Mycobacterial Targets for Thiourea Derivatives: Opportunities for Virtual Screening in Tuberculosis Drug Discovery
- Authors: de Melo Milani V.1, Silva M.1, Camargo P.1, de Lima Ferreira Bispo M.1
-
Affiliations:
- Laboratório de Síntese de Moléculas Medicinais (LaSMMed), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina
- Issue: Vol 31, No 29 (2024)
- Pages: 4703-4724
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjmseer.com/0929-8673/article/view/645010
- DOI: https://doi.org/10.2174/0109298673276076231124104513
- ID: 645010
Cite item
Full Text
Abstract
Tuberculosis (TB) remains a primary global health concern, necessitating the discovery and development of new anti-TB drugs, mainly to combat drug-resistant strains. In this context, thiourea derivatives have emerged as promising candidates in TB drug discovery due to their diverse chemical structures and pharmacological properties. This review aimed to explore this potential, identifying and exploring molecular targets for thiourea derivatives in Mycobacterium tuberculosis (Mtb) and the potential application of virtual screening techniques in drug discovery. We have compiled a comprehensive list of possible molecular targets of thiourea derivatives in Mtb. The enzymes are primarily involved in the biosynthesis of various cell wall components, including mycolic acids, peptidoglycans, and arabinans, or targets in the branched-chain amino acid biosynthesis (BCAA) pathway and detoxification mechanisms. We discuss the potential of these targets as critical constituents for the design of novel anti-TB drugs. Besides, we highlight the opportunities that virtual screening methodologies present in identifying potential thiourea derivatives that can interact with these molecular targets. The presented findings contribute to the ongoing efforts in TB drug discovery and lay the foundation for further research in designing and developing more effective treatments against this devastating disease.
About the authors
Vinicius de Melo Milani
Laboratório de Síntese de Moléculas Medicinais (LaSMMed), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina
Email: info@benthamscience.net
Mariana Silva
Laboratório de Síntese de Moléculas Medicinais (LaSMMed), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina
Email: info@benthamscience.net
Priscila Camargo
Laboratório de Síntese de Moléculas Medicinais (LaSMMed), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina
Author for correspondence.
Email: info@benthamscience.net
Marcelle de Lima Ferreira Bispo
Laboratório de Síntese de Moléculas Medicinais (LaSMMed), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina
Author for correspondence.
Email: info@benthamscience.net
References
- Global tuberculosis report; World Health Organization (WHO), 2022.
- WHO consolidated guidelines on tuberculosis; World Health Organization (WHO), 2022.
- Espinosa-Pereiro, J.; Sánchez-Montalvá, A.; Aznar, M.L.; Espiau, M. MDR tuberculosis treatment. Medicina, 2022, 58(2), 188. doi: 10.3390/medicina58020188 PMID: 35208510
