Mycobacterial Targets for Thiourea Derivatives: Opportunities for Virtual Screening in Tuberculosis Drug Discovery


Cite item

Full Text

Abstract

Tuberculosis (TB) remains a primary global health concern, necessitating the discovery and development of new anti-TB drugs, mainly to combat drug-resistant strains. In this context, thiourea derivatives have emerged as promising candidates in TB drug discovery due to their diverse chemical structures and pharmacological properties. This review aimed to explore this potential, identifying and exploring molecular targets for thiourea derivatives in Mycobacterium tuberculosis (Mtb) and the potential application of virtual screening techniques in drug discovery. We have compiled a comprehensive list of possible molecular targets of thiourea derivatives in Mtb. The enzymes are primarily involved in the biosynthesis of various cell wall components, including mycolic acids, peptidoglycans, and arabinans, or targets in the branched-chain amino acid biosynthesis (BCAA) pathway and detoxification mechanisms. We discuss the potential of these targets as critical constituents for the design of novel anti-TB drugs. Besides, we highlight the opportunities that virtual screening methodologies present in identifying potential thiourea derivatives that can interact with these molecular targets. The presented findings contribute to the ongoing efforts in TB drug discovery and lay the foundation for further research in designing and developing more effective treatments against this devastating disease.

About the authors

Vinicius de Melo Milani

Laboratório de Síntese de Moléculas Medicinais (LaSMMed), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina

Email: info@benthamscience.net

Mariana Silva

Laboratório de Síntese de Moléculas Medicinais (LaSMMed), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina

Email: info@benthamscience.net

Priscila Camargo

Laboratório de Síntese de Moléculas Medicinais (LaSMMed), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina

Author for correspondence.
Email: info@benthamscience.net

Marcelle de Lima Ferreira Bispo

Laboratório de Síntese de Moléculas Medicinais (LaSMMed), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina

