization parameters of Oxycoccus macrocarpus (Ait.) Pursh and Oxycoccus palustris pers. leaves. Sci.: Pharm. Sci., 2022, 3, 48-57.
- Faheem, S.A.; Saeed, N.M.; El-Naga, R.N.; Ayoub, I.M.; Azab, S.S. Hepatoprotective effect of cranberry nutraceutical extract in non-alcoholic fatty liver model in rats: Impact on insulin resistance and Nrf-2 expression. Front. Pharmacol., 2020, 11, 218. doi: 10.3389/fphar.2020.00218 PMID: 32256346
- Ali, M.; Khan, T.; Fatima, K.; Ali, Q.A.; Ovais, M.; Khalil, A.T.; Ullah, I.; Raza, A.; Shinwari, Z.K.; Idrees, M. Selected hepatoprotective herbal medicines: Evidence from ethnomedicinal applications, animal models, and possible mechanism of actions. Phytother. Res., 2018, 32(2), 199-215. doi: 10.1002/ptr.5957 PMID: 29047177
- Chung, T.K. L-2-oxothiazolidine-4-carboxylate as a cysteine precursor: Efficacy for growth and hepatic glutathione synthesis in chicks and rats. J Nutr., 1990, 120(2), 158-165.
- Lyons, J.; Rauh-Pfeiffer, A.; Yu, Y.M.; Lu, X.M.; Zurakowski, D.; Tompkins, R.G.; Ajami, A.M.; Young, V.R.; Castillo, L. Blood glutathione synthesis rates in healthy adults receiving a sulfur amino acid-free diet. Proc. Natl. Acad. Sci., 2000, 97(10), 5071-5076. doi: 10.1073/pnas.090083297 PMID: 10792033
- Jahoor, F.; Jackson, A.; Gazzard, B.; Philips, G.; Sharpstone, D.; Frazer, M.E.; Heird, W. Erythrocyte glutathione deficiency in symptom-free HIV infection is associated with decreased synthesis rate. Am. J. Physiol., 1999, 276(1), E205-E211. PMID: 9886968
- Lu, S.C. In current topics in cellular regulation; Academic Press, 2001, Vol. 36, pp. 95-116.
- Reeds, P.J.; Burrin, D.G.; Stoll, B.; Jahoor, F.; Wykes, L.; Henry, J.; Frazer, M.E. Enteral glutamate is the preferential source for mucosal glutathione synthesis in fed piglets. Am. J. Physiol., 1997, 273(2 Pt 1), E408-E415. PMID: 9277395
- Watford, M. Net interorgan transport of L-glutamate in rats occurs via the plasma, not via erythrocytes. J. Nutr., 2002, 132(5), 952-956. doi: 10.1093/jn/132.5.952 PMID: 11983820
- Grimble, R.F.; Jackson, A.A.; Persaud, C.; Wride, M.J.; Delers, F.; Engler, R. Cysteine and glycine supplementation modulate the metabolic response to tumor necrosis factor alpha in rats fed a low protein diet. J. Nutr., 1992, 122(11), 2066-2073. doi: 10.1093/jn/122.11.2066 PMID: 1279141
- Yu, Y.M.; Ryan, C.M.; Fei, Z.W.; Lu, X.M.; Castillo, L.; Schultz, J.T.; Tompkins, R.G.; Young, V.R. Plasma L -5-oxoproline kinetics and whole blood glutathione synthesis rates in severely burned adult humans. Am. J. Physiol. Endocrinol. Metab., 2002, 282(2), E247-E258. doi: 10.1152/ajpendo.00206.2001 PMID: 11788355
- Sen, C.K. In Stress adaptation, prophylaxis and treatment; Springer: Boston, MA, 1999, pp. 31-42. doi: 10.1007/978-1-4615-5097-6_4
- Aquilano, K.; Baldelli, S.; Ciriolo, M.R. Glutathione: New roles in redox signaling for an old antioxidant. Front. Pharmacol., 2014, 5, 196. doi: 10.3389/fphar.2014.00196 PMID: 25206336
- Sen, C.K.; Packer, L. Thiol homeostasis and supplements in physical exercise. Am. J. Clin. Nutr., 2000, 72(S2), 653S-669S. doi: 10.1093/ajcn/72.2.653S PMID: 10919972
- Faubert, B.; Solmonson, A.; DeBerardinis, R.J. Metabolic reprogramming and cancer progression. Science, 2020, 368(6487), eaaw5473. doi: 10.1126/science.aaw5473 PMID: 32273439
- Sharma, R.; Yang, Y.; Sharma, A.; Awasthi, S.; Awasthi, Y.C. Antioxidant role of glutathione S-transferases: Protection against oxidant toxicity and regulation of stress-mediated apoptosis. Antioxid. Redox Signal., 2004, 6(2), 289-300. doi: 10.1089/152308604322899350 PMID: 15025930
- Rauhala, P.; Andoh, T.; Chiueh, C. Neuroprotective properties of nitric oxide and nitrosoglutathione. Toxicol. Appl. Pharmacol., 2005, 207(S2), 91-95. doi: 10.1016/j.taap.2005.02.028 PMID: 15987648
- Moreno-Sanchez, R.; Hernández, M.A.; Pérez, J.C.; Vázquez, C.; Rodriguez-Enriquez, S.; Saavedra, E. Control of the NADPH supply and GSH recycling for oxidative stress management in hepatoma and liver mitochondria. Biochim Biophys Acta Bioenerg., 2018, 1859(10), 1138-1150.
- Kinno, A.; Kasamatsu, S.; Akaike, T.; Ihara, H. Reactive sulfur species omics analysis in the brain tissue of the 5xFAD mouse model of Alzheimers disease. Antioxidants, 2023, 12(5), 1105. doi: 10.3390/antiox12051105 PMID: 37237971
- Barayeu, U.; Schilling, D.; Eid, M.; Xavier da Silva, T.N.; Schlicker, L.; Mitreska, N.; Zapp, C.; Gräter, F.; Miller, A.K.; Kappl, R.; Schulze, A.; Friedmann, A.J.P.; Dick, T.P. Hydropersulfides inhibit lipid peroxidation and ferroptosis by scavenging radicals. Nat. Chem. Biol., 2023, 19(1), 28-37. doi: 10.1038/s41589-022-01145-w PMID: 36109647
- Karkhanei, B.; Talebi, G.E.; Mehri, F. Evaluation of oxidative stress level: Total antioxidant capacity, total oxidant status and glutathione activity in patients with COVID-19. New Microbes New Infect., 2021, 42, 100897. doi: 10.1016/j.nmni.2021.100897 PMID: 34026228
- Labarrere, C.A.; Kassab, G.S. Glutathione deficiency in the pathogenesis of SARS-CoV-2 infection and its effects upon the host immune response in severe COVID-19 disease. Front. Microbiol., 2022, 13, 979719. doi: 10.3389/fmicb.2022.979719 PMID: 36274722
- Polonikov, A. Endogenous deficiency of glutathione as the most likely cause of serious manifestations and death in COVID-19 patients. ACS Infect. Dis., 2020, 6(7), 1558-1562. doi: 10.1021/acsinfecdis.0c00288 PMID: 32463221
- arković, N.; Jastrząb, A.; Jarocka-Karpowicz, I.; Orehovec, B.; Barić, B.; Tarle, M.; Kmet, M.; Lukić, I.; Łuczaj, W.; Skrzydlewska, E. The impact of severe COVID-19 on plasma antioxidants. Molecules., 2022, 27(16), 5323. doi: 10.3390/molecules27165323 PMID: 36014561
- Tymoshenko, M.; Gaida, I.; Kravchenko, O.; Ostapchenko, I. Content of different forms of glutathione and activity of glutathione reductase in cells of the gastrointestinal mucosa under experimental gastric carcinogenesis in Ukrainian. Visnyk Kyyivsʹkoho Natsionalʹnoho Universytetu Imeni T. Shevchenka, 2012, 61, 34-36.