- Rendon, A.; Tiberi, S.; Scardigli, A.; DAmbrosio, L.; Centis, R.; Caminero, J.A.; Migliori, G.B. Classification of drugs to treat multidrug-resistant tuberculosis (MDR-TB): Evidence and perspectives. J. Thorac. Dis., 2016, 8(10), 2666-2671. doi: 10.21037/jtd.2016.10.14 PMID: 27867538
- Khan, E.; Khan, S.; Gul, Z.; Muhammad, M. Medicinal importance, coordination chemistry with selected metals (Cu, Ag, Au) and chemosensing of thiourea derivatives. A review. Crit. Rev. Anal. Chem., 2020, 1-23. doi: 10.1080/10408347.2020.1777523 PMID: 32571090
- Ronchetti, R.; Moroni, G.; Carotti, A.; Gioiello, A.; Camaioni, E. Recent advances in urea- and thiourea-containing compounds: focus on innovative approaches in medicinal chemistry and organic synthesis. RSC Medicinal Chemistry, 2021, 12(7), 1046-1064. doi: 10.1039/D1MD00058F PMID: 34355177
- Pereira, P.M.L.; Camargo, P.G.; Fernandes, B.T.; Flores-Junior, L.A.P.; Dias, L.R.S.; Lima, C.H.S.; Pinge-Filho, P.; Lioni, L.M.Y.; Yamada-Ogatta, S.F.; Bispo, M.L.F.; Macedo, F., Jr. In vitro evaluation of antitrypanosomal activity and molecular docking of benzoylthioureas. Parasitol. Int., 2021, 80, 102225. doi: 10.1016/j.parint.2020.102225 PMID: 33160050
- Biasi-Garbin, R.P.; Fabris, M.; Morguette, A.E.B.; Andriani, G.M.; Cabral, W.R.C.; Pereira, P.M.L.; Brito, T.O.; Macedo, F., Jr; Da Silva Lima, C.H.; Lancheros, C.A.C.; Nakamura, C.V.; Pinge-Filho, P.; Tavares, E.R.; Yamauchi, L.M.; Bispo, M.L.F.; Yamada-Ogatta, S.F. In vitro antimicrobial screening of benzoylthioureas: Synthesis, antibacterial activity toward streptococcus agalactiae and molecular docking study. ChemistrySelect, 2022, 7(34), e202202117. doi: 10.1002/slct.202202117
- Korkmaz, N.; Obaidi, O.A.; Senturk, M.; Astley, D.; Ekinci, D.; Supuran, C.T. Synthesis and biological activity of novel thiourea derivatives as carbonic anhydrase inhibitors. J. Enzyme Inhib. Med. Chem., 2015, 30(1), 75-80. doi: 10.3109/14756366.2013.879656 PMID: 24666304
- Brito, T.O.; Abreu, L.O.; Gomes, K.M.; Lourenço, M.C.S.; Pereira, P.M.L.; Yamada-Ogatta, S.F.; de Fàtima, .; Tisher, C.A.; Jr, F.M.; Bispo, M.L.F. Benzoylthioureas: Design, synthesis and antimycobacterial evaluation. Med. Chem., 2020, 16(1), 93-103. doi: 10.2174/1573406415666181208110753 PMID: 30526466
- Ertano, B.Y.; Demir, Y.; Nural, Y.; Erdoğan, O. Investigation of the effect of acylthiourea derivatives on diabetes‐associated enzymes. ChemistrySelect, 2022, 7(46), e202204149. doi: 10.1002/slct.202204149
- Demir, Y.; Türkeş, C.; Küfrevioğlu, Ö.İ.; Beydemir, Ş. Molecular docking studies and the effect of fluorophenylthiourea derivatives on glutathione‐dependent enzymes. Chem. Biodivers., 2023, 20(1), e202200656. doi: 10.1002/cbdv.202200656 PMID: 36538730
- Tugrak, M.; Gul, H.I.; Demir, Y.; Gulcin, I. Synthesis of benzamide derivatives with thiourea‐substituted benzenesulfonamides as carbonic anhydrase inhibitors. Arch. Pharm., 2021, 354(2), 2000230. doi: 10.1002/ardp.202000230 PMID: 33043495
- Yıldız, M.L.; Demir, Y.; Küfrevioğlu, Ö.I. Screening of in vitro and in silico effect of Fluorophenylthiourea compounds on glucose 6‐phosphate dehydrogenase and 6‐phosphogluconate dehydrogenase enzymes. J. Mol. Recognit., 2022, 35(12), e2987. doi: 10.1002/jmr.2987 PMID: 36326002