Author for correspondence.
Email: info@benthamscience.net

References

  1. Global tuberculosis report; World Health Organization (WHO), 2022.
  2. WHO consolidated guidelines on tuberculosis; World Health Organization (WHO), 2022.
  3. Espinosa-Pereiro, J.; Sánchez-Montalvá, A.; Aznar, M.L.; Espiau, M. MDR tuberculosis treatment. Medicina, 2022, 58(2), 188. doi: 10.3390/medicina58020188 PMID: 35208510
  4. Rendon, A.; Tiberi, S.; Scardigli, A.; D’Ambrosio, L.; Centis, R.; Caminero, J.A.; Migliori, G.B. Classification of drugs to treat multidrug-resistant tuberculosis (MDR-TB): Evidence and perspectives. J. Thorac. Dis., 2016, 8(10), 2666-2671. doi: 10.21037/jtd.2016.10.14 PMID: 27867538
  5. Khan, E.; Khan, S.; Gul, Z.; Muhammad, M. Medicinal importance, coordination chemistry with selected metals (Cu, Ag, Au) and chemosensing of thiourea derivatives. A review. Crit. Rev. Anal. Chem., 2020, 1-23. doi: 10.1080/10408347.2020.1777523 PMID: 32571090
  6. Ronchetti, R.; Moroni, G.; Carotti, A.; Gioiello, A.; Camaioni, E. Recent advances in urea- and thiourea-containing compounds: focus on innovative approaches in medicinal chemistry and organic synthesis. RSC Medicinal Chemistry, 2021, 12(7), 1046-1064. doi: 10.1039/D1MD00058F PMID: 34355177
  7. Pereira, P.M.L.; Camargo, P.G.; Fernandes, B.T.; Flores-Junior, L.A.P.; Dias, L.R.S.; Lima, C.H.S.; Pinge-Filho, P.; Lioni, L.M.Y.; Yamada-Ogatta, S.F.; Bispo, M.L.F.; Macedo, F., Jr. In vitro evaluation of antitrypanosomal activity and molecular docking of benzoylthioureas. Parasitol. Int., 2021, 80, 102225. doi: 10.1016/j.parint.2020.102225 PMID: 33160050
  8. Biasi-Garbin, R.P.; Fabris, M.; Morguette, A.E.B.; Andriani, G.M.; Cabral, W.R.C.; Pereira, P.M.L.; Brito, T.O.; Macedo, F., Jr; Da Silva Lima, C.H.; Lancheros, C.A.C.; Nakamura, C.V.; Pinge-Filho, P.; Tavares, E.R.; Yamauchi, L.M.; Bispo, M.L.F.; Yamada-Ogatta, S.F. In vitro antimicrobial screening of benzoylthioureas: Synthesis, antibacterial activity toward streptococcus agalactiae and molecular docking study. ChemistrySelect, 2022, 7(34), e202202117. doi: 10.1002/slct.202202117
  9. Korkmaz, N.; Obaidi, O.A.; Senturk, M.; Astley, D.; Ekinci, D.; Supuran, C.T. Synthesis and biological activity of novel thiourea derivatives as carbonic anhydrase inhibitors. J. Enzyme Inhib. Med. Chem., 2015, 30(1), 75-80. doi: 10.3109/14756366.2013.879656 PMID: 24666304
  10. Brito, T.O.; Abreu, L.O.; Gomes, K.M.; Lourenço, M.C.S.; Pereira, P.M.L.; Yamada-Ogatta, S.F.; de Fàtima, .; Tisher, C.A.; Jr, F.M.; Bispo, M.L.F. Benzoylthioureas: Design, synthesis and antimycobacterial evaluation. Med. Chem., 2020, 16(1), 93-103. doi: 10.2174/1573406415666181208110753 PMID: 30526466
  11. Ertano, B.Y.; Demir, Y.; Nural, Y.; Erdoğan, O. Investigation of the effect of acylthiourea derivatives on diabetes‐associated enzymes. ChemistrySelect, 2022, 7(46), e202204149. doi: 10.1002/slct.202204149
  12. Demir, Y.; Türkeş, C.; Küfrevioğlu, Ö.İ.; Beydemir, Ş. Molecular docking studies and the effect of fluorophenylthiourea derivatives on glutathione‐dependent enzymes. Chem. Biodivers., 2023, 20(1), e202200656. doi: 10.1002/cbdv.202200656 PMID: 36538730