- Averill-Bates, D. The antioxidant glutathione. In: Vitamins and Hormones; , 2023; 121, pp. 109-141.
- Redza-Dutordoir, M.; Averill-Bates, D.A. Interactions between reactive oxygen species and autophagy. Biochim. Biophys. Acta Mol. Cell Res., 2021, 1868(8), 119041. doi: 10.1016/j.bbamcr.2021.119041 PMID: 33872672
- Borras, C.; Gambini, J.; Vina, J. Mitochondrial oxidant generation is involved in determining why females live longer than males. Front Biosci., 2007, 12, 1008-1013.
- Kulinsky, V.I.; Kolesnichenko, L.S. Mitochondrial glutathione. Biochemistry., 2007, 72(7), 698-701. doi: 10.1134/S0006297907070024 PMID: 17680760
- Wang, L.; Ahn, Y.J.; Asmis, R. Sexual dimorphism in glutathione metabolism and glutathione-dependent responses. Redox Biol., 2020, 31, 101410. doi: 10.1016/j.redox.2019.101410 PMID: 31883838
- Lushchak, V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact., 2014, 224, 164-175. doi: 10.1016/j.cbi.2014.10.016 PMID: 25452175
- Bjørklund, G.; Dadar, M.; Chirumbolo, S.; Lysiuk, R. Flavonoids as detoxifying and pro-survival agents: Whats new? Food Chem. Toxicol., 2017, 110, 240-250. doi: 10.1016/j.fct.2017.10.039 PMID: 29079495
- Bjørklund, G.; Dadar, M.; Martins, N.; Chirumbolo, S.; Goh, B.H.; Smetanina, K.; Lysiuk, R. Brief challenges on medicinal plants: An eye-opening look at ageing-related disorders. Basic Clin. Pharmacol. Toxicol., 2018, 122(6), 539-558. doi: 10.1111/bcpt.12972 PMID: 29369521
- Hayes, J.D. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol., 2005, 45, 51-88.
- Chorna, I.V.; Dronik, G.V.; Rogozinsky, M.S. Biological values of antioxidant protection system indicators in assessing the safety of the exercise of genetically modified organisms. Young Scientist, 2018, 10(62), 461-469.
- Hayes, J.D.; Pulford, D.J. The glutathione S-transferase supergene family: Regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol., 1995, 30(6), 445-520. doi: 10.3109/10409239509083491 PMID: 8770536
- Cahill, L.E.; Fontaine-Bisson, B.; El-Sohemy, A. Functional genetic variants of glutathione S-transferase protect against serum ascorbic acid deficiency. Am. J. Clin. Nutr., 2009, 90(5), 1411-1417. doi: 10.3945/ajcn.2009.28327 PMID: 19710200
- Xu, S.; Wang, Y.; Roe, B.; Pearson, W.R. Characterization of the human class Mu glutathione S-transferase gene cluster and the GSTM1 deletion. J. Biol. Chem., 1998, 273(6), 3517-3527. doi: 10.1074/jbc.273.6.3517 PMID: 9452477
- Frova, C. Glutathione transferases in the genomics era: New insights and perspectives. Biomol. Eng., 2006, 23(4), 149-169. doi: 10.1016/j.bioeng.2006.05.020 PMID: 16839810
- Makarchuk, V.A.; Ushakova, G.O.; Krylova, O.O. The glutathione system in the blood of rats and morphological changes of the pancreas under experimental acute and chronic pancreatitis. Ukr. Biochem. J., 2013, 85(1), 71-78. doi: 10.15407/ubj85.01.071 PMID: 23534292
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev., 2014, 2014, 1-31. doi: 10.1155/2014/360438 PMID: 24999379
- Hamilton, D.S.; Zhang, X.; Ding, Z.; Hubatsch, I.; Mannervik, B.; Houk, K.N.; Ganem, B.; Creighton, D.J. Mechanism of the glutathione transferase-catalyzed conversion of antitumor 2-crotonyloxymethyl-2-cycloalkenones to GSH adducts. J. Am. Chem. Soc., 2003, 125(49), 15049-15058. doi: 10.1021/ja030396p PMID: 14653739
- Tkach, S.M. Glutathione as a universal hepatoprotector with pleiotropic effects. Health Ukraine, 2018, 2(48), 16-17.
- Gonskyĭ, IaI.; Korda, M.M.; Klishch, I.M. Status of the free radical oxidation and antioxidant system in rats with toxic liver damage; effect of tocopherol and dimethylsulfoxide. Ukr. Biokhim. Zh., 1991, 63(5), 112-116. PMID: 1788866
- Skakun, N.P.; Stepanova, Y.N. Comparative evaluation of the hepatoprotective, antioxidant and choleretic activity of flavonoid drugs. Vrach. Delo, 1988, 12, 52-54. PMID: 3245169
- Bjørklund, G.; Shanaida, M.; Lysiuk, R.; Butnariu, M.; Peana, M.; Sarac, I.; Strus, O.; Smetanina, K.; Chirumbolo, S. Natural compounds and products from an anti-aging perspective. Molecules, 2022, 27(20), 7084. doi: 10.3390/molecules27207084 PMID: 36296673
- Maus, A.; Peters, G.J. Glutamate and α-ketoglutarate: key players in glioma metabolism. Amino Acids, 2017, 49(1), 21-32. doi: 10.1007/s00726-016-2342-9 PMID: 27752843
- Dang, L.; Jin, S.; Su, S.M. IDH mutations in glioma and acute myeloid leukemia. Trends Mol. Med., 2010, 16(9), 387-397. doi: 10.1016/j.molmed.2010.07.002 PMID: 20692206
- Vélot, C.; Srere, P.A. Reversible transdominant inhibition of a metabolic pathway. In vivo evidence of interaction between two sequential tricarboxylic acid cycle enzymes in yeast. J. Biol. Chem., 2000, 275(17), 12926-12933. PMID: 10777592
- Sriram, G.; Martinez, J.A.; McCabe, E.R.B.; Liao, J.C.; Dipple, K.M. Single-gene disorders: What role could moonlighting enzymes play? Am. J. Hum. Genet., 2005, 76(6), 911-924. doi: 10.1086/430799 PMID: 15877277
- Lushchak, O.; Piroddi, M.; Galli, F.; Lushchak, V. Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species. Redox Rep., 2013, 19(1), 8-15.