- Gallen, C.S. Isoxyl: A review of the results of its use over a five-year period in the tuberculosis field service of a large urban area. Antibiot Chemother, 1970, 16, 139-148. doi: 10.1159/000386815
- Doğan, Ş.D.; Gündüz, M.G.; Doğan, H.; Krishna, V.S.; Lherbet, C.; Sriram, D. Design and synthesis of thiourea-based derivatives as Mycobacterium tuberculosis growth and enoyl acyl carrier protein reductase (InhA) inhibitors. Eur. J. Med. Chem., 2020, 199, 112402. doi: 10.1016/j.ejmech.2020.112402 PMID: 32417538
- Tapera, M.; Kekeçmuhammed, H.; Sahin, K.; Krishna, V.S.; Lherbet, C.; Homberset, H.; Chebaiki, M.; Tønjum, T.; Mourey, L.; Zorlu, Y.; Durdagi, S.; Sarıpınar, E. Synthesis, characterization, anti-tuberculosis activity and molecular modeling studies of thiourea derivatives bearing aminoguanidine moiety. J. Mol. Struct., 2022, 1270, 133899. doi: 10.1016/j.molstruc.2022.133899
- Calixto, S.D.; Simão, T.L.B.V.; Palmeira-Mello, M.V.; Viana, G.M.; Assumpção, P.W.M.C.; Rezende, M.G.; do Espirito Santo, C.C.; de Oliveira Mussi, V.; Rodrigues, C.R.; Lasunskaia, E.; de Souza, A.M.T.; Cabral, L.M.; Muzitano, M.F. Antimycobacterial and anti-inflammatory activities of thiourea derivatives focusing on treatment approaches for severe pulmonary tuberculosis. Bioorg. Med. Chem., 2022, 53, 116506. doi: 10.1016/j.bmc.2021.116506 PMID: 34890996
- Laborde, J.; Deraeve, C.; Bernardes-Génisson, V. Update of antitubercular prodrugs from a molecular perspective: Mechanisms of action, bioactivation pathways, and associated resistance. ChemMedChem, 2017, 12(20), 1657-1676. doi: 10.1002/cmdc.201700424 PMID: 28921911
- Lambelin, G. Pharmacology and toxicology of isoxyl. Antibiot Chemother., 1970, 16, 84-95. doi: 10.1159/000386807
- Urbancik, B. Clinical experience with thiocarlide (Isoxyl). Antibiot Chemother, 1970, 16, 117-123.
- Wang, C.; Garcia-Contreras, L.; Muttil, P.; Hickey, A.J. Isoxyl assays in plasma. J. Pharm. Biomed. Anal., 2012, 60, 1-6. doi: 10.1016/j.jpba.2011.10.029 PMID: 22119164
- de Freitas Paulo, T.; Duhayon, C.; de França Lopes, L.G.; Silva Sousa, E.H.; Chauvin, R.; Bernardes-Génisson, V. Further insights into the oxidative pathway of thiocarbonyl-type antitubercular prodrugs: Ethionamide, thioacetazone, and isoxyl. Chem. Res. Toxicol., 2021, 34(8), 1879-1889. doi: 10.1021/acs.chemrestox.1c00164 PMID: 34319702
- Phetsuksiri, B.; Jackson, M.; Scherman, H.; McNeil, M.; Besra, G.S.; Baulard, A.R.; Slayden, R.A.; DeBarber, A.E.; Barry, C.E., III; Baird, M.S.; Crick, D.C.; Brennan, P.J. Unique mechanism of action of the thiourea drug isoxyl on Mycobacterium tuberculosis. J. Biol. Chem., 2003, 278(52), 53123-53130. doi: 10.1074/jbc.M311209200 PMID: 14559907
- Akamatsu, Y.; Law, J.H. Enzymatic alkylenation of phospholipid fatty acid chains by extracts of Mycobacterium phlei. J. Biol. Chem., 1970, 245(4), 701-708. doi: 10.1016/S0021-9258(18)63319-8 PMID: 4313604