  13. Tugrak, M.; Gul, H.I.; Demir, Y.; Gulcin, I. Synthesis of benzamide derivatives with thiourea‐substituted benzenesulfonamides as carbonic anhydrase inhibitors. Arch. Pharm., 2021, 354(2), 2000230. doi: 10.1002/ardp.202000230 PMID: 33043495
  14. Yıldız, M.L.; Demir, Y.; Küfrevioğlu, Ö.I. Screening of in vitro and in silico effect of Fluorophenylthiourea compounds on glucose 6‐phosphate dehydrogenase and 6‐phosphogluconate dehydrogenase enzymes. J. Mol. Recognit., 2022, 35(12), e2987. doi: 10.1002/jmr.2987 PMID: 36326002
  15. Gallen, C.S. Isoxyl: A review of the results of its use over a five-year period in the tuberculosis field service of a large urban area. Antibiot Chemother, 1970, 16, 139-148. doi: 10.1159/000386815
  16. Doğan, Ş.D.; Gündüz, M.G.; Doğan, H.; Krishna, V.S.; Lherbet, C.; Sriram, D. Design and synthesis of thiourea-based derivatives as Mycobacterium tuberculosis growth and enoyl acyl carrier protein reductase (InhA) inhibitors. Eur. J. Med. Chem., 2020, 199, 112402. doi: 10.1016/j.ejmech.2020.112402 PMID: 32417538
  17. Tapera, M.; Kekeçmuhammed, H.; Sahin, K.; Krishna, V.S.; Lherbet, C.; Homberset, H.; Chebaiki, M.; Tønjum, T.; Mourey, L.; Zorlu, Y.; Durdagi, S.; Sarıpınar, E. Synthesis, characterization, anti-tuberculosis activity and molecular modeling studies of thiourea derivatives bearing aminoguanidine moiety. J. Mol. Struct., 2022, 1270, 133899. doi: 10.1016/j.molstruc.2022.133899
  18. Calixto, S.D.; Simão, T.L.B.V.; Palmeira-Mello, M.V.; Viana, G.M.; Assumpção, P.W.M.C.; Rezende, M.G.; do Espirito Santo, C.C.; de Oliveira Mussi, V.; Rodrigues, C.R.; Lasunskaia, E.; de Souza, A.M.T.; Cabral, L.M.; Muzitano, M.F. Antimycobacterial and anti-inflammatory activities of thiourea derivatives focusing on treatment approaches for severe pulmonary tuberculosis. Bioorg. Med. Chem., 2022, 53, 116506. doi: 10.1016/j.bmc.2021.116506 PMID: 34890996
  19. Laborde, J.; Deraeve, C.; Bernardes-Génisson, V. Update of antitubercular prodrugs from a molecular perspective: Mechanisms of action, bioactivation pathways, and associated resistance. ChemMedChem, 2017, 12(20), 1657-1676. doi: 10.1002/cmdc.201700424 PMID: 28921911
  20. Lambelin, G. Pharmacology and toxicology of isoxyl. Antibiot Chemother., 1970, 16, 84-95. doi: 10.1159/000386807
  21. Urbancik, B. Clinical experience with thiocarlide (Isoxyl). Antibiot Chemother, 1970, 16, 117-123.
  22. Wang, C.; Garcia-Contreras, L.; Muttil, P.; Hickey, A.J. Isoxyl assays in plasma. J. Pharm. Biomed. Anal., 2012, 60, 1-6. doi: 10.1016/j.jpba.2011.10.029 PMID: 22119164
  23. de Freitas Paulo, T.; Duhayon, C.; de França Lopes, L.G.; Silva Sousa, E.H.; Chauvin, R.; Bernardes-Génisson, V. Further insights into the oxidative pathway of thiocarbonyl-type antitubercular prodrugs: Ethionamide, thioacetazone, and isoxyl. Chem. Res. Toxicol., 2021, 34(8), 1879-1889. doi: 10.1021/acs.chemrestox.1c00164 PMID: 34319702
  24. Phetsuksiri, B.; Jackson, M.; Scherman, H.; McNeil, M.; Besra, G.S.; Baulard, A.R.; Slayden, R.A.; DeBarber, A.E.; Barry, C.E., III; Baird, M.S.; Crick, D.C.; Brennan, P.J. Unique mechanism of action of the thiourea drug isoxyl on Mycobacterium tuberculosis. J. Biol. Chem., 2003, 278(52), 53123-53130. doi: 10.1074/jbc.M311209200 PMID: 14559907