- Bulteau, A.L.; Ikeda-Saito, M.; Szweda, L.I. Redox-dependent modulation of aconitase activity in intact mitochondria. Biochemistry., 2003, 42(50), 14846-14855. doi: 10.1021/bi0353979 PMID: 14674759
- Velsor, L.W.; Kariya, C.; Kachadourian, R.; Day, B.J. Mitochondrial oxidative stress in the lungs of cystic fibrosis transmembrane conductance regulator protein mutant mice. Am. J. Respir. Cell Mol. Biol., 2006, 35(5), 579-586. doi: 10.1165/rcmb.2005-0473OC PMID: 16763223
- Jannat, R.; Uraji, M.; Morofuji, M.; Islam, M.M.; Bloom, R.E.; Nakamura, Y.; McClung, C.R.; Schroeder, J.I.; Mori, I.C.; Murata, Y. Roles of intracellular hydrogen peroxide accumulation in abscisic acid signaling in arabidopsis guard cells. J. Plant Physiol., 2011, 168(16), 1919-1926. doi: 10.1016/j.jplph.2011.05.006 PMID: 21665322
- Noctor, G.; Foyer, C.H. ASCORBATE AND GLUTATHIONE: Keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1998, 49(1), 249-279. doi: 10.1146/annurev.arplant.49.1.249 PMID: 15012235
- Puskas, F.; Gergely, P.; Niland, B.; Banki, K.; Perl, A. Differential regulation of hydrogen peroxide and Fas-dependent apoptosis pathways by dehydroascorbate, the oxidized form of vitamin C. Antioxid. Redox Signal., 2002, 4(3), 357-369. doi: 10.1089/15230860260196164 PMID: 12215204
- Whitbread, A.K.; Masoumi, A.; Tetlow, N.; Schmuck, E.; Coggan, M.; Board, P.G. Characterization of the omega class of glutathione transferases. Methods Enzymol., 2005, 401, 78-99. doi: 10.1016/S0076-6879(05)01005-0 PMID: 16399380
- Jimenez, A.; Hernandez, J.A.; del Rio, L.A.; Sevilla, F. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol., 1997, 114(1), 275-284. doi: 10.1104/pp.114.1.275 PMID: 12223704
- Bartoli, C.; Buet, A.; Gergoff Grozeff, G.; Galatro, A.; Simontacchi, M. Ascorbate-glutathione cycle and abiotic stress tolerance in plants. In: Ascorbic Acid in Plant Growth, Development and Stress Tolerance; Springer, 2017; pp. 177-200.
- Rusu, M.E.; Fizeșan, I.; Vlase, L.; Popa, D.S. Antioxidants in age-related diseases and anti-aging strategies. Antioxidants, 2022, 11(10), 1868. doi: 10.3390/antiox11101868 PMID: 36290589
- Deponte, M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(5), 3217-3266. doi: 10.1016/j.bbagen.2012.09.018 PMID: 23036594
- Mirończuk-Chodakowska, I.; Witkowska, A.M.; Zujko, M.E. Endogenous non-enzymatic antioxidants in the human body. Adv. Med. Sci., 2018, 63(1), 68-78. doi: 10.1016/j.advms.2017.05.005 PMID: 28822266
- Gasmi, A.; Mujawdiya, P.K.; Noor, S.; Lysiuk, R.; Darmohray, R.; Piscopo, S.; Lenchyk, L.; Antonyak, H.; Dehtiarova, K.; Shanaida, M.; Polishchuk, A.; Shanaida, V.; Peana, M.; Bjørklund, G. Polyphenols in metabolic diseases. Molecules., 2022, 27(19), 6280. doi: 10.3390/molecules27196280 PMID: 36234817
- Quispe, C.; Cruz-Martins, N.; Manca, M.L.; Manconi, M.; Sytar, O.; Hudz, N.; Shanaida, M.; Kumar, M.; Taheri, Y.; Martorell, M.; Sharifi-Rad, J.; Pintus, G.; Cho, W.C. Nano-derived therapeutic formulations with curcumin in inflammation-related diseases. Oxid. Med. Cell. Longev., 2021, 2021, 1-15. doi: 10.1155/2021/3149223 PMID: 34584616
- Chirumbolo, S.; Bjørklund, G.; Lysiuk, R.; Vella, A.; Lenchyk, L.; Upyr, T. Targeting cancer with phytochemicals via their fine tuning of the cell survival signaling pathways. Int. J. Mol. Sci., 2018, 19(11), 3568. doi: 10.3390/ijms19113568 PMID: 30424557
- Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact., 2006, 160(1), 1-40. doi: 10.1016/j.cbi.2005.12.009 PMID: 16430879
- Babula, P.; Masarik, M.; Adam, V.; Eckschlager, T.; Stiborova, M.; Trnkova, L.; Skutkova, H.; Provaznik, I.; Hubalek, J.; Kizek, R. Mammalian metallothioneins: Properties and functions. Metallomics, 2012, 4(8), 739-750. doi: 10.1039/c2mt20081c PMID: 22791193
- Zhang, J.; Zhou, X.; Wu, W.; Wang, J.; Xie, H.; Wu, Z. Regeneration of glutathione by α-lipoic acid via Nrf2/ARE signaling pathway alleviates cadmium-induced HepG2 cell toxicity. Environ. Toxicol. Pharmacol., 2017, 51, 30-37. doi: 10.1016/j.etap.2017.02.022 PMID: 28262510
- Patel, J.; Matnor, N.A.; Iyer, A.; Brown, L. A regenerative antioxidant protocol of vitamin E and α-lipoic acid ameliorates cardiovascular and metabolic changes in fructose-fed rats. Evid. Based Complement. Alternat. Med., 2011, 2011, 1-8. doi: 10.1155/2011/120801 PMID: 21437191
- Rochette, L.; Ghibu, S.; Muresan, A.; Vergely, C. Alpha-lipoic acid: Molecular mechanisms and therapeutic potential in diabetes. Can. J. Physiol. Pharmacol., 2015, 93(12), 1021-1027. doi: 10.1139/cjpp-2014-0353 PMID: 26406389
- Durand, P.; Prost, M.; Loreau, N.; Lussier-Cacan, S.; Blache, D. Impaired homocysteine metabolism and atherothrombotic disease. Lab. Invest., 2001, 81(5), 645-672. doi: 10.1038/labinvest.3780275 PMID: 11351038
- Glushchenko, A.V.; Jacobsen, D.W. Molecular targeting of proteins by L-homocysteine: Mechanistic implications for vascular disease. Antioxid. Redox Signal., 2007, 9(11), 1883-1898. doi: 10.1089/ars.2007.1809 PMID: 17760510
- kovierová, H.; Vidomanová, E.; Mahmood, S.; Sopková, J.; Drgová, A.; Červeňová, T.; Halaová, E.; Lehotský, J. The molecular and cellular effect of homocysteine metabolism imbalance on human health. Int. J. Mol. Sci., 2016, 17(10), 1733. doi: 10.3390/ijms17101733 PMID: 27775595
- Mosharov, E.; Cranford, M.R.; Banerjee, R. The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes. Biochemistry, 2000, 39(42), 13005-13011. doi: 10.1021/bi001088w PMID: 11041866
- Vitvitsky, V.; Mosharov, E.; Tritt, M.; Ataullakhanov, F.; Banerjee, R. Redox regulation of homocysteine-dependent glutathione synthesis. Redox Rep., 2003, 8(1), 57-63. doi: 10.1179/135100003125001260 PMID: 12631446
- Tian, L.; Shi, M.M.; Forman, H.J. Increased transcription of the regulatory subunit of gamma-glutamylcysteine synthetase in rat lung epithelial L2 cells exposed to oxidative stress or glutathione depletion. Arch. Biochem. Biophys., 1997, 342(1), 126-133. doi: 10.1006/abbi.1997.9997 PMID: 9185621
- Vitvitsky, V.; Dayal, S.; Stabler, S.; Zhou, Y.; Wang, H.; Lentz, S.R.; Banerjee, R. Perturbations in homocysteine-linked redox homeostasis in a murine model for hyperhomocysteinemia. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2004, 287(1), R39-R46. doi: 10.1152/ajpregu.00036.2004 PMID: 15016621
- Schalinske, K.L.; Smazal, A.L. Homocysteine imbalance: A pathological metabolic marker. Adv. Nutr., 2012, 3(6), 755-762. doi: 10.3945/an.112.002758 PMID: 23153729
- Bjørklund, G.; Peana, M.; Dadar, M.; Lozynska, I.; Chirumbolo, S.; Lysiuk, R.; Lenchyk, L.; Upyr, T.; Severin, B. The role of B vitamins in stroke prevention. Crit. Rev. Food Sci. Nutr., 2022, 62(20), 5462-5475. doi: 10.1080/10408398.2021.1885341 PMID: 33724098
- Murray, T.V.A.; Dong, X.; Sawyer, G.J.; Caldwell, A.; Halket, J.; Sherwood, R.; Quaglia, A.; Dew, T.; Anilkumar, N.; Burr, S.; Mistry, R.K.; Martin, D.; Schröder, K.; Brandes, R.P.; Hughes, R.D.; Shah, A.M.; Brewer, A.C. NADPH oxidase 4 regulates homocysteine metabolism and protects against acetaminophen-induced liver damage in mice. Free Radic. Biol. Med., 2015, 89, 918-930. doi: 10.1016/j.freeradbiomed.2015.09.015 PMID: 26472193
- Guttormsen, A.B.; Ueland, P.M.; Nesthus, I.; Nygård, O.; Schneede, J.; Vollset, S.E.; Refsum, H. Determinants and vitamin responsiveness of intermediate hyperhomocysteinemia (> or = 40 micromol/liter). The Hordaland Homocysteine Study. J. Clin. Invest., 1996, 98(9), 2174-2183. doi: 10.1172/JCI119024 PMID: 8903338
- Vollset, S.E.; Refsum, H.; Ueland, P.M. Population determinants of homocysteine. Am. J. Clin. Nutr., 2001, 73(3), 499-500. doi: 10.1093/ajcn/73.3.499 PMID: 11237921
- Moat, S.J. Plasma total homocysteine: Instigator or indicator of cardiovascular disease? Ann. Clin. Biochem., 2008, 45(4), 345-348. doi: 10.1258/acb.2008.008053 PMID: 18583617
- Kidd, P.M. Alzheimers disease, amnestic mild cognitive impairment, and age-associated memory impairment: Current understanding and progress toward integrative prevention. Altern. Med. Rev., 2008, 13(2), 85-115. PMID: 18590347
- Schafer, J.H.; Glass, T.A.; Bolla, K.I.; Mintz, M.; Jedlicka, A.E.; Schwartz, B.S. Homocysteine and cognitive function in a population-based study of older adults. J. Am. Geriatr. Soc., 2005, 53(3), 381-388. doi: 10.1111/j.1532-5415.2005.53153.x PMID: 15743278
- Kalinina, E.V.; Chernov, N.N.; Novichkova, M.D. Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes. Biochemistry., 2014, 79(13), 1562-1583. doi: 10.1134/S0006297914130082 PMID: 25749165
- Holmgren, A. Thioredoxin and glutaredoxin systems. J. Biol. Chem., 1989, 264(24), 13963-13966. doi: 10.1016/S0021-9258(18)71625-6 PMID: 2668278
- Grant, C.M. Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol. Microbiol., 2001, 39(3), 533-541. doi: 10.1046/j.1365-2958.2001.02283.x PMID: 11169096
- Berndt, C.; Lillig, C.H.; Holmgren, A. Thioredoxins and glutaredoxins as facilitators of protein folding. Biochim. Biophys. Acta Mol. Cell Res., 2008, 1783(4), 641-650. doi: 10.1016/j.bbamcr.2008.02.003 PMID: 18331844
- Heras, B.; Edeling, M.A.; Schirra, H.J.; Raina, S.; Martin, J.L. Crystal structures of the DsbG disulfide isomerase reveal an unstable disulfide. Proc. Natl. Acad. Sci. , 2004, 101(24), 8876-8881. doi: 10.1073/pnas.0402769101 PMID: 15184683
- Bjørklund, G.; Zou, L.; Wang, J.; Chasapis, C.T.; Peana, M. Thioredoxin reductase as a pharmacological target. Pharmacol. Res., 2021, 174, 105854. doi: 10.1016/j.phrs.2021.105854 PMID: 34455077
- Haffo, L.; Lu, J.; Bykov, V.J.N.; Martin, S.S.; Ren, X.; Coppo, L.; Wiman, K.G.; Holmgren, A. Inhibition of the glutaredoxin and thioredoxin systems and ribonucleotide reductase by mutant p53-targeting compound APR-246. Sci. Rep., 2018, 8(1), 12671. doi: 10.1038/s41598-018-31048-7 PMID: 30140002
- DiFrancisco-Donoghue, J.; Lamberg, E.M.; Rabin, E.; Elokda, A.; Fazzini, E.; Werner, W.G. Effects of exercise and B vitamins on homocysteine and glutathione in Parkinsons disease: a randomized trial. Neurodegener. Dis., 2012, 10(1-4), 127-134. doi: 10.1159/000333790 PMID: 22261439
- Montecinos, V.; Guzmán, P.; Barra, V.; Villagrán, M.; Muñoz-Montesino, C.; Sotomayor, K.; Escobar, E.; Godoy, A.; Mardones, L.; Sotomayor, P.; Guzmán, C.; Vásquez, O.; Gallardo, V.; van Zundert, B.; Bono, M.R.; Oñate, S.A.; Bustamante, M.; Cárcamo, J.G.; Rivas, C.I.; Vera, J.C.; Vitamin, C. Vitamin C is an essential antioxidant that enhances survival of oxidatively stressed human vascular endothelial cells in the presence of a vast molar excess of glutathione. J. Biol. Chem., 2007, 282(21), 15506-15515. doi: 10.1074/jbc.M608361200 PMID: 17403685
- Kennedy, D. B vitamins and the brain: Mechanisms, dose and efficacy-a review. Nutrients., 2016, 8(2), 68. doi: 10.3390/nu8020068 PMID: 26828517
- Antonyak, H.; Iskra, R.; Panas, N.; Lysiuk, R. Trace Elements and Minerals in Health and Longevity; Malavolta, M.; Mocchegiani, E. Springer Nature: Switzerland AG, 2018, pp. 63-98.
- Solovyev, N.; Drobyshev, E.; Bjørklund, G.; Dubrovskii, Y.; Lysiuk, R.; Rayman, M.P. Selenium, selenoprotein P, and Alzheimers disease: Is there a link? Free Radic. Biol. Med., 2018, 127, 124-133. doi: 10.1016/j.freeradbiomed.2018.02.030 PMID: 29481840
- Bjørklund, G.; Shanaida, M.; Lysiuk, R.; Antonyak, H.; Klishch, I.; Shanaida, V.; Peana, M. Selenium: An antioxidant with a critical role in anti-aging. Molecules, 2022, 27(19), 6613. doi: 10.3390/molecules27196613 PMID: 36235150
- Bose, S.; Vyas, P.; Singh, M.; Singh, M. Plasma zinc antioxidant vitamins, glutathione levels and total antioxidant activity in oral leukoplakia. Dent. Res. J. , 2012, 9(2), 158-161. doi: 10.4103/1735-3327.95229 PMID: 22623931
- Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The essential metals for humans: A brief overview. J. Inorg. Biochem., 2019, 195, 120-129. doi: 10.1016/j.jinorgbio.2019.03.013 PMID: 30939379
- Dolbashid, A.S.; Mohktar, M.S.; Zaman, W.S.W.K.; Basri, N.R.H.; Azmi, M.F.; Sawai, S.; Ilyasa, M.Y.H. International Conference for Innovation in Biomedical Engineering and Life Sciences, 2017, pp. 147-151.
- Atkuri, K.R.; Mantovani, J.J.; Herzenberg, L.A.; Herzenberg, L.A. N-Acetylcysteine-a safe antidote for cysteine/glutathione deficiency. Curr. Opin. Pharmacol., 2007, 7(4), 355-359. doi: 10.1016/j.coph.2007.04.005 PMID: 17602868
- Noctor, G.; Mhamdi, A.; Chaouch, S.; Han, Y.; Neukermans, J.; Marquez-Garcia, B.; Queval, G.; Foyer, C.H. Glutathione in plants: An integrated overview. Plant Cell Environ., 2012, 35(2), 454-484. doi: 10.1111/j.1365-3040.2011.02400.x PMID: 21777251
- Meister, A. Glutathione-ascorbic acid antioxidant system in animals. J. Biol. Chem., 1994, 269(13), 9397-9400. doi: 10.1016/S0021-9258(17)36891-6 PMID: 8144521
- Cairns, N.G.; Pasternak, M.; Wachter, A.; Cobbett, C.S.; Meyer, A.J. Maturation of arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol., 2006, 141(2), 446-455. doi: 10.1104/pp.106.077982 PMID: 16531482
- Noctor, G.; Mhamdi, A. Quantitative measurement of ascorbate and glutathione by spectrophotometry. Methods Mol. Biol., 2022, 2526, 87-96. doi: 10.1007/978-1-0716-2469-2_6 PMID: 35657513
- Baimukhametova, E.; Taipova, R.; Kuluev, B. Glutathione and glutathione S-transferases: Key components of the antioxidant protection system of plants. Biomics., 2016, 8, 311-322.
- Rae, C.D.; Williams, S.R. Glutathione in the human brain: Review of its roles and measurement by magnetic resonance spectroscopy. Anal. Biochem., 2017, 529, 127-143. doi: 10.1016/j.ab.2016.12.022 PMID: 28034792
- Dwivedi, D.; Megha, K.; Mishra, R.; Mandal, P.K. Glutathione in brain: Overview of its conformations, functions, biochemical characteristics, quantitation and potential therapeutic role in brain disorders. Neurochem. Res., 2020, 45(7), 1461-1480. doi: 10.1007/s11064-020-03030-1 PMID: 32297027
- Aoyama, K.; Nakaki, T. Neuroprotective properties of the excitatory amino acid carrier 1 (EAAC1). Amino Acids, 2013, 45(1), 133-142. doi: 10.1007/s00726-013-1481-5 PMID: 23462929
- Allaman, I.; Bélanger, M.; Magistretti, P.J. Astrocyteneuron metabolic relationships: For better and for worse. Trends Neurosci., 2011, 34(2), 76-87. doi: 10.1016/j.tins.2010.12.001 PMID: 21236501
- Aoyama, K.; Watabe, M.; Nakaki, T. Regulation of neuronal glutathione synthesis. J. Pharmacol. Sci., 2008, 108(3), 227-238. doi: 10.1254/jphs.08R01CR PMID: 19008644
- Massucci, F.A.; DiNuzzo, M.; Giove, F.; Maraviglia, B.; Castillo, I.P.; Marinari, E.; Martino, A.D. Energy metabolism and glutamate-glutamine cycle in the brain: A stoichiometric modeling perspective. BMC Syst. Biol., 2013, 7(1), 103. doi: 10.1186/1752-0509-7-103 PMID: 24112710
- Liu, B.; Teschemacher, A.G.; Kasparov, S. Astroglia as a cellular target for neuroprotection and treatment of neuro-psychiatric disorders. Glia, 2017, 65(8), 1205-1226. doi: 10.1002/glia.23136 PMID: 28300322
- Bjørklund, G.; Doşa, M.D.; Maes, M.; Dadar, M.; Frye, R.E.; Peana, M.; Chirumbolo, S. The impact of glutathione metabolism in autism spectrum disorder. Pharmacol. Res., 2021, 166, 105437. doi: 10.1016/j.phrs.2021.105437 PMID: 33493659
- Bjørklund, G.; Tinkov, A.A.; Hosnedlová, B.; Kizek, R.; Ajsuvakova, O.P.; Chirumbolo, S.; Skalnaya, M.G.; Peana, M.; Dadar, M.; El-Ansary, A.; Qasem, H.; Adams, J.B.; Aaseth, J.; Skalny, A.V. The role of glutathione redox imbalance in autism spectrum disorder: A review. Free Radic. Biol. Med., 2020, 160, 149-162. doi: 10.1016/j.freeradbiomed.2020.07.017 PMID: 32745763
- Park, H.R.; Lee, J.M.; Moon, H.E.; Lee, D.S.; Kim, B.N.; Kim, J.; Kim, D.G.; Paek, S.H. A short review on the current understanding of autism spectrum disorders. Exp. Neurobiol., 2016, 25(1), 1-13. doi: 10.5607/en.2016.25.1.1 PMID: 26924928
- DeMaagd, G.; Philip, A. Parkinsons disease and its management: Part 1: Disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. P&T, 2015, 40(8), 504-532. PMID: 26236139
- Hwang, O. Role of oxidative stress in Parkinsons disease. Exp. Neurobiol., 2013, 22(1), 11-17. doi: 10.5607/en.2013.22.1.11 PMID: 23585717
- Kim, K. Glutathione in the nervous system as a potential therapeutic target to control the development and progression of amyotrophic lateral sclerosis. Antioxidants, 2021, 10(7), 1011. doi: 10.3390/antiox10071011 PMID: 34201812
- Mandal, P.K.; Shukla, D.; Tripathi, M.; Ersland, L. Cognitive improvement with glutathione supplement in Alzheimers disease: A way forward. J. Alzheimers Dis., 2019, 68(2), 531-535. doi: 10.3233/JAD-181054 PMID: 30776003
- Pocernich, C.B.; Butterfield, D.A. Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochim. Biophys. Acta Mol. Basis Dis., 2012, 1822(5), 625-630. doi: 10.1016/j.bbadis.2011.10.003 PMID: 22015471
- Calabresi, P.A. Diagnosis and management of multiple sclerosis. Am. Fam. Physician, 2004, 70(10), 1935-1944. PMID: 15571060
- Ouyang, L.; Shi, Z.; Zhao, S.; Wang, F.T.; Zhou, T.T.; Liu, B.; Bao, J.K. Programmed cell death pathways in cancer: A review of apoptosis, autophagy and programmed necrosis. Cell Prolif., 2012, 45(6), 487-498. doi: 10.1111/j.1365-2184.2012.00845.x PMID: 23030059
- Su, Z.; Yang, Z.; Xu, Y.; Chen, Y.; Yu, Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol. Cancer, 2015, 14(1), 48. doi: 10.1186/s12943-015-0321-5 PMID: 25743109
- Hammond, C.L.; Marchan, R.; Krance, S.M.; Ballatori, N. Glutathione export during apoptosis requires functional multidrug resistance-associated proteins. J. Biol. Chem., 2007, 282(19), 14337-14347. doi: 10.1074/jbc.M611019200 PMID: 17374608
- Zou, X.; Feng, Z.; Li, Y.; Wang, Y.; Wertz, K.; Weber, P.; Fu, Y.; Liu, J. Stimulation of GSH synthesis to prevent oxidative stress-induced apoptosis by hydroxytyrosol in human retinal pigment epithelial cells: Activation of Nrf2 and JNK-p62/SQSTM1 pathways. J. Nutr. Biochem., 2012, 23(8), 994-1006. doi: 10.1016/j.jnutbio.2011.05.006 PMID: 21937211
- Akhtar, M.J.; Ahamed, M.; Alhadlaq, H.A.; Alshamsan, A. Nanotoxicity of cobalt induced by oxidant generation and glutathione depletion in MCF-7 cells. Toxicol. In Vitro, 2017, 40, 94-101. doi: 10.1016/j.tiv.2016.12.012 PMID: 28024936
- Kagan, V.E.; Mao, G.; Qu, F.; Angeli, J.P.F.; Doll, S.; Croix, C.S.; Dar, H.H.; Liu, B.; Tyurin, V.A.; Ritov, V.B.; Kapralov, A.A.; Amoscato, A.A.; Jiang, J.; Anthonymuthu, T.; Mohammadyani, D.; Yang, Q.; Proneth, B.; Klein-Seetharaman, J.; Watkins, S.; Bahar, I.; Greenberger, J.; Mallampalli, R.K.; Stockwell, B.R.; Tyurina, Y.Y.; Conrad, M.; Bayır, H. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol., 2017, 13(1), 81-90. doi: 10.1038/nchembio.2238 PMID: 27842066
- Angeli, J.P.F.; Shah, R.; Pratt, D.A.; Conrad, M. Ferroptosis inhibition: Mechanisms and opportunities. Trends Pharmacol. Sci., 2017, 38(5), 489-498. doi: 10.1016/j.tips.2017.02.005 PMID: 28363764
- Filomeni, G.; Desideri, E.; Cardaci, S.; Rotilio, G.; Ciriolo, M.R. Under the ROS: Thiol network is the principal suspect for autophagy commitment. Autophagy, 2010, 6(7), 999-1005. doi: 10.4161/auto.6.7.12754 PMID: 20639698
- Mancilla, H.; Maldonado, R.; Cereceda, K.; Villarroel-Espíndola, F.; Montes de Oca, M.; Angulo, C.; Castro, M.A.; Slebe, J.C.; Vera, J.C.; Lavandero, S.; Concha, I.I. Glutathione depletion induces spermatogonial cell autophagy. J. Cell. Biochem., 2015, 116(10), 2283-2292. doi: 10.1002/jcb.25178 PMID: 25833220
- Balendiran, G.K.; Dabur, R.; Fraser, D. The role of glutathione in cancer. Cell Biochem. Funct., 2004, 22(6), 343-352. doi: 10.1002/cbf.1149 PMID: 15386533
- Niu, B.; Liao, K.; Zhou, Y.; Wen, T.; Quan, G.; Pan, X.; Wu, C. Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials, 2021, 277, 121110. doi: 10.1016/j.biomaterials.2021.121110 PMID: 34482088
- Nunes, S.; Serpa, J. Glutathione in ovarian cancer: A double-edged sword. Int. J. Mol. Sci., 2018, 19(7), 1882. doi: 10.3390/ijms19071882 PMID: 29949936
- Kennedy, L.; Sandhu, J.K.; Harper, M.E.; Cuperlovic-Culf, M. Role of glutathione in cancer: From mechanisms to therapies. Biomolecules, 2020, 10(10), 1429. doi: 10.3390/biom10101429 PMID: 33050144
- Traverso, N.; Ricciarelli, R.; Nitti, M.; Marengo, B.; Furfaro, A.L.; Pronzato, M.A.; Marinari, U.M.; Domenicotti, C. Role of glutathione in cancer progression and chemoresistance. Oxid. Med. Cell. Longev., 2013, 2013, 1-10. doi: 10.1155/2013/972913 PMID: 23766865
- Galadari, S.; Rahman, A.; Pallichankandy, S.; Thayyullathil, F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic. Biol. Med., 2017, 104, 144-164. doi: 10.1016/j.freeradbiomed.2017.01.004 PMID: 28088622
- Somasundaram, V.; Basudhar, D.; Bharadwaj, G.; No, J.H.; Ridnour, L.A.; Cheng, R.Y.S.; Fujita, M.; Thomas, D.D.; Anderson, S.K.; McVicar, D.W.; Wink, D.A. Molecular mechanisms of nitric oxide in cancer progression, signal transduction, and metabolism. Antioxid. Redox Signal., 2019, 30(8), 1124-1143. doi: 10.1089/ars.2018.7527 PMID: 29634348
- Homma, T.; Fujii, J. Application of glutathione as anti-oxidative and anti-aging drugs. Curr. Drug Metab., 2015, 16(7), 560-571. doi: 10.2174/1389200216666151015114515 PMID: 26467067
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P. Oxidative stress, aging, and diseases. Clin. Interv. Aging, 2018, 13, 757-772. doi: 10.2147/CIA.S158513 PMID: 29731617
- Sinha, R.; Sinha, I.; Calcagnotto, A.; Trushin, N.; Haley, J.S.; Schell, T.D.; Richie, J.P., Jr. Oral supplementation with liposomal glutathione elevates body stores of glutathione and markers of immune function. Eur. J. Clin. Nutr., 2018, 72(1), 105-111. doi: 10.1038/ejcn.2017.132 PMID: 28853742
- Richie, J.P., Jr; Nichenametla, S.; Neidig, W.; Calcagnotto, A.; Haley, J.S.; Schell, T.D.; Muscat, J.E. Randomized controlled trial of oral glutathione supplementation on body stores of glutathione. Eur. J. Nutr., 2015, 54(2), 251-263. doi: 10.1007/s00394-014-0706-z PMID: 24791752
- Barardo, D.; Thornton, D.; Thoppil, H.; Walsh, M.; Sharifi, S.; Ferreira, S.; Anič, A.; Fernandes, M.; Monteiro, P.; Grum, T.; Cordeiro, R.; De-Souza, E.A.; Budovsky, A.; Araujo, N.; Gruber, J.; Petrascheck, M.; Fraifeld, V.E.; Zhavoronkov, A.; Moskalev, A.; de Magalhães, J.P. The DrugAge database of aging-related drugs. Aging Cell, 2017, 16(3), 594-597. doi: 10.1111/acel.12585 PMID: 28299908
- Varesi, A.; Campagnoli, L.; Pierella, E.; Bavestrello Piccini, G.; Carrara, A.; Ricevuti, G.; Scassellati, C.; Bonvicini, C.; Pascale, A. The Role of Antioxidants in the Interplay between Oxidative Stress and Senescence; Antioxidants: Basel, Switzerland, 2022, p. 11.
- Gasmi, A.; Shanaida, M.; Oleshchuk, O.; Semenova, Y.; Mujawdiya, P.K.; Ivankiv, Y.; Pokryshko, O.; Noor, S.; Piscopo, S.; Adamiv, S.; Bjørklund, G. Natural ingredients to improve immunity. Pharmaceuticals., 2023, 16(4), 528. doi: 10.3390/ph16040528 PMID: 37111285
- Kidd, P.M. Glutathione: Systemic protectant against oxidative and free radical damage. Altern. Med. Rev., 1997, 2, 155-176.
- Witschi, A.; Reddy, S.; Stofer, B.; Lauterburg, B.H. The systemic availability of oral glutathione. Eur. J. Clin. Pharmacol., 1992, 43(6), 667-669. doi: 10.1007/BF02284971 PMID: 1362956
- Prousky, J. The treatment of pulmonary diseases and respiratory-related conditions with inhaled (nebulized or aerosolized) glutathione. Evid. Based Complement. Alternat. Med., 2008, 5(1), 27-35. doi: 10.1093/ecam/nem040 PMID: 18317545
- Palamara, A.T.; Garaci, E.; Rotilio, G.; Ciriolo, M.R.; Casablanca, A.; Fraternale, A.; Rossi, L.; Schiavano, G.F.; Chiarantlni, L.; Magnani, M. Inhibition of murine AIDS by reduced glutathione. AIDS Res. Hum. Retroviruses, 1996, 12(14), 1373-1381. doi: 10.1089/aid.1996.12.1373 PMID: 8891117
- Schauer, R.J.; Kalmuk, S.; Gerbes, A.L.; Leiderer, R.; Meissner, H.; Schildberg, F.W.; Messmer, K.; Bilzer, M. Intravenous administration of glutathione protects parenchymal and non-parenchymal liver cells against reperfusion injury following rat liver transplantation. World J. Gastroenterol., 2004, 10(6), 864-870. doi: 10.3748/wjg.v10.i6.864 PMID: 15040034
- Schmitt, B.; Vicenzi, M.; Garrel, C.; Denis, F.M. Effects of N-acetylcysteine, oral glutathione (GSH) and a novel sublingual form of GSH on oxidative stress markers: A comparative crossover study. Redox Biol., 2015, 6, 198-205. doi: 10.1016/j.redox.2015.07.012 PMID: 26262996
- Coles, L.D.; Tuite, P.J.; Öz, G.; Mishra, U.R.; Kartha, R.V.; Sullivan, K.M.; Cloyd, J.C.; Terpstra, M. Repeated-dose oral n-acetylcysteine in Parkinsons disease: Pharmacokinetics and effect on brain glutathione and oxidative stress. J. Clin. Pharmacol., 2018, 58(2), 158-167. doi: 10.1002/jcph.1008 PMID: 28940353
- To, K.; Cao, R.; Yegiazaryan, A.; Owens, J.; Nguyen, T.; Sasaninia, K.; Vaughn, C.; Singh, M.; Truong, E.; Medina, A.; Avitia, E.; Villegas, J.; Pham, C.; Sathananthan, A.; Venketaraman, V. Effects of oral liposomal glutathione in altering the immune responses against Mycobacterium tuberculosis and the Mycobacterium bovis BCG strain in individuals with type 2 diabetes. Front. Cell. Infect. Microbiol., 2021, 11, 657775. doi: 10.3389/fcimb.2021.657775 PMID: 34150674
- Kretzschmar, M. Regulation of hepatic glutathione metabolism and its role in hepatotoxicity. Exp. Toxicol. Pathol., 1996, 48(5), 439-446. doi: 10.1016/S0940-2993(96)80054-6 PMID: 8765689
- Fukagawa, N.K.; Ajami, A.M.; Young, V.R. Plasma methionine and cysteine kinetics in response to an intravenous glutathione infusion in adult humans. Am. J. Physiol., 1996, 270(2 Pt 1), E209-E214. PMID: 8779940
- Davids, L.M.; Van Wyk, J.C.; Khumalo, N.P. Intravenous glutathione for skin lightening: Inadequate safety data. S. Afr. Med. J., 2016, 106(8), 782-786. doi: 10.7196/SAMJ.2016.v106i8.10878 PMID: 27499402
- Aoyama, K.; Nakaki, T. Impaired glutathione synthesis in neurodegeneration. Int. J. Mol. Sci., 2013, 14(10), 21021-21044. doi: 10.3390/ijms141021021 PMID: 24145751
- Paromov, V.; Kumari, S.; Brannon, M.; Kanaparthy, N.S.; Yang, H.; Smith, M.G.; Stone, W.L. Protective effect of liposome-encapsulated glutathione in a human epidermal model exposed to a mustard gas analog. J. Toxicol., 2011, 2011, 1-11. doi: 10.1155/2011/109516 PMID: 21776256
- Lv, H.; Zhen, C.; Liu, J.; Yang, P.; Hu, L.; Shang, P. Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy. Oxid. Med. Cell. Longev., 2019, 2019, 1-16. doi: 10.1155/2019/3150145 PMID: 31281572
- Xiong, Y.; Xiao, C.; Li, Z.; Yang, X. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem. Soc. Rev., 2021, 50(10), 6013-6041. doi: 10.1039/D0CS00718H PMID: 34027953
- Sarawi, W.S.; Alhusaini, A.M.; Fadda, L.M.; Alomar, H.A.; Albaker, A.B.; Aljrboa, A.S.; Alotaibi, A.M.; Hasan, I.H.; Mahmoud, A.M. Nano-curcumin prevents cardiac injury, oxidative stress and inflammation, and modulates TLR4/NF-κB and MAPK signaling in copper sulfate-intoxicated rats. Antioxidants, 2021, 10(9), 1414. doi: 10.3390/antiox10091414 PMID: 34573046
- Wu, J.H.; Batist, G. Glutathione and glutathione analogues; Therapeutic potentials. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(5), 3350-3353. doi: 10.1016/j.bbagen.2012.11.016 PMID: 23201199
- Pedre, B.; Barayeu, U.; Ezeriņa, D.; Dick, T.P. The mechanism of action of N-acetylcysteine (NAC): The emerging role of H2S and sulfane sulfur species. Pharmacol. Ther., 2021, 228, 107916. doi: 10.1016/j.pharmthera.2021.107916 PMID: 34171332
- Ramachandran, A.; Jaeschke, H. Acetaminophen hepatotoxicity. Semin. Liver Dis., 2019, 39(2), 221-234. doi: 10.1055/s-0039-1679919 PMID: 30849782
- Adil, M.; Amin, S.; Mohtashim, M. N-acetylcysteine in dermatology. Indian J. Dermatol. Venereol. Leprol., 2018, 84(6), 652-659. doi: 10.4103/ijdvl.IJDVL_33_18 PMID: 30246706
- Kumar, P.; Osahon, O.W.; Sekhar, R.V. GlyNAC (Glycine and N-Acetylcysteine) supplementation in mice increases length of life by correcting glutathione deficiency, oxidative stress, mitochondrial dysfunction, abnormalities in mitophagy and nutrient sensing, and genomic damage. Nutrients., 2022, 14(5), 1114. doi: 10.3390/nu14051114 PMID: 35268089
- Sekhar, R.V. GlyNAC supplementation improves glutathione deficiency, oxidative stress, mitochondrial dysfunction, inflammation, aging hallmarks, metabolic defects, muscle strength, cognitive decline, and body composition: Implications for healthy aging. J. Nutr., 2021, 151(12), 3606-3616. doi: 10.1093/jn/nxab309 PMID: 34587244
- Kumar, P.; Liu, C.; Suliburk, J.; Hsu, J.W.; Muthupillai, R.; Jahoor, F.; Minard, C.G.; Taffet, G.E.; Sekhar, R.V. Supplementing Glycine and N-Acetylcysteine (GlyNAC) in older adults improves glutathione deficiency, oxidative stress, mitochondrial dysfunction, inflammation, physical function, and aging hallmarks: A randomized clinical trial. J. Gerontol. A Biol. Sci. Med. Sci., 2023, 78(1), 75-89. doi: 10.1093/gerona/glac135 PMID: 35975308
- Pressman Md, P.; Bridge, W.J.; Zarka, M.H.; Hayes, A.W.; Clemens, R. Dietary γ-glutamylcysteine: Its impact on glutathione status and potential health outcomes. J. Diet. Suppl., 2022, 19(2), 259-270. doi: 10.1080/19390211.2020.1856266 PMID: 33307893
- Ansary, J.; Forbes-Hernández, T.Y.; Gil, E.; Cianciosi, D.; Zhang, J.; Elexpuru-Zabaleta, M.; Simal-Gandara, J.; Giampieri, F.; Battino, M. Potential health benefit of garlic based on human intervention studies: A brief overview. Antioxidants., 2020, 9(7), 619. doi: 10.3390/antiox9070619 PMID: 32679751
- Gasmi, A.; Gasmi Benahmed, A.; Shanaida, M.; Chirumbolo, S.; Menzel, A.; Anzar, W.; Arshad, M.; Cruz-Martins, N.; Lysiuk, R.; Beley, N.; Oliinyk, P.; Shanaida, V.; Denys, A.; Peana, M.; Bjørklund, G. Anticancer activity of broccoli, its organosulfur and polyphenolic compounds. Crit. Rev. Food Sci. Nutr., 2023, May 2, 1-19. doi: 10.1080/10408398.2023.2195493 PMID: 37129118
- Minich, D.M.; Brown, B.I. A review of dietary (Phyto)nutrients for glutathione support. Nutrients., 2019, 11(9), 2073. doi: 10.3390/nu11092073 PMID: 31484368
- Zhou, X.; He, L.; Wu, C.; Zhang, Y.; Wu, X.; Yin, Y. Serine alleviates oxidative stress via supporting glutathione synthesis and methionine cycle in mice. Mol. Nutr. Food Res., 2017, 61(11), 1700262. doi: 10.1002/mnfr.201700262 PMID: 28759161
- Zhou, X.; He, L.; Zuo, S.; Zhang, Y.; Wan, D.; Long, C.; Huang, P.; Wu, X.; Wu, C.; Liu, G.; Yin, Y. Serine prevented high-fat diet-induced oxidative stress by activating AMPK and epigenetically modulating the expression of glutathione synthesis-related genes. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(2), 488-498. doi: 10.1016/j.bbadis.2017.11.009 PMID: 29158183
- Zavorsky, G.S.; Kubow, S.; Grey, V.; Riverin, V.; Lands, L.C. An open-label doseresponse study of lymphocyte glutathione levels in healthy men and women receiving pressurized whey protein isolate supplements. Int. J. Food Sci. Nutr., 2007, 58(6), 429-436. doi: 10.1080/09637480701253581 PMID: 17710587
- Tosukhowong, P.; Boonla, C.; Dissayabutra, T.; Kaewwilai, L.; Muensri, S.; Chotipanich, C.; Joutsa, J.; Rinne, J.; Bhidayasiri, R. Biochemical and clinical effects of Whey protein supplementation in Parkinsons disease: A pilot study. J. Neurol. Sci., 2016, 367, 162-170. doi: 10.1016/j.jns.2016.05.056 PMID: 27423583
- Bhutto, A.; Morley, J.E. The clinical significance of gastrointestinal changes with aging. Curr. Opin. Clin. Nutr. Metab. Care, 2008, 11(5), 651-660. doi: 10.1097/MCO.0b013e32830b5d37 PMID: 18685464
- Corleto, V.D.; Festa, S.; Di Giulio, E.; Annibale, B. Proton pump inhibitor therapy and potential long-term harm. Curr. Opin. Endocrinol. Diabetes Obes., 2014, 21(1), 3-8. doi: 10.1097/MED.0000000000000031 PMID: 24310148
- Dvorshchenko, K.; Bernyk, O.; Dranytsyna, A.; Senin, S.; Ostapchenko, L. Influence of oxidative stress on the level of genes expression Tgfb1 and Hgf in rat liver upon long-term gastric hypochlorhydria and administration of multiprobiotic Symbiter. Ukr. Biokhim. Zh., 2014, 85, 114-123.
- Naito, Y.; Yoshikawa, T. Molecular and cellular mechanisms involved in Helicobacter pylori -induced inflammation and oxidative stress 1,2 1Guest Editor: Giuseppe Poli 2This article is part of a series of reviews on "Reactive Oxygen and Nitrogen in Inflammation." The full list of papers may be found on the homepage of the journal. Free Radic. Biol. Med., 2002, 33(3), 323-336. doi: 10.1016/S0891-5849(02)00868-7 PMID: 12126754
- Cavalcoli, F.; Zilli, A.; Conte, D.; Massironi, S. Micronutrient deficiencies in patients with chronic atrophic autoimmune gastritis: A review. World J. Gastroenterol., 2017, 23(4), 563-572. doi: 10.3748/wjg.v23.i4.563 PMID: 28216963
- Parcell, S. Sulfur in human nutrition and applications in medicine. Altern. Med. Rev., 2002, 7(1), 22-44. PMID: 11896744
- Jones, D.P.; Park, Y.; Gletsu-Miller, N.; Liang, Y.; Yu, T.; Accardi, C.J.; Ziegler, T.R. Dietary sulfur amino acid effects on fasting plasma cysteine/cystine redox potential in humans. Nutrition, 2011, 27(2), 199-205. doi: 10.1016/j.nut.2010.01.014 PMID: 20471805
- Eve, A.A.; Liu, X.; Wang, Y.; Miller, M.J.; Jeffery, E.H.; Madak-Erdogan, Z. Biomarkers of broccoli consumption: Implications for glutathione metabolism and liver health. Nutrients, 2020, 12(9), 2514. doi: 10.3390/nu12092514 PMID: 32825248
- Lu, S.C. Glutathione synthesis. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(5), 3143-3153. doi: 10.1016/j.bbagen.2012.09.008 PMID: 22995213
- Skvarc, D.R.; Dean, O.M.; Byrne, L.K.; Gray, L.; Lane, S.; Lewis, M.; Fernandes, B.S.; Berk, M.; Marriott, A. The effect of N-acetylcysteine (NAC) on human cognition A systematic review. Neurosci. Biobehav. Rev., 2017, 78, 44-56. doi: 10.1016/j.neubiorev.2017.04.013 PMID: 28438466
- Lin, C.Y.; Wu, J.L.; Shih, T.S.; Tsai, P.J.; Sun, Y.M.; Ma, M.C.; Guo, Y.L. N-Acetyl-cysteine against noise-induced temporary threshold shift in male workers. Hear. Res., 2010, 269(1-2), 42-47. doi: 10.1016/j.heares.2010.07.005 PMID: 20638463
- McCarty, M.F.; OKeefe, J.H.; DiNicolantonio, J.J. Dietary glycine is rate-limiting for glutathione synthesis and may have broad potential for health protection. Ochsner J., 2018, 18(1), 81-87. PMID: 29559876
Supplementary files