- Lennarz, W.J.; Scheuerbrandt, G.; Bloch, K. The biosynthesis of oleic and 10-methylstearic acids in Mycobacterium phlei. J. Biol. Chem., 1962, 237(3), 664-671. doi: 10.1016/S0021-9258(18)60352-7 PMID: 14463993
- Grzegorzewicz, A.E.; Korduláková, J.; Jones, V.; Born, S.E.M.; Belardinelli, J.M.; Vaquié, A.; Gundi, V.A.K.B.; Madacki, J.; Slama, N.; Laval, F.; Vaubourgeix, J.; Crew, R.M.; Gicquel, B.; Daffé, M.; Morbidoni, H.R.; Brennan, P.J.; Quémard, A.; McNeil, M.R.; Jackson, M. A common mechanism of inhibition of the Mycobacterium tuberculosis mycolic acid biosynthetic pathway by isoxyl and thiacetazone. J. Biol. Chem., 2012, 287(46), 38434-38441. doi: 10.1074/jbc.M112.400994 PMID: 23002234
- Korduláková, J.; Janin, Y.L.; Liav, A.; Barilone, N.; Dos Vultos, T.; Rauzier, J.; Brennan, P.J.; Gicquel, B.; Jackson, M. Isoxyl activation is required for bacteriostatic activity against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2007, 51(11), 3824-3829. doi: 10.1128/AAC.00433-07 PMID: 17785510
- Grzegorzewicz, A.E.; Eynard, N.; Quémard, A.; North, E.J.; Margolis, A.; Lindenberger, J.J.; Jones, V.; Korduláková, J.; Brennan, P.J.; Lee, R.E.; Ronning, D.R.; McNeil, M.R.; Jackson, M. Covalent modification of the Mycobacterium tuberculosis FAS-II dehydratase by Isoxyl and Thiacetazone. ACS Infect. Dis., 2015, 1(2), 91-97. doi: 10.1021/id500032q PMID: 25897434
- Maitra, A.; Munshi, T.; Healy, J.; Martin, L.T.; Vollmer, W.; Keep, N.H.; Bhakta, S. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles heel for the TB-causing pathogen. FEMS Microbiol. Rev., 2019, 43(5), 548-575. doi: 10.1093/femsre/fuz016 PMID: 31183501
- Dong, Y.; Qiu, X.; Shaw, N.; Xu, Y.; Sun, Y.; Li, X.; Li, J.; Rao, Z. Molecular basis for the inhibition of β-hydroxyacyl-ACP dehydratase HadAB complex from Mycobacterium tuberculosis by flavonoid inhibitors. Protein Cell, 2015, 6(7), 504-517. doi: 10.1007/s13238-015-0181-1 PMID: 26081470
- Dong, Y.; Li, J.; Qiu, X.; Yan, C.; Li, X. Expression, purification and crystallization of the (3R)-hydroxyacyl-ACP dehydratase HadAB complex from Mycobacterium tuberculosis. Protein Expr. Purif., 2015, 114, 115-120. doi: 10.1016/j.pep.2015.06.007 PMID: 26118698
- Bibens, L.; Becker, J.P.; Dassonville-Klimpt, A.; Sonnet, P. A review of fatty acid biosynthesis enzyme inhibitors as promising antimicrobial drugs. Pharmaceuticals, 2023, 16(3), 425. doi: 10.3390/ph16030425 PMID: 36986522
- Singh, B.K.; Biswas, R.; Bhattacharyya, S.; Basak, A.; Das, A.K. The C‐terminal end of mycobacterial HadBC regulates AcpM interaction during the FAS‐II pathway: a structural perspective. FEBS J., 2022, 289(16), 4963-4980. doi: 10.1111/febs.16405 PMID: 35175661
- Zhang, H.; Machutta, C.A.; Tonge, P.J. Fatty acid biosynthesis and oxidation. In: Comprehensive Natural Products II; Elsevier, 2010; pp. 231-275. doi: 10.1016/B978-008045382-8.00668-7
- Carel, C.; Nukdee, K.; Cantaloube, S.; Bonne, M.; Diagne, C.T.; Laval, F.; Daffé, M.; Zerbib, D. Mycobacterium tuberculosis proteins involved in mycolic acid synthesis and transport localize dynamically to the old growing pole and septum. PLoS One, 2014, 9(5), e97148. doi: 10.1371/journal.pone.0097148 PMID: 24817274