  25. Akamatsu, Y.; Law, J.H. Enzymatic alkylenation of phospholipid fatty acid chains by extracts of Mycobacterium phlei. J. Biol. Chem., 1970, 245(4), 701-708. doi: 10.1016/S0021-9258(18)63319-8 PMID: 4313604
  26. Lennarz, W.J.; Scheuerbrandt, G.; Bloch, K. The biosynthesis of oleic and 10-methylstearic acids in Mycobacterium phlei. J. Biol. Chem., 1962, 237(3), 664-671. doi: 10.1016/S0021-9258(18)60352-7 PMID: 14463993
  27. Grzegorzewicz, A.E.; Korduláková, J.; Jones, V.; Born, S.E.M.; Belardinelli, J.M.; Vaquié, A.; Gundi, V.A.K.B.; Madacki, J.; Slama, N.; Laval, F.; Vaubourgeix, J.; Crew, R.M.; Gicquel, B.; Daffé, M.; Morbidoni, H.R.; Brennan, P.J.; Quémard, A.; McNeil, M.R.; Jackson, M. A common mechanism of inhibition of the Mycobacterium tuberculosis mycolic acid biosynthetic pathway by isoxyl and thiacetazone. J. Biol. Chem., 2012, 287(46), 38434-38441. doi: 10.1074/jbc.M112.400994 PMID: 23002234
  28. Korduláková, J.; Janin, Y.L.; Liav, A.; Barilone, N.; Dos Vultos, T.; Rauzier, J.; Brennan, P.J.; Gicquel, B.; Jackson, M. Isoxyl activation is required for bacteriostatic activity against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2007, 51(11), 3824-3829. doi: 10.1128/AAC.00433-07 PMID: 17785510
  29. Grzegorzewicz, A.E.; Eynard, N.; Quémard, A.; North, E.J.; Margolis, A.; Lindenberger, J.J.; Jones, V.; Korduláková, J.; Brennan, P.J.; Lee, R.E.; Ronning, D.R.; McNeil, M.R.; Jackson, M. Covalent modification of the Mycobacterium tuberculosis FAS-II dehydratase by Isoxyl and Thiacetazone. ACS Infect. Dis., 2015, 1(2), 91-97. doi: 10.1021/id500032q PMID: 25897434
  30. Maitra, A.; Munshi, T.; Healy, J.; Martin, L.T.; Vollmer, W.; Keep, N.H.; Bhakta, S. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles’ heel for the TB-causing pathogen. FEMS Microbiol. Rev., 2019, 43(5), 548-575. doi: 10.1093/femsre/fuz016 PMID: 31183501
  31. Dong, Y.; Qiu, X.; Shaw, N.; Xu, Y.; Sun, Y.; Li, X.; Li, J.; Rao, Z. Molecular basis for the inhibition of β-hydroxyacyl-ACP dehydratase HadAB complex from Mycobacterium tuberculosis by flavonoid inhibitors. Protein Cell, 2015, 6(7), 504-517. doi: 10.1007/s13238-015-0181-1 PMID: 26081470
  32. Dong, Y.; Li, J.; Qiu, X.; Yan, C.; Li, X. Expression, purification and crystallization of the (3R)-hydroxyacyl-ACP dehydratase HadAB complex from Mycobacterium tuberculosis. Protein Expr. Purif., 2015, 114, 115-120. doi: 10.1016/j.pep.2015.06.007 PMID: 26118698
  33. Bibens, L.; Becker, J.P.; Dassonville-Klimpt, A.; Sonnet, P. A review of fatty acid biosynthesis enzyme inhibitors as promising antimicrobial drugs. Pharmaceuticals, 2023, 16(3), 425. doi: 10.3390/ph16030425 PMID: 36986522
  34. Singh, B.K.; Biswas, R.; Bhattacharyya, S.; Basak, A.; Das, A.K. The C‐terminal end of mycobacterial HadBC regulates AcpM interaction during the FAS‐II pathway: a structural perspective. FEBS J., 2022, 289(16), 4963-4980. doi: 10.1111/febs.16405 PMID: 35175661
  35. Zhang, H.; Machutta, C.A.; Tonge, P.J. Fatty acid biosynthesis and oxidation. In: Comprehensive Natural Products II; Elsevier, 2010; pp. 231-275. doi: 10.1016/B978-008045382-8.00668-7