- Machaba, K.E.; Mhlongo, N.N.; Dokurugu, Y.M.; Soliman, M.E.S. Tailored-pharmacophore model to enhance virtual screening and drug discovery: A case study on the identification of potential inhibitors against drug-resistant Mycobacterium tuberculosis (3R)-hydroxyacyl-ACP dehydratases. Future Med. Chem., 2017, 9(10), 1055-1071. doi: 10.4155/fmc-2017-0020 PMID: 28632406
- Grzegorzewicz, A.E.; Gee, C.; Das, S.; Liu, J.; Belardinelli, J.M.; Jones, V.; McNeil, M.R.; Lee, R.E.; Jackson, M. Mechanisms of resistance associated with the inhibition of the dehydration step of type II fatty acid synthase in mycobacterium tuberculosis. ACS Infect. Dis., 2020, 6(2), 195-204. doi: 10.1021/acsinfecdis.9b00162 PMID: 31775512
- Li, M.; Huang, Q.; Zhang, W.; Cao, Y.; Wang, Z.; Zhao, Z.; Zhang, X.; Zhang, J. A novel acyl-acpm-binding protein confers intrinsic sensitivity to fatty acid synthase type II inhibitors in mycobacterium smegmatis. Front. Microbiol., 2022, 13, 846722. doi: 10.3389/fmicb.2022.846722 PMID: 35444621
- Quémard, A.; Sacchettini, J.C.; Dessen, A.; Vilcheze, C.; Bittman, R.; Jacobs, W.R., Jr; Blanchard, J.S. Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Biochemistry, 1995, 34(26), 8235-8241. doi: 10.1021/bi00026a004 PMID: 7599116
- Khan, S.; Nagarajan, S.N.; Parikh, A.; Samantaray, S.; Singh, A.; Kumar, D.; Roy, R.P.; Bhatt, A.; Nandicoori, V.K. Phosphorylation of enoyl-acyl carrier protein reductase InhA impacts mycobacterial growth and survival. J. Biol. Chem., 2010, 285(48), 37860-37871. doi: 10.1074/jbc.M110.143131 PMID: 20864541
- Prasad, M.S.; Bhole, R.P.; Khedekar, P.B.; Chikhale, R.V. Mycobacterium enoyl acyl carrier protein reductase (InhA): A key target for antitubercular drug discovery. Bioorg. Chem., 2021, 115, 105242. doi: 10.1016/j.bioorg.2021.105242 PMID: 34392175
- Prati, F.; Zuccotto, F.; Fletcher, D.; Convery, M.A.; Fernandez-Menendez, R.; Bates, R.; Encinas, L.; Zeng, J.; Chung, C.; De Dios Anton, P.; Mendoza-Losana, A.; Mackenzie, C.; Green, S.R.; Huggett, M.; Barros, D.; Wyatt, P.G.; Ray, P.C. Screening of a novel fragment library with functional complexity against Mycobacterium tuberculosis InhA. ChemMedChem, 2018, 13(7), 672-677. doi: 10.1002/cmdc.201700774 PMID: 29399991
- Pym, A.S.; Saint-Joanis, B.; Cole, S.T. Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infect. Immun., 2002, 70(9), 4955-4960. doi: 10.1128/IAI.70.9.4955-4960.2002 PMID: 12183541
- Wahab, H.A.; Choong, Y.S.; Ibrahim, P.; Sadikun, A.; Scior, T. Elucidating isoniazid resistance using molecular modeling. J. Chem. Inf. Model., 2009, 49(1), 97-107. doi: 10.1021/ci8001342 PMID: 19067649
- Yan, W.; Zheng, Y.; Dou, C.; Zhang, G.; Arnaout, T.; Cheng, W. The pathogenic mechanism of Mycobacterium tuberculosis: Implication for new drug development. Molecular Biomedicine, 2022, 3(1), 48. doi: 10.1186/s43556-022-00106-y PMID: 36547804
- Vilchèze, C.; Jacobs, W.R., Jr. Resistance to isoniazid and ethionamide in Mycobacterium tuberculosis: Genes, mutations, and causalities. Microbiol. Spectr., 2014, 2(4), 2.4.01. doi: 10.1128/microbiolspec.MGM2-0014-2013 PMID: 26104204
- Ghorab, M.M.; El-Gaby, M.S.A.; Soliman, A.M.; Alsaid, M.S.; Abdel-Aziz, M.M.; Elaasser, M.M. Synthesis, docking study and biological evaluation of some new thiourea derivatives bearing benzenesulfonamide moiety. Chem. Cent. J., 2017, 11(1), 42. doi: 10.1186/s13065-017-0271-7 PMID: 29086825
- Benson, T.E.; Marquardt, J.L.; Marquardt, A.C.; Etzkorn, F.A.; Walsh, C.T. Overexpression, purification, and mechanistic study of UDP-N-acetylenolpyruvylglucosamine reductase. Biochemistry, 1993, 32(8), 2024-2030. doi: 10.1021/bi00059a019 PMID: 8448160
- Barreteau, H.; Kovač, A.; Boniface, A.; Sova, M.; Gobec, S.; Blanot, D. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol. Rev., 2008, 32(2), 168-207. doi: 10.1111/j.1574-6976.2008.00104.x PMID: 18266853
- Eniyan, K.; Dharavath, S.; Vijayan, R.; Bajpai, U.; Gourinath, S. Crystal structure of UDP-N-acetylglucosamine-enolpyruvate reductase (MurB) from Mycobacterium tuberculosis. Biochim. Biophys. Acta. Proteins Proteomics, 2018, 1866(3), 397-406. doi: 10.1016/j.bbapap.2017.11.013 PMID: 29203374
- Konduri, S.; Pogaku, V.; Prashanth, J.; Siva Krishna, V.; Sriram, D.; Basavoju, S.; Behera, J.N.; Prabhakara Rao, K. Sacubitril‐based urea and thiourea derivatives as novel inhibitors for anti‐tubercular against dormant tuberculosis. ChemistrySelect, 2021, 6(16), 3869-3874. doi: 10.1002/slct.202004724
- Epp, J.B.; Alexander, A.L.; Balko, T.W.; Buysse, A.M.; Brewster, W.K.; Bryan, K.; Daeuble, J.F.; Fields, S.C.; Gast, R.E.; Green, R.A.; Irvine, N.M.; Lo, W.C.; Lowe, C.T.; Renga, J.M.; Richburg, J.S.; Ruiz, J.M.; Satchivi, N.M.; Schmitzer, P.R.; Siddall, T.L.; Webster, J.D.; Weimer, M.R.; Whiteker, G.T.; Yerkes, C.N. The discovery of Arylex active and Rinskor active: Two novel auxin herbicides. Bioorg. Med. Chem., 2016, 24(3), 362-371. doi: 10.1016/j.bmc.2015.08.011 PMID: 26321602
- Konduri, S.; Bhargavi, D.; Prashanth, J.; Krishna, V.S.; Sriram, D.; Rao, K.P. Design and synthesis of "chloropicolinate amides and urea derivatives" as novel inhibitors for Mycobacterium tuberculosis. ACS Omega, 2021, 6(2), 1657-1667. doi: 10.1021/acsomega.0c05690 PMID: 33490825
- Poen, S.; Nakatani, Y.; Opel-Reading, H.K.; Lassé, M.; Dobson, R.C.J.; Krause, K.L. Exploring the structure of glutamate racemase from Mycobacterium tuberculosis as a template for anti-mycobacterial drug discovery. Biochem. J., 2016, 473(9), 1267-1280. doi: 10.1042/BCJ20160186 PMID: 26964898
- Glavas, S.; Tanner, M.E. Catalytic acid/base residues of glutamate racemase. Biochemistry, 1999, 38(13), 4106-4113. doi: 10.1021/bi982663n PMID: 10194325
- Tanner, M.E.; Gallo, K.A.; Knowles, J.R. Isotope effects and the identification of catalytic residues in the reaction catalyzed by glutamate racemase. Biochemistry, 1993, 32(15), 3998-4006. doi: 10.1021/bi00066a021 PMID: 8097110
- May, M.; Mehboob, S.; Mulhearn, D.C.; Wang, Z.; Yu, H.; Thatcher, G.R.J.; Santarsiero, B.D.; Johnson, M.E.; Mesecar, A.D. Structural and functional analysis of two glutamate racemase isozymes from Bacillus anthracis and implications for inhibitor design. J. Mol. Biol., 2007, 371(5), 1219-1237. doi: 10.1016/j.jmb.2007.05.093 PMID: 17610893