  36. Carel, C.; Nukdee, K.; Cantaloube, S.; Bonne, M.; Diagne, C.T.; Laval, F.; Daffé, M.; Zerbib, D. Mycobacterium tuberculosis proteins involved in mycolic acid synthesis and transport localize dynamically to the old growing pole and septum. PLoS One, 2014, 9(5), e97148. doi: 10.1371/journal.pone.0097148 PMID: 24817274
  37. Machaba, K.E.; Mhlongo, N.N.; Dokurugu, Y.M.; Soliman, M.E.S. Tailored-pharmacophore model to enhance virtual screening and drug discovery: A case study on the identification of potential inhibitors against drug-resistant Mycobacterium tuberculosis (3R)-hydroxyacyl-ACP dehydratases. Future Med. Chem., 2017, 9(10), 1055-1071. doi: 10.4155/fmc-2017-0020 PMID: 28632406
  38. Grzegorzewicz, A.E.; Gee, C.; Das, S.; Liu, J.; Belardinelli, J.M.; Jones, V.; McNeil, M.R.; Lee, R.E.; Jackson, M. Mechanisms of resistance associated with the inhibition of the dehydration step of type II fatty acid synthase in mycobacterium tuberculosis. ACS Infect. Dis., 2020, 6(2), 195-204. doi: 10.1021/acsinfecdis.9b00162 PMID: 31775512
  39. Li, M.; Huang, Q.; Zhang, W.; Cao, Y.; Wang, Z.; Zhao, Z.; Zhang, X.; Zhang, J. A novel acyl-acpm-binding protein confers intrinsic sensitivity to fatty acid synthase type II inhibitors in mycobacterium smegmatis. Front. Microbiol., 2022, 13, 846722. doi: 10.3389/fmicb.2022.846722 PMID: 35444621
  40. Quémard, A.; Sacchettini, J.C.; Dessen, A.; Vilcheze, C.; Bittman, R.; Jacobs, W.R., Jr; Blanchard, J.S. Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Biochemistry, 1995, 34(26), 8235-8241. doi: 10.1021/bi00026a004 PMID: 7599116
  41. Khan, S.; Nagarajan, S.N.; Parikh, A.; Samantaray, S.; Singh, A.; Kumar, D.; Roy, R.P.; Bhatt, A.; Nandicoori, V.K. Phosphorylation of enoyl-acyl carrier protein reductase InhA impacts mycobacterial growth and survival. J. Biol. Chem., 2010, 285(48), 37860-37871. doi: 10.1074/jbc.M110.143131 PMID: 20864541
  42. Prasad, M.S.; Bhole, R.P.; Khedekar, P.B.; Chikhale, R.V. Mycobacterium enoyl acyl carrier protein reductase (InhA): A key target for antitubercular drug discovery. Bioorg. Chem., 2021, 115, 105242. doi: 10.1016/j.bioorg.2021.105242 PMID: 34392175
  43. Prati, F.; Zuccotto, F.; Fletcher, D.; Convery, M.A.; Fernandez-Menendez, R.; Bates, R.; Encinas, L.; Zeng, J.; Chung, C.; De Dios Anton, P.; Mendoza-Losana, A.; Mackenzie, C.; Green, S.R.; Huggett, M.; Barros, D.; Wyatt, P.G.; Ray, P.C. Screening of a novel fragment library with functional complexity against Mycobacterium tuberculosis InhA. ChemMedChem, 2018, 13(7), 672-677. doi: 10.1002/cmdc.201700774 PMID: 29399991
  44. Pym, A.S.; Saint-Joanis, B.; Cole, S.T. Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infect. Immun., 2002, 70(9), 4955-4960. doi: 10.1128/IAI.70.9.4955-4960.2002 PMID: 12183541
  45. Wahab, H.A.; Choong, Y.S.; Ibrahim, P.; Sadikun, A.; Scior, T. Elucidating isoniazid resistance using molecular modeling. J. Chem. Inf. Model., 2009, 49(1), 97-107. doi: 10.1021/ci8001342 PMID: 19067649
  46. Yan, W.; Zheng, Y.; Dou, C.; Zhang, G.; Arnaout, T.; Cheng, W. The pathogenic mechanism of Mycobacterium tuberculosis: Implication for new drug development. Molecular Biomedicine, 2022, 3(1), 48. doi: 10.1186/s43556-022-00106-y PMID: 36547804
  47. Vilchèze, C.; Jacobs, W.R., Jr. Resistance to isoniazid and ethionamide in Mycobacterium tuberculosis: Genes, mutations, and causalities. Microbiol. Spectr., 2014, 2(4), 2.4.01. doi: 10.1128/microbiolspec.MGM2-0014-2013 PMID: 26104204
  48. Ghorab, M.M.; El-Gaby, M.S.A.; Soliman, A.M.; Alsaid, M.S.; Abdel-Aziz, M.M.; Elaasser, M.M. Synthesis, docking study and biological evaluation of some new thiourea derivatives bearing benzenesulfonamide moiety. Chem. Cent. J., 2017, 11(1), 42. doi: 10.1186/s13065-017-0271-7 PMID: 29086825
  49. Benson, T.E.; Marquardt, J.L.; Marquardt, A.C.; Etzkorn, F.A.; Walsh, C.T. Overexpression, purification, and mechanistic study of UDP-N-acetylenolpyruvylglucosamine reductase. Biochemistry, 1993, 32(8), 2024-2030. doi: 10.1021/bi00059a019 PMID: 8448160
  50. Barreteau, H.; Kovač, A.; Boniface, A.; Sova, M.; Gobec, S.; Blanot, D. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol. Rev., 2008, 32(2), 168-207. doi: 10.1111/j.1574-6976.2008.00104.x PMID: 18266853
  51. Eniyan, K.; Dharavath, S.; Vijayan, R.; Bajpai, U.; Gourinath, S. Crystal structure of UDP-N-acetylglucosamine-enolpyruvate reductase (MurB) from Mycobacterium tuberculosis. Biochim. Biophys. Acta. Proteins Proteomics, 2018, 1866(3), 397-406. doi: 10.1016/j.bbapap.2017.11.013 PMID: 29203374
  52. Konduri, S.; Pogaku, V.; Prashanth, J.; Siva Krishna, V.; Sriram, D.; Basavoju, S.; Behera, J.N.; Prabhakara Rao, K. Sacubitril‐based urea and thiourea derivatives as novel inhibitors for anti‐tubercular against dormant tuberculosis. ChemistrySelect, 2021, 6(16), 3869-3874. doi: 10.1002/slct.202004724
  53. Epp, J.B.; Alexander, A.L.; Balko, T.W.; Buysse, A.M.; Brewster, W.K.; Bryan, K.; Daeuble, J.F.; Fields, S.C.; Gast, R.E.; Green, R.A.; Irvine, N.M.; Lo, W.C.; Lowe, C.T.; Renga, J.M.; Richburg, J.S.; Ruiz, J.M.; Satchivi, N.M.; Schmitzer, P.R.; Siddall, T.L.; Webster, J.D.; Weimer, M.R.; Whiteker, G.T.; Yerkes, C.N. The discovery of Arylex™ active and Rinskor™ active: Two novel auxin herbicides. Bioorg. Med. Chem., 2016, 24(3), 362-371. doi: 10.1016/j.bmc.2015.08.011 PMID: 26321602
  54. Konduri, S.; Bhargavi, D.; Prashanth, J.; Krishna, V.S.; Sriram, D.; Rao, K.P. Design and synthesis of "chloropicolinate amides and urea derivatives" as novel inhibitors for Mycobacterium tuberculosis. ACS Omega, 2021, 6(2), 1657-1667. doi: 10.1021/acsomega.0c05690 PMID: 33490825
  55. Poen, S.; Nakatani, Y.; Opel-Reading, H.K.; Lassé, M.; Dobson, R.C.J.; Krause, K.L. Exploring the structure of glutamate racemase from Mycobacterium tuberculosis as a template for anti-mycobacterial drug discovery. Biochem. J., 2016, 473(9), 1267-1280. doi: 10.1042/BCJ20160186 PMID: 26964898
  56. Glavas, S.; Tanner, M.E. Catalytic acid/base residues of glutamate racemase. Biochemistry, 1999, 38(13), 4106-4113. doi: 10.1021/bi982663n PMID: 10194325
  57. Tanner, M.E.; Gallo, K.A.; Knowles, J.R. Isotope effects and the identification of catalytic residues in the reaction catalyzed by glutamate racemase. Biochemistry, 1993, 32(15), 3998-4006. doi: 10.1021/bi00066a021 PMID: 8097110
  58. May, M.; Mehboob, S.; Mulhearn, D.C.; Wang, Z.; Yu, H.; Thatcher, G.R.J.; Santarsiero, B.D.; Johnson, M.E.; Mesecar, A.D. Structural and functional analysis of two glutamate racemase isozymes from Bacillus anthracis and implications for inhibitor design. J. Mol. Biol., 2007, 371(5), 1219-1237. doi: 10.1016/j.jmb.2007.05.093 PMID: 17610893