- Ruzheinikov, S.N.; Taal, M.A.; Sedelnikova, S.E.; Baker, P.J.; Rice, D.W. Substrate-induced conformational changes in Bacillus subtilis glutamate racemase and their implications for drug discovery. Structure, 2005, 13(11), 1707-1713. doi: 10.1016/j.str.2005.07.024 PMID: 16271894
- Glavas, S.; Tanner, M.E. Active site residues of glutamate racemase. Biochemistry, 2001, 40(21), 6199-6204. doi: 10.1021/bi002703z PMID: 11371180
- Fisher, S.L. Glutamate racemase as a target for drug discovery. Microb. Biotechnol., 2008, 1(5), 345-360. doi: 10.1111/j.1751-7915.2008.00031.x PMID: 21261855
- Malapati, P.; Siva Krishna, V.; Nallangi, R.; Meda, N.; Reshma Srilakshmi, R.; Sriram, D. Lead identification and optimization of bacterial glutamate racemase inhibitors. Bioorg. Med. Chem., 2018, 26(1), 177-190. doi: 10.1016/j.bmc.2017.11.031 PMID: 29239770
- Malapati, P.; Krishna, V.S.; Nallangi, R.; Srilakshmi, R.R.; Sriram, D. Identification and development of benzoxazole derivatives as novel bacterial glutamate racemase inhibitors. Eur. J. Med. Chem., 2018, 145, 23-34. doi: 10.1016/j.ejmech.2017.12.088 PMID: 29310027
- Kalaiyarasi, A.; Haribabu, J.; Gayathri, D.; Gomathi, K.; Bhuvanesh, N.S.P.; Karvembu, R.; Biju, V.M. Chemosensing, molecular docking and antioxidant studies of 8-aminoquinoline appended acylthiourea derivatives. J. Mol. Struct., 2019, 1185, 450-460. doi: 10.1016/j.molstruc.2019.02.098
- Batt, S.M.; Jabeen, T.; Bhowruth, V.; Quill, L.; Lund, P.A.; Eggeling, L.; Alderwick, L.J.; Fütterer, K.; Besra, G.S. Structural basis of inhibition of Mycobacterium tuberculosis DprE1 by benzothiazinone inhibitors. Proc. Natl. Acad. Sci., 2012, 109(28), 11354-11359. doi: 10.1073/pnas.1205735109 PMID: 22733761
- Piton, J.; Foo, C.S.Y.; Cole, S.T. Structural studies of Mycobacterium tuberculosis DprE1 interacting with its inhibitors. Drug Discov. Today, 2017, 22(3), 526-533. doi: 10.1016/j.drudis.2016.09.014 PMID: 27666194
- Brecik, M.; Centárová, I.; Mukherjee, R.; Kolly, G.S.; Huszár, S.; Bobovská, A.; Kilacsková, E.; Mokoová, V.; Svetlíková, Z.; arkan, M.; Neres, J.; Korduláková, J.; Cole, S.T.; Mikuová, K. DprE1 is a vulnerable tuberculosis drug target due to its cell wall localization. ACS Chem. Biol., 2015, 10(7), 1631-1636. doi: 10.1021/acschembio.5b00237 PMID: 25906160
- Mikuová, K.; Huang, H.; Yagi, T.; Holsters, M.; Vereecke, D.; DHaeze, W.; Scherman, M.S.; Brennan, P.J.; McNeil, M.R.; Crick, D.C. Decaprenylphosphoryl arabinofuranose, the donor of the D-arabinofuranosyl residues of Mycobacterial arabinan, is formed via a two-step epimerization of decaprenylphosphoryl ribose. J. Bacteriol., 2005, 187(23), 8020-8025. doi: 10.1128/JB.187.23.8020-8025.2005 PMID: 16291675
- Manina, G.; Pasca, R. Decaprenylphosphoryl-β-D-ribose 2-epimerase from Mycobacterium tuberculosis is a magic drug target. Curr. Med. Chem., 2010, 17, 3099-3108. doi: 10.2174/092986710791959693 PMID: 20629622
- Gawad, J.; Bonde, C. Decaprenyl-phosphoryl-ribose 2′-epimerase (DprE1): challenging target for antitubercular drug discovery. Chem. Cent. J., 2018, 12(1), 72. doi: 10.1186/s13065-018-0441-2 PMID: 29936616
- Krishna, V.S.; Zheng, S.; Rekha, E.M.; Nallangi, R.; Sai Prasad, D.V.; George, S.E.; Guddat, L.W.; Sriram, D. Design and development of ((4-methoxyphenyl)carbamoyl) (5-(5-nitrothiophen-2-yl)-1,3,4-thiadiazol-2-yl)amide analogues as Mycobacterium tuberculosis ketol-acid reductoisomerase inhibitors. Eur. J. Med. Chem., 2020, 193, 112178. doi: 10.1016/j.ejmech.2020.112178 PMID: 32171154
- Tadrowski, S.; Pedroso, M.M.; Sieber, V.; Larrabee, J.A.; Guddat, L.W.; Schenk, G. Metal ions play an essential catalytic role in the mechanism of ketol-acid reductoisomerase. Chemistry, 2016, 22(22), 7427-7436. doi: 10.1002/chem.201600620 PMID: 27136273
- Lv, Y.; Kandale, A.; Wun, S.J.; McGeary, R.P.; Williams, S.J.; Kobe, B.; Sieber, V.; Schembri, M.A.; Schenk, G.; Guddat, L.W. Crystal structure of Mycobacterium tuberculosis ketol‐acid reductoisomerase at 1.0 Å resolution - a potential target for anti‐tuberculosis drug discovery. FEBS J., 2016, 283(7), 1184-1196. doi: 10.1111/febs.13672 PMID: 26876563
- Krishna, V.S.; Zheng, S.; Rekha, E.M.; Guddat, L.W.; Sriram, D. Discovery and evaluation of novel Mycobacterium tuberculosis ketol-acid reductoisomerase inhibitors as therapeutic drug leads. J. Comput. Aided Mol. Des., 2019, 33(3), 357-366. doi: 10.1007/s10822-019-00184-1 PMID: 30666485
- Gautheron, J.; Jéru, I. The multifaceted role of epoxide hydrolases in human health and disease. Int. J. Mol. Sci., 2020, 22(1), 13. doi: 10.3390/ijms22010013 PMID: 33374956
- Johansson, P.; Unge, T.; Cronin, A.; Arand, M.; Bergfors, T.; Jones, T.A.; Mowbray, S.L. Structure of an atypical epoxide hydrolase from Mycobacterium tuberculosis gives insights into its function. J. Mol. Biol., 2005, 351(5), 1048-1056. doi: 10.1016/j.jmb.2005.06.055 PMID: 16051262
- Schulz, E.C.; Henderson, S.R.; Illarionov, B.; Crosskey, T.; Southall, S.M.; Krichel, B.; Uetrecht, C.; Fischer, M.; Wilmanns, M. The crystal structure of mycobacterial epoxide hydrolase A. Sci. Rep., 2020, 10(1), 16539. doi: 10.1038/s41598-020-73452-y PMID: 33024154
- Madacki, J.; Kopál, M.; Jackson, M.; Korduláková, J. Mycobacterial epoxide hydrolase EphD is inhibited by urea and thiourea derivatives. Int. J. Mol. Sci., 2021, 22(6), 2884. doi: 10.3390/ijms22062884 PMID: 33809178
- DeJesus, M.A.; Gerrick, E.R.; Xu, W.; Park, S.W.; Long, J.E.; Boutte, C.C.; Rubin, E.J.; Schnappinger, D.; Ehrt, S.; Fortune, S.M.; Sassetti, C.M.; Ioerger, T.R. Comprehensive essentiality analysis of the Mycobacterium tuberculosis genome via saturating transposon mutagenesis. MBio, 2017, 8(1), e02133-e16. doi: 10.1128/mBio.02133-16 PMID: 28096490
- Rengarajan, J.; Bloom, B.R.; Rubin, E.J. Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc. Natl. Acad. Sci., 2005, 102(23), 8327-8332. doi: 10.1073/pnas.0503272102 PMID: 15928073
- Dubnau, E.; Chan, J.; Raynaud, C.; Mohan, V.P.; Lanéelle, M.A.; Yu, K.; Quémard, A.; Smith, I.; Daffé, M. Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol. Microbiol., 2000, 36(3), 630-637. doi: 10.1046/j.1365-2958.2000.01882.x PMID: 10844652
Supplementary files