  59. Ruzheinikov, S.N.; Taal, M.A.; Sedelnikova, S.E.; Baker, P.J.; Rice, D.W. Substrate-induced conformational changes in Bacillus subtilis glutamate racemase and their implications for drug discovery. Structure, 2005, 13(11), 1707-1713. doi: 10.1016/j.str.2005.07.024 PMID: 16271894
  60. Glavas, S.; Tanner, M.E. Active site residues of glutamate racemase. Biochemistry, 2001, 40(21), 6199-6204. doi: 10.1021/bi002703z PMID: 11371180
  61. Fisher, S.L. Glutamate racemase as a target for drug discovery. Microb. Biotechnol., 2008, 1(5), 345-360. doi: 10.1111/j.1751-7915.2008.00031.x PMID: 21261855
  62. Malapati, P.; Siva Krishna, V.; Nallangi, R.; Meda, N.; Reshma Srilakshmi, R.; Sriram, D. Lead identification and optimization of bacterial glutamate racemase inhibitors. Bioorg. Med. Chem., 2018, 26(1), 177-190. doi: 10.1016/j.bmc.2017.11.031 PMID: 29239770
  63. Malapati, P.; Krishna, V.S.; Nallangi, R.; Srilakshmi, R.R.; Sriram, D. Identification and development of benzoxazole derivatives as novel bacterial glutamate racemase inhibitors. Eur. J. Med. Chem., 2018, 145, 23-34. doi: 10.1016/j.ejmech.2017.12.088 PMID: 29310027
  64. Kalaiyarasi, A.; Haribabu, J.; Gayathri, D.; Gomathi, K.; Bhuvanesh, N.S.P.; Karvembu, R.; Biju, V.M. Chemosensing, molecular docking and antioxidant studies of 8-aminoquinoline appended acylthiourea derivatives. J. Mol. Struct., 2019, 1185, 450-460. doi: 10.1016/j.molstruc.2019.02.098
  65. Batt, S.M.; Jabeen, T.; Bhowruth, V.; Quill, L.; Lund, P.A.; Eggeling, L.; Alderwick, L.J.; Fütterer, K.; Besra, G.S. Structural basis of inhibition of Mycobacterium tuberculosis DprE1 by benzothiazinone inhibitors. Proc. Natl. Acad. Sci., 2012, 109(28), 11354-11359. doi: 10.1073/pnas.1205735109 PMID: 22733761
  66. Piton, J.; Foo, C.S.Y.; Cole, S.T. Structural studies of Mycobacterium tuberculosis DprE1 interacting with its inhibitors. Drug Discov. Today, 2017, 22(3), 526-533. doi: 10.1016/j.drudis.2016.09.014 PMID: 27666194
  67. Brecik, M.; Centárová, I.; Mukherjee, R.; Kolly, G.S.; Huszár, S.; Bobovská, A.; Kilacsková, E.; Mokošová, V.; Svetlíková, Z.; Šarkan, M.; Neres, J.; Korduláková, J.; Cole, S.T.; Mikušová, K. DprE1 is a vulnerable tuberculosis drug target due to its cell wall localization. ACS Chem. Biol., 2015, 10(7), 1631-1636. doi: 10.1021/acschembio.5b00237 PMID: 25906160
  68. Mikušová, K.; Huang, H.; Yagi, T.; Holsters, M.; Vereecke, D.; D’Haeze, W.; Scherman, M.S.; Brennan, P.J.; McNeil, M.R.; Crick, D.C. Decaprenylphosphoryl arabinofuranose, the donor of the D-arabinofuranosyl residues of Mycobacterial arabinan, is formed via a two-step epimerization of decaprenylphosphoryl ribose. J. Bacteriol., 2005, 187(23), 8020-8025. doi: 10.1128/JB.187.23.8020-8025.2005 PMID: 16291675
  69. Manina, G.; Pasca, R. Decaprenylphosphoryl-β-D-ribose 2-epimerase from Mycobacterium tuberculosis is a magic drug target. Curr. Med. Chem., 2010, 17, 3099-3108. doi: 10.2174/092986710791959693 PMID: 20629622
  70. Gawad, J.; Bonde, C. Decaprenyl-phosphoryl-ribose 2′-epimerase (DprE1): challenging target for antitubercular drug discovery. Chem. Cent. J., 2018, 12(1), 72. doi: 10.1186/s13065-018-0441-2 PMID: 29936616
  71. Krishna, V.S.; Zheng, S.; Rekha, E.M.; Nallangi, R.; Sai Prasad, D.V.; George, S.E.; Guddat, L.W.; Sriram, D. Design and development of ((4-methoxyphenyl)carbamoyl) (5-(5-nitrothiophen-2-yl)-1,3,4-thiadiazol-2-yl)amide analogues as Mycobacterium tuberculosis ketol-acid reductoisomerase inhibitors. Eur. J. Med. Chem., 2020, 193, 112178. doi: 10.1016/j.ejmech.2020.112178 PMID: 32171154
  72. Tadrowski, S.; Pedroso, M.M.; Sieber, V.; Larrabee, J.A.; Guddat, L.W.; Schenk, G. Metal ions play an essential catalytic role in the mechanism of ketol-acid reductoisomerase. Chemistry, 2016, 22(22), 7427-7436. doi: 10.1002/chem.201600620 PMID: 27136273
  73. Lv, Y.; Kandale, A.; Wun, S.J.; McGeary, R.P.; Williams, S.J.; Kobe, B.; Sieber, V.; Schembri, M.A.; Schenk, G.; Guddat, L.W. Crystal structure of Mycobacterium tuberculosis ketol‐acid reductoisomerase at 1.0 Å resolution - a potential target for anti‐tuberculosis drug discovery. FEBS J., 2016, 283(7), 1184-1196. doi: 10.1111/febs.13672 PMID: 26876563
  74. Krishna, V.S.; Zheng, S.; Rekha, E.M.; Guddat, L.W.; Sriram, D. Discovery and evaluation of novel Mycobacterium tuberculosis ketol-acid reductoisomerase inhibitors as therapeutic drug leads. J. Comput. Aided Mol. Des., 2019, 33(3), 357-366. doi: 10.1007/s10822-019-00184-1 PMID: 30666485
  75. Gautheron, J.; Jéru, I. The multifaceted role of epoxide hydrolases in human health and disease. Int. J. Mol. Sci., 2020, 22(1), 13. doi: 10.3390/ijms22010013 PMID: 33374956
  76. Johansson, P.; Unge, T.; Cronin, A.; Arand, M.; Bergfors, T.; Jones, T.A.; Mowbray, S.L. Structure of an atypical epoxide hydrolase from Mycobacterium tuberculosis gives insights into its function. J. Mol. Biol., 2005, 351(5), 1048-1056. doi: 10.1016/j.jmb.2005.06.055 PMID: 16051262
  77. Schulz, E.C.; Henderson, S.R.; Illarionov, B.; Crosskey, T.; Southall, S.M.; Krichel, B.; Uetrecht, C.; Fischer, M.; Wilmanns, M. The crystal structure of mycobacterial epoxide hydrolase A. Sci. Rep., 2020, 10(1), 16539. doi: 10.1038/s41598-020-73452-y PMID: 33024154
  78. Madacki, J.; Kopál, M.; Jackson, M.; Korduláková, J. Mycobacterial epoxide hydrolase EphD is inhibited by urea and thiourea derivatives. Int. J. Mol. Sci., 2021, 22(6), 2884. doi: 10.3390/ijms22062884 PMID: 33809178
  79. DeJesus, M.A.; Gerrick, E.R.; Xu, W.; Park, S.W.; Long, J.E.; Boutte, C.C.; Rubin, E.J.; Schnappinger, D.; Ehrt, S.; Fortune, S.M.; Sassetti, C.M.; Ioerger, T.R. Comprehensive essentiality analysis of the Mycobacterium tuberculosis genome via saturating transposon mutagenesis. MBio, 2017, 8(1), e02133-e16. doi: 10.1128/mBio.02133-16 PMID: 28096490
  80. Rengarajan, J.; Bloom, B.R.; Rubin, E.J. Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc. Natl. Acad. Sci., 2005, 102(23), 8327-8332. doi: 10.1073/pnas.0503272102 PMID: 15928073
  81. Dubnau, E.; Chan, J.; Raynaud, C.; Mohan, V.P.; Lanéelle, M.A.; Yu, K.; Quémard, A.; Smith, I.; Daffé, M. Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol. Microbiol., 2000, 36(3), 630-637. doi: 10.1046/j.1365-2958.2000.01882.x PMID: 10844652

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers