Alkaloids as Additional Weapons in the Fight against Breast Cancer: A Review
- Authors: Chahat 1, Jha K.2, Bhatia R.1, Chawla P.3
-
Affiliations:
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy
- Department of Pharmaceutical Chemistr, ISF College of Pharmacy
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy,
- Issue: Vol 31, No 32 (2024)
- Pages: 5113-5148
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjmseer.com/0929-8673/article/view/645042
- DOI: https://doi.org/10.2174/0929867331666230911162527
- ID: 645042
Cite item
Full Text
Abstract
:Breast carcinoma is among the most frequent cancerous tumour in females around the globe. The major modalities now employed in the therapeutic management of breast cancer include surgeries, chemotherapy, and specialized medicines. Despite their potential to help individuals' problems, they are also associated with many negative impacts. As a result, natural products are increasingly regarded to be a preferable alternative. Alkaloids are essential biochemical substances that can be used to develop new drugs. Numerous alkaloids that originate from natural plants have been shown in vitro and in vivo to have anti-proliferation and anti-metastasis actions on different kinds of carcinoma. According to the data collected in this study, the utilization of alkaloids as anti-tumor medicines appears to be extremely potent; nevertheless, extensive studies and clinical trials are required before utilizing individual alkaloids. In this overview, we provide a detailed and vital exploration of pre-existing alkaloids possessing anti-tumor activities due to bioactive compounds. This study also includes an overview of synthesized analogues and pharmacological characteristics that will be beneficial to scientists working on alkaloids for medicinal purposes. In a recent survey of the literature, alkaloids are an important component of plantderived antitumor medicines that hold great potential for the future development of cancer therapy and preventive therapies. We have also discussed structural analysis relationship (SAR) studies. Moreover, it covers clinical trial medications and FDA-approved medicines from the last five years that will be useful in further research.
About the authors
Chahat
Department of Pharmaceutical Chemistry, ISF College of Pharmacy
Email: info@benthamscience.net
Keshav Jha
Department of Pharmaceutical Chemistr, ISF College of Pharmacy
Email: info@benthamscience.net
Rohit Bhatia
Department of Pharmaceutical Chemistry, ISF College of Pharmacy
Email: info@benthamscience.net
Pooja Chawla
Department of Pharmaceutical Chemistry, ISF College of Pharmacy,
Author for correspondence.
Email: info@benthamscience.net
References
- Chahat, B.; Bhatia, R.; Kumar, B. p53 as a potential target for treatment of cancer: A perspective on recent advancements in small molecules with structural insights and SAR studies. Eur. J. Med. Chem., 2023, 247, 115020. doi: 10.1016/j.ejmech.2022.115020 PMID: 36543034
- Taruneshwar Jha, K.; Shome, A. Chahat; Chawla, P.A. Recent advances in nitrogen-containing heterocyclic compounds as receptor tyrosine kinase inhibitors for the treatment of cancer: Biological activity and structural activity relationship. Bioorg. Chem., 2023, 138, 106680. doi: 10.1016/j.bioorg.2023.106680 PMID: 37336103
- Dhyani, P.; Quispe, C.; Sharma, E.; Bahukhandi, A.; Sati, P.; Attri, D.C.; Szopa, A.; Sharifi-Rad, J.; Docea, A.O.; Mardare, I.; Calina, D.; Cho, W.C. Anticancer potential of alkaloids: A key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int., 2022, 22(1), 206. doi: 10.1186/s12935-022-02624-9 PMID: 35655306
- Vidyasekar, P.; Shyamsunder, P.; Arun, R.; Santhakumar, R.; Kapadia, N.K.; Kumar, R.; Verma, R.S. Genome wide expression profiling of cancer cell lines cultured in microgravity reveals significant dysregulation of cell cycle and MicroRNA gene networks. PLoS One, 2015, 10(8), e0135958. doi: 10.1371/journal.pone.0135958 PMID: 26295583
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- El-Helby, A.G.A.; Sakr, H.; Ayyad, R.R.; Mahdy, H.A.; Khalifa, M.M.; Belal, A.; Rashed, M.; El-Sharkawy, A.; Metwaly, A.M.; Elhendawy, M.A.; Radwan, M.M.; ElSohly, M.A.; Eissa, I.H. Design, synthesis, molecular modeling, in vivo studies and anticancer activity evaluation of new phthalazine derivatives as potential DNA intercalators and topoisomerase II inhibitors. Bioorg. Chem., 2020, 103, 104233. doi: 10.1016/j.bioorg.2020.104233 PMID: 32882440
- WHO. Assessing national capacity for the prevention and control of noncommunicable diseases: Report of the 2019 global survey. , 2020. Available from: https://www.who.int/publications/i/item/9789240002319
- Kaushik, I.; Ramachandran, S.; Prasad, S.; Srivastava, S.K. Drug rechanneling: A novel paradigm for cancer treatment. In: Seminars in Cancer Biology; Elsevier, 2021; 68, pp. 279-290.
- Kulothungan, V.; Sathishkumar, K.; Leburu, S.; Ramamoorthy, T.; Stephen, S.; Basavarajappa, D.; Tomy, N.; Mohan, R.; Menon, G.R.; Mathur, P. Burden of cancers in India - estimates of cancer crude incidence, YLLs, YLDs and DALYs for 2021 and 2025 based on National Cancer Registry Program. BMC Cancer, 2022, 22(1), 527. doi: 10.1186/s12885-022-09578-1 PMID: 34979993
- Kumar, B.; Singh, S.; Skvortsova, I.; Kumar, V. Promising targets in anti-cancer drug development: Recent updates. Curr. Med. Chem., 2017, 24(42), 4729-4752. PMID: 28393696
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
- Wulfkuhle, J.D.; Liotta, L.A.; Petricoin, E.F. Proteomic applications for the early detection of cancer. Nat. Rev. Cancer, 2003, 3(4), 267-275. doi: 10.1038/nrc1043 PMID: 12671665
- Hortobagyi, G.N.; de la Garza Salazar, J.; Pritchard, K.; Amadori, D.; Haidinger, R.; Hudis, C.A.; Khaled, H.; Liu, M.C.; Martin, M.; Namer, M.; OShaughnessy, J.A.; Shen, Z.Z.; Albain, K.S. The global breast cancer burden: Variations in epidemiology and survival. Clin. Breast Cancer, 2005, 6(5), 391-401. doi: 10.3816/CBC.2005.n.043 PMID: 16381622
- Lei, S.; Zheng, R.; Zhang, S.; Chen, R.; Wang, S.; Sun, K.; Zeng, H.; Wei, W.; He, J. Breast cancer incidence and mortality in women in China: Temporal trends and projections to 2030. Cancer Biol. Med., 2021, 18(3), 900-909. doi: 10.20892/j.issn.2095-3941.2020.0523 PMID: 34002584
- Smith, R.A.; von Eschenbach, A.C.; Wender, R.; Levin, B.; Byers, T.; Rothenberger, D.; Brooks, D.; Creasman, W.; Cohen, C.; Runowicz, C.; Saslow, D.; Cokkinides, V.; Eyre, H. American Cancer Society guidelines for the early detection of cancer: Update of early detection guidelines for prostate, colorectal, and endometrial cancers. Also: Update 2001--testing for early lung cancer detection. CA Cancer J. Clin., 2001, 51(1), 38-75. doi: 10.3322/canjclin.51.1.38 PMID: 11577479
- Alzain, A.A.; Brisson, L.; Delaye, P.O.; Pénichon, M.; Chadet, S.; Besson, P.; Chevalier, S.; Allouchi, H.; Mohamed, M.A.; Roger, S.; Enguehard-Gueiffier, C. Bioinspired imidazo1,2-a:4,5-c′dipyridines with dual antiproliferative and anti-migrative properties in human cancer cells: The SAR investigation. Eur. J. Med. Chem., 2021, 218, 113258. doi: 10.1016/j.ejmech.2021.113258 PMID: 33813152
- Sun, M.; Zhang, Y.; Qin, J.; Ba, M.; Yao, Y.; Duan, Y.; Liu, H.; Yu, D. Synthesis and biological evaluation of new 2-methoxyestradiol derivatives: Potent inhibitors of angiogenesis and tubulin polymerization. Bioorg. Chem., 2021, 113, 104988. doi: 10.1016/j.bioorg.2021.104988 PMID: 34034135
- Bonapace, L.; Coissieux, M.M.; Wyckoff, J.; Mertz, K.D.; Varga, Z.; Junt, T.; Bentires-Alj, M. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature, 2014, 515(7525), 130-133. doi: 10.1038/nature13862 PMID: 25337873
- Niu, Y.; Bao, L.; Chen, Y.; Wang, C.; Luo, M.; Zhang, B.; Zhou, M.; Wang, J.E.; Fang, Y.V.; Kumar, A.; Xing, C.; Wang, Y.; Luo, W. HIF2-induced long noncoding RNA RAB11B-AS1 promotes hypoxia-mediated angiogenesis and breast cancer metastasis. Cancer Res., 2020, 80(5), 964-975. doi: 10.1158/0008-5472.CAN-19-1532 PMID: 31900259
- Lucas, M.C.; Tan, S.L. Small-molecule inhibitors of spleen tyrosine kinase as therapeutic agents for immune disorders: Will promise meet expectations? Future Med. Chem., 2014, 6(16), 1811-1827. doi: 10.4155/fmc.14.126 PMID: 25407369
- Beutler, J.A. Natural products as a foundation for drug discovery. Curr. Protocols Pharmacol., 2009, 46(1), 11-19. doi: 10.1002/0471141755.ph0911s46
- Sharifi-Rad, J.; Quispe, C.; Imran, M.; Rauf, A.; Nadeem, M.; Gondal, T.A.; Ahmad, B.; Atif, M.; Mubarak, M.S.; Sytar, O. Genistein: An integrative overview of its mode of action, pharmacological properties, and health benefits. Oxid. Med. Cell. Longev., 2021, 2021, 3268136. doi: 10.1155/2021/3268136
- Croteau, R.; Kutchan, T.M.; Lewis, N.G. Natural products (secondary metabolites). Plant Mol. Biol., 2000, 24, 1250-1319.
- Williams, D.H.; Stone, M.J.; Hauck, P.R.; Rahman, S.K. Why are secondary metabolites (natural products) biosynthesized? J. Nat. Prod., 1989, 52(6), 1189-1208. doi: 10.1021/np50066a001 PMID: 2693613
- Rajput, A.; Sharma, R.; Bharti, R. Pharmacological activities and toxicities of alkaloids on human health. Mater. Today Proc., 2022, 48, 1407-1415. doi: 10.1016/j.matpr.2021.09.189
- Debnath, B.; Singh, W.S.; Das, M.; Goswami, S.; Singh, M.K.; Maiti, D.; Manna, K. Role of plant alkaloids on human health: A review of biological activities. Mater. Today Chem., 2018, 9, 56-72. doi: 10.1016/j.mtchem.2018.05.001
- Berchtold, M.W.; Villalobo, A. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. Biochim. Biophys. Acta Mol. Cell Res., 2014, 1843(2), 398-435. doi: 10.1016/j.bbamcr.2013.10.021 PMID: 24188867
- Reed, J.C. Apoptosis-targeted therapies for cancer. Cancer Cell, 2003, 3(1), 17-22. doi: 10.1016/S1535-6108(02)00241-6 PMID: 12559172
- Kato, Y.; Maeda, T.; Suzuki, A.; Baba, Y. Cancer metabolism: New insights into classic characteristics. Jpn. Dent. Sci. Rev., 2018, 54(1), 8-21. doi: 10.1016/j.jdsr.2017.08.003 PMID: 29628997
- Habli, Z.; Toumieh, G.; Fatfat, M.; Rahal, O.; Gali-Muhtasib, H. Emerging cytotoxic alkaloids in the battle against cancer: Overview of molecular mechanisms. Molecules, 2017, 22(2), 250. doi: 10.3390/molecules22020250 PMID: 28208712
- Mohapatra, P.; Singh, P.; Singh, D.; Sahoo, S.; Sahoo, S.K. Phytochemical based nanomedicine: A panacea for cancer treatment, present status and future prospective. In: Open- Nano; Elsevier, 2022; 7, p. 100055.
- Khatoon, E.; Banik, K.; Harsha, C.; Sailo, B.L.; Thakur, K.K.; Khwairakpam, A.D.; Vikkurthi, R.; Devi, T.B.; Gupta, S.C.; Kunnumakkara, A.B. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Semin. Cancer Biol., 2022, 80, 306-339. doi: 10.1016/j.semcancer.2020.06.014 PMID: 32610149
- Thundimadathil, J. Cancer treatment using peptides: Current therapies and future prospects. J. Amino Acids, 2012, 2012, 967347.
- Kim, D.B.; Lee, D.K.; Cheon, C.; Ribeiro, R.I.M.A.; Kim, B. Natural products for liver cancer treatment: From traditional medicine to modern drug discovery. Nutrients, 2022, 14(20), 4252. doi: 10.3390/nu14204252 PMID: 36296934
- Usman, M.; Khan, W.R.; Yousaf, N.; Akram, S.; Murtaza, G.; Kudus, K.A.; Ditta, A.; Rosli, Z.; Rajpar, M.N.; Nazre, M. Exploring the phytochemicals and anti-cancer potential of the members of Fabaceae family: A comprehensive review. Molecules, 2022, 27(12), 3863. doi: 10.3390/molecules27123863 PMID: 35744986
- Pandrangi, S.L.; Chalumuri, S.S.; Garimella, S. Emerging therapeutic efficacy of alkaloids as anticancer agents. Ann. Rom. Soc. Cell Biol., 2022, 26(01), 64-74.
- Bhattacharya, R.; Naitam, P. Green anticancer drugs-An review. Res. J. Pharmacogn. Phytochem., 2019, 11(4), 231-243. doi: 10.5958/0975-4385.2019.00040.2
- Levy, A. In CRC Handbook of Flowering; CRC Press, 2019, pp. 5-8. doi: 10.1201/9781351072564-3
- Waller, G. Alkaloid biology and metabolism in plants; Springer, 2012.
- Evans, W.C. Trease and Evans pharmacognosy; Elsevier, 2009.
- Dey, P.; Kundu, A.; Kumar, A.; Gupta, M. Recent advances in natural products analysis; Elsevier, 2020, pp. 505-567. doi: 10.1016/B978-0-12-816455-6.00015-9
- Phillipson, J.D. Phytochemistry and medicinal plants. Phytochemistry, 2001, 56(3), 237-243. doi: 10.1016/S0031-9422(00)00456-8 PMID: 11243450
- Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol., 2005, 100(1-2), 72-79. doi: 10.1016/j.jep.2005.05.011 PMID: 16009521
- Jain, C.; Khatana, S.; Vijayvergia, R. Bioactivity of secondary metabolites of various plants: A review. Int. J. Pharm. Sci. Res., 2019, 10(2), 494-504.
- Chen, J.J.; Chang, Y.L.; Teng, C.M.; Chen, I.S. Anti-platelet aggregation alkaloids and lignans from Hernandia nymphaeifolia. Planta Med., 2000, 66(3), 251-256. doi: 10.1055/s-2000-8562 PMID: 10821052
- Gurung, P.; De, P. Spectrum of biological properties of Cinchona alkaloids: A brief review. J. Pharmacogn. Phytochem., 2017, 6(4), 162-166.
- Oyama, T.; Isono, T.; Suzuki, Y.; Hayakawa, Y. Anti-nociceptive effects of aconiti tuber and its alkaloids. Am. J. Chin. Med., 1994, 22(2), 175-182. doi: 10.1142/S0192415X94000218 PMID: 7992817
- Santos, F.A.; Rao, V.S.N. A study of the anti-pyretic effect of quinine, an alkaloid effective against cerebral malaria, on fever induced by bacterial endotoxin and yeast in rats. J. Pharm. Pharmacol., 2011, 50(2), 225-229. doi: 10.1111/j.2042-7158.1998.tb06180.x PMID: 9530992
- Fu, M.; Zou, B.; An, K.; Yu, Y.; Tang, D.; Wu, J.; Xu, Y.; Ti, H. Anti-asthmatic activity of alkaloid compounds from Pericarpium Citri Reticulatae (Citrus reticulata Chachi). Food Funct., 2019, 10(2), 903-911. doi: 10.1039/C8FO01753K PMID: 30694283
- Chemler, S. Phenanthroindolizidines and phenanthroquinolizidines: Promising alkaloids for anti-cancer therapy. Curr. Bioact. Compd., 2009, 5(1), 2-19. doi: 10.2174/157340709787580928 PMID: 20160962
- Wangchuk, P.; Sastraruji, T.; Taweechotipatr, M.; Keller, P.A.; Pyne, S.G. Anti-inflammatory, anti-bacterial and anti-acetylcholinesterase activities of two isoquinoline alkaloidsScoulerine and Cheilanthifoline. Nat. Prod. Commun., 2016, 11(12), 1934578X1601101207. doi: 10.1177/1934578X1601101207
- Sinha, S.; Sharma, A.; Reddy, P.H.; Rathi, B.; Prasad, N.V.S.R.K.; Vashishtha, A. Evaluation of phytochemical and pharmacological aspects of Holarrhena antidysenterica (Wall.): A comprehensive review. J. Pharm. Res., 2013, 6(4), 488-492. doi: 10.1016/j.jopr.2013.04.004
- Arora, S.; Narayan, P.; Osgood, C.L.; Wedam, S.; Prowell, T.M.; Gao, J.J.; Shah, M.; Krol, D.; Wahby, S.; Royce, M.; Ghosh, S.; Philip, R.; Ison, G.; Berman, T.; Brus, C.; Bloomquist, E.W.; Fiero, M.H.; Tang, S.; Pazdur, R.; Ibrahim, A.; Amiri-Kordestani, L.; Beaver, J.A.US FDA drug approvals for breast cancer: A decade in review. Clin. Cancer Res., 2022, 28(6), 1072-1086. doi: 10.1158/1078-0432.CCR-21-2600 PMID: 34711632
- Rafferty, C.M. Everolimus: A new treatment for hormone receptorpositive advanced breast cancer. TON, 2013, 6(4)
- Chang, D.Y.; Ma, W.L.; Lu, Y.S. Role of Alpelisib in the treatment of PIK3CA-mutated breast cancer: Patient selection and clinical perspectives. Ther. Clin. Risk Manag., 2021, 17, 193-207. doi: 10.2147/TCRM.S251668 PMID: 33707948
- Narayan, P.; Prowell, T.M.; Gao, J.J.; Fernandes, L.L.; Li, E.; Jiang, X.; Qiu, J.; Fan, J.; Song, P.; Yu, J.; Zhang, X.; King-Kallimanis, B.L.; Chen, W.; Ricks, T.K.; Gong, Y.; Wang, X.; Windsor, K.; Rhieu, S.Y.; Geiser, G.; Banerjee, A.; Chen, X.; Reyes Turcu, F.; Chatterjee, D.K.; Pathak, A.; Seidman, J.; Ghosh, S.; Philip, R.; Goldberg, K.B.; Kluetz, P.G.; Tang, S.; Amiri-Kordestani, L.; Theoret, M.R.; Pazdur, R.; Beaver, J.A. FDA approval summary: Alpelisib plus fulvestrant for patients with HR-positive, HER2-negative, PIK3CA-mutated, advanced or metastatic breast cancer. Clin. Cancer Res., 2021, 27(7), 1842-1849. doi: 10.1158/1078-0432.CCR-20-3652 PMID: 33168657
- André, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; Yamashita, T.; Lu, Y.S.; Inoue, K.; Takahashi, M.; Pápai, Z.; Longin, A.S.; Mills, D.; Wilke, C.; Hirawat, S.; Juric, D. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N. Engl. J. Med., 2019, 380(20), 1929-1940. doi: 10.1056/NEJMoa1813904 PMID: 31091374
- Johnson, K.C.C.; Quiroga, D.; Sudheendra, P.; Wesolowski, R. Treatment of small (T1mic, T1a, and T1b) node-negative HER2+ breast cancer a review of current evidence for and against the use of anti-HER2 treatment regimens. Expert Rev. Anticancer Ther., 2022, 22(5), 505-522. doi: 10.1080/14737140.2022.2063844 PMID: 35389302
- Narayan, P.; Osgood, C.L.; Singh, H.; Chiu, H.J.; Ricks, T.K.; Chiu Yuen Chow, E.; Qiu, J.; Song, P.; Yu, J.; Namuswe, F.; Guiterrez-Lugo, M.; Hou, S.; Pierce, W.F.; Goldberg, K.B.; Tang, S.; Amiri-Kordestani, L.; Theoret, M.R.; Pazdur, R.; Beaver, J.A. FDA approval summary: Fam-trastuzumab deruxtecan-nxki for the treatment of unresectable or metastatic HER2-Positive breast cancer. Clin. Cancer Res., 2021, 27(16), 4478-4485. doi: 10.1158/1078-0432.CCR-20-4557 PMID: 33753456
- Saura, C.; Oliveira, M.; Feng, Y.H.; Dai, M.S.; Chen, S.W.; Hurvitz, S.A.; Kim, S.B.; Moy, B.; Delaloge, S.; Gradishar, W.; Masuda, N.; Palacova, M.; Trudeau, M.E.; Mattson, J.; Yap, Y.S.; Hou, M.F.; De Laurentiis, M.; Yeh, Y.M.; Chang, H.T.; Yau, T.; Wildiers, H.; Haley, B.; Fagnani, D.; Lu, Y.S.; Crown, J.; Lin, J.; Takahashi, M.; Takano, T.; Yamaguchi, M.; Fujii, T.; Yao, B.; Bebchuk, J.; Keyvanjah, K.; Bryce, R.; Brufsky, A. Neratinib plus capecitabine versus lapatinib plus capecitabine in HER2-positive metastatic breast cancer previously treated with≥ 2 HER2-directed regimens: Phase III NALA trial. J. Clin. Oncol., 2020, 38(27), 3138-3149. doi: 10.1200/JCO.20.00147 PMID: 32678716
- Shah, M.; Wedam, S.; Cheng, J.; Fiero, M.H.; Xia, H.; Li, F.; Fan, J.; Zhang, X.; Yu, J.; Song, P.; Chen, W.; Ricks, T.K.; Chen, X.H.; Goldberg, K.B.; Gong, Y.; Pierce, W.F.; Tang, S.; Theoret, M.R.; Pazdur, R.; Amiri-Kordestani, L.; Beaver, J.A. FDA approval summary: Tucatinib for the treatment of patients with advanced or metastatic HER2-positive breast cancer. Clin. Cancer Res., 2021, 27(5), 1220-1226. doi: 10.1158/1078-0432.CCR-20-2701 PMID: 33055172
- Crespo, J.; Sun, H.; Wu, J.; Ding, Q.Q.; Tang, G.; Robinson, M.K.; Chen, H.; Sahin, A.A.; Lim, B. Rate of reclassification of HER2-equivocal breast cancer cases to HER2-negative per the 2018 ASCO/CAP guidelines and response of HER2-equivocal cases to anti-HER2 therapy. PLoS One, 2020, 15(11), e0241775. doi: 10.1371/journal.pone.0241775 PMID: 33180796
- Markham, A. Margetuximab: First approval. Drugs, 2021, 81(5), 599-604. doi: 10.1007/s40265-021-01485-2 PMID: 33761116
- Rugo, H.S. Im, S.A.; Cardoso, F.; Cortés, J.; Curigliano, G.; Musolino, A.; Pegram, M.D.; Wright, G.S.; Saura, C.; Escrivá-de-Romaní, S.; De Laurentiis, M.; Levy, C.; Brown-Glaberman, U.; Ferrero, J.M.; de Boer, M.; Kim, S.B.; Petráková, K.; Yardley, D.A.; Freedman, O.; Jakobsen, E.H.; Kaufman, B.; Yerushalmi, R.; Fasching, P.A.; Nordstrom, J.L.; Bonvini, E.; Koenig, S.; Edlich, S.; Hong, S.; Rock, E.P.; Gradishar, W.J. Efficacy of margetuximab vs trastuzumab in patients with pretreated ERBB2-positive advanced breast cancer: A phase 3 randomized clinical trial. JAMA Oncol., 2021, 7(4), 573-584. doi: 10.1001/jamaoncol.2020.7932 PMID: 33480963
- Narayan, P.; Wahby, S.; Gao, J.J.; Amiri-Kordestani, L.; Ibrahim, A.; Bloomquist, E.; Tang, S.; Xu, Y.; Liu, J.; Fu, W.; Song, P.; King-Kallimanis, B.L.; Hou, S.; Gong, Y.; Kalavar, S.; Ghosh, S.; Philip, R.; Goldberg, K.B.; Theoret, M.R.; Blumenthal, G.M.; Kluetz, P.G.; Sridhara, R.; Pazdur, R.; Beaver, J.A. FDA approval summary: Atezolizumab plus paclitaxel protein-bound for the treatment of patients with advanced or metastatic TNBC whose tumors express PD-L1. Clin. Cancer Res., 2020, 26(10), 2284-2289. doi: 10.1158/1078-0432.CCR-19-3545 PMID: 32001481
- McCann, K.E.; Hurvitz, S.A.; McAndrew, N. Advances in targeted therapies for triple-negative breast cancer. Drugs, 2019, 79(11), 1217-1230. doi: 10.1007/s40265-019-01155-4 PMID: 31254268
- Cortes, J.; Cescon, D.W.; Rugo, H.S.; Nowecki, Z.; Im, S.A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Holgado, E.; Iwata, H.; Masuda, N.; Otero, M.T.; Gokmen, E.; Loi, S.; Guo, Z.; Zhao, J.; Aktan, G.; Karantza, V.; Schmid, P.; Luis, F.; Gonzalo, G.A.; Diego, K.; Ruben, K.; Matias, M.; Mirta, V.; Sally, B-H.; Stephen, B.; Philip, C.; Sherene, L.; Dhanusha, S.; Andrea, G.; Donatienne, T.; Carlos, B.; Leandro, B.; Fabiano, C.; Ruffo, F.J.; Roberto, H.; Domicio Carvalho, L.; Fernando Cezar Toniazzi, L.; Roberto Odebrecht, R.; Antonio Orlando, S.N.; Felipe, S.; David, C.; Danielle, C.; Cristiano, F.; Xinni, S.; Joanne, Y.; Alejandro, A.; Carlos, G.; Claudio, S.; Cesar, S.; Eduardo, Y.; Alvaro, G.D.; Jesus, S.; Petra, H.; Zdenek, K.; Bohuslav, M.; Katarina, P.; Jana, P.; Vesna, G.; Erik, J.; Jeanette, J.; Soren, L.; Tamas, L.; Herve, B.; Isabelle, D.; Anthony, G.; Anne-Claire, H-B.; Luis, T.; Jens-Uwe, B.; Peter, F.; Dirk, F.; Nadia, H.; Jens, H.; Anna, K.F.S.; Christian, K.; Sibylle, L.; Diana, L.; Tjoung-Won, P-S.; Raquel Von, S.; Pauline, W.; Louis, C.; Ava, K.; Kai Cheong Roger, N.; Peter, A.; Tibor, C.; Zsuzsanna, K.; Laszlo, L.; Karoly, M.; Gabor, R.; John, C.; Catherine, K.; Seamus, O.R.; Saverio, C.; Antonietta, D.A.; Enrico, R.; Tomoyuki, A.; Takaaki, F.; Kenichi, I.; Takashi, I.; Yoshinori, I.; Tsutomu, I.; Hiroji, I.; Yoshimasa, K.; Koji, M.; Yasuo, M.; Hirofumi, M.; Seigo, N.; Naoki, N.; Shoichiro, O.; Akihiko, O.; Yasuaki, S.; Eiji, S.; Masato, T.; Yuko, T.; Kenji, T.; Koichiro, T.; Junichiro, W.; Naohito, Y.; Yutaka, Y.; Teruo, Y.; Anita, B.; Mastura, M.Y.; Angel, G.V.; Alejandro, J.R.; Jorge, M.R.; Flavia, M-V.; Jessica, R.C.; Karin, B.; Vivianne, T-H.; David, P.; Ewa, C.; Ewa, N-Z.; Zbigniew, N.; Barbara, R.; Joanna, S.; Cezary, S.; Rafal, T.; Bogdan, Z.; Alexander, A.; Natalia, F.; Oleg, L.; Andrey, M.; Vladimir, M.; Guzel, M.; Jin Hee, A.; Seock-Ah, I.; Keun Seok, L.; Kwong Hwa, P.; Yeon Hee, P.; Begona, B.H.; Javier, C.; Josefina, C.J.; Luis, C.M.; Jose, G.S.; Maria, G.; Esther, H.; Esther, Z.A.; Chien-Ting, L.; Mei-Ching, L.; Chiun-Sheng, H.; Chao-Jung, T.; Ling-Ming, T.; Cagatay, A.; Gul, B.; Irfan, C.; Erhan, G.; Seyda, G.; Nil, M.M.; Mustafa, O.; Ozgur, O.; Sinan, Y.; Steve, C.; Janine, G.; Iain, M.P.; Peter, S.; Nicholas, T.; Mark, T.; Christopher, T.; Duncan, W.; Hryhoriy, A.; Oleksandr, B.; Igor, B.; Oleksii, K.; Olena, K.; Hanna, K.; Anna, K.; Iurii, L.; Alla, N.; Natalya, O.; Olga, P.; Andrii, R.; Sergii, S.; Yaroslav, S.; Dmytro, T.; Grygorii, U.; Ihor, V.; Sibel, B.; Madhu, C.; Michael, C.; Patrick, C.; Scott, C.; Jennifer, D.; Keerthi, G.; Jeffrey, H.; Kent, H.; William, I.; Randa, L.; Janice, L.; Raul, M.; Susan, M.; Rita, N.; Ira, O.; Coral, O.; Timothy, P.; Amit, P.; Brian, P.; Hope, R.; Irina, R.; Michael, S.; Robert, S.; Michael, S.; Laura, S.; Bradley, S.; Michaela, T.; Frances, V-A. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): A randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet, 2020, 396(10265), 1817-1828. doi: 10.1016/S0140-6736(20)32531-9 PMID: 33278935
- Wahby, S.; Fashoyin-Aje, L.; Osgood, C.L.; Cheng, J.; Fiero, M.H.; Zhang, L.; Tang, S.; Hamed, S.S.; Song, P.; Charlab, R.; Dorff, S.E.; Ricks, T.K.; Barnett-Ringgold, K.; Dinin, J.; Goldberg, K.B.; Theoret, M.R.; Pazdur, R.; Amiri-Kordestani, L.; Beaver, J.A. FDA approval summary: Accelerated approval of sacituzumab govitecan-hziy for third-line treatment of metastatic triple-negative breast cancer. Clin. Cancer Res., 2021, 27(7), 1850-1854. doi: 10.1158/1078-0432.CCR-20-3119 PMID: 33168656
- Robson, M.; Im, S.A.; Senkus, E.; Xu, B.; Domchek, S.M.; Masuda, N.; Delaloge, S.; Li, W.; Tung, N.; Armstrong, A.; Wu, W.; Goessl, C.; Runswick, S.; Conte, P. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N. Engl. J. Med., 2017, 377(6), 523-533. doi: 10.1056/NEJMoa1706450 PMID: 28578601
- Yardley, D.A.; McCleod, M.; Schreiber, F.; Murphy, P.; Patton, J.; Thompson, D.S.; Shastry, M.; Rubin, M.; Melnik, M.; Burris, H.A.; Hainsworth, J.D. A phase II trial of vinflunine as monotherapy or in combination with trastuzumab as first-line treatment of metastatic breast cancer. Cancer Invest., 2010, 28(9), 925-931. doi: 10.3109/07357907.2010.496755 PMID: 20690806
- Rampogu, S.; Balasubramaniyam, T.; Lee, J.H. Phytotherapeutic applications of alkaloids in treating breast cancer. Biomed. Pharmacother., 2022, 155, 113760. doi: 10.1016/j.biopha.2022.113760 PMID: 36271547
- An, B.; Zhang, S.; Hu, J.; Pan, T.; Huang, L.; Tang, J.C.; Li, X.; Chan, A.S.C. The design, synthesis and evaluation of selenium-containing 4-anilinoquinazoline hybrids as anticancer agents and a study of their mechanism. Org. Biomol. Chem., 2018, 16(25), 4701-4714. doi: 10.1039/C8OB00875B PMID: 29900452
- Arya, K.R.; Rajendra Prasad, K.J. Rational eco-compatible synthesis and biological screening of new highly functionalized pyrido2,3- acarbazole derivatives: A novel class of antioxidant and anticancer agents. Synth. Commun., 2018, 48(12), 1465-1481. doi: 10.1080/00397911.2018.1455211
- Parrino, B.; Ullo, S.; Attanzio, A.; Cascioferro, S.; Spanò, V.; Carbone, A.; Montalbano, A.; Barraja, P.; Cirrincione, G.; Tesoriere, L.; Diana, P. Synthesis of 5H-pyrido3,2-bpyrrolizin-5-one tripentone analogs with antitumor activity. Eur. J. Med. Chem., 2018, 158, 236-246. doi: 10.1016/j.ejmech.2018.09.017 PMID: 30218909
- Chate, A.V.; Kamdi, S.P.; Bhagat, A.N.; Jadhav, C.K.; Nipte, A.; Sarkate, A.P.; Tiwari, S.V.; Gill, C.H. Design, synthesis and SAR study of novel spiro pyrimido5,4-bquinoline-10,5′-pyrrolo2,3-dpyrimidine derivatives as promising anticancer agents. J. Heterocycl. Chem., 2018, 55(10), 2297-2302. doi: 10.1002/jhet.3286
- Chen, S.; Yong, T.; Xiao, C.; Su, J.; Zhang, Y.; Jiao, C.; Xie, Y. Pyrrole alkaloids and ergosterols from Grifola frondosa exert anti-α-glucosidase and anti-proliferative activities. J. Funct. Foods, 2018, 43, 196-205. doi: 10.1016/j.jff.2018.02.007
- Fang, J.; Huang, T.; Xia, M.; Deng, L.; Hao, X.; Wang, Y.; Mu, S. Design and synthesis of novel monoterpenoid indole alkaloid-like analogues and their antitumour activities in vitro. Org. Biomol. Chem., 2018, 16(16), 3026-3037. doi: 10.1039/C8OB00677F PMID: 29634066
- Ghanbarimasir, Z.; Bekhradnia, A.; Morteza-Semnani, K.; Rafiei, A.; Razzaghi-Asl, N.; Kardan, M. Design, synthesis, biological assessment and molecular docking studies of new 2-aminoimidazole-quinoxaline hybrids as potential anticancer agents. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 194, 21-35. doi: 10.1016/j.saa.2017.12.063 PMID: 29310028
- Jha, K.K.; Dutta, S.; Sar, S.; Sen, S.; Munshi, P. Harnessing sun for catalyst and sensitizer free regio- and stereo-selective 2+2 cycloaddition. Tetrahedron, 2018, 74(51), 7326-7334. doi: 10.1016/j.tet.2018.10.065
- Guo, L.; Chen, W.; Cao, R.; Fan, W.; Ma, Q.; Zhang, J.; Dai, B. Synthesis and structure-activity relationships of asymmetric dimeric β-carboline derivatives as potential antitumor agents. Eur. J. Med. Chem., 2018, 147, 253-265. doi: 10.1016/j.ejmech.2018.02.003 PMID: 29448140
- Kumari, P.; Narayana, C.; Dubey, S.; Gupta, A.; Sagar, R. Stereoselective synthesis of natural product inspired carbohydrate fused pyrano3,2- cquinolones as antiproliferative agents. Org. Biomol. Chem., 2018, 16(12), 2049-2059. doi: 10.1039/C7OB03186F PMID: 29411817
- Chen, K.; Zhang, Y.L.; Fan, J.; Ma, X.; Qin, Y.J.; Zhu, H.L. Novel nicotinoyl pyrazoline derivates bearing N-methyl indole moiety as antitumor agents: Design, synthesis and evaluation. Eur. J. Med. Chem., 2018, 156, 722-737. doi: 10.1016/j.ejmech.2018.07.044 PMID: 30041136
- Lan, J.; Huang, L.; Lou, H.; Chen, C.; Liu, T.; Hu, S.; Yao, Y.; Song, J.; Luo, J.; Liu, Y.; Xia, B.; Xia, L.; Zeng, X.; Ben-David, Y.; Pan, W. Design and synthesis of novel C14-urea-tetrandrine derivatives with potent anti-cancer activity. Eur. J. Med. Chem., 2018, 143, 1968-1980. doi: 10.1016/j.ejmech.2017.11.007 PMID: 29133049
- Li, W.S.; Yang, Y.; Liu, J.J.; Shen, L.; Shi, Z.; Wu, J. Scaffold diversity-oriented synthesis of limonoid dimers: Discovery of an axially chiral agent with in vivo anti-breast cancer activity. Org. Chem. Front., 2018, 5(7), 1079-1091. doi: 10.1039/C8QO00154E
- Budovská, M.; Balá, M.; Mezencev, R.; Tischlerová, V.; Zigová, M.; Moji, J. Design, synthesis and anticancer activity of trifluoromethylphenylamino substituted spiroindoles. J. Fluor. Chem., 2018, 216, 24-32. doi: 10.1016/j.jfluchem.2018.09.011
- Li, Y.; Yan, W.; Yang, J.; Yang, Z.; Hu, M.; Bai, P.; Tang, M.; Chen, L. Discovery of novel β-carboline/acylhydrazone hybrids as potent antitumor agents and overcome drug resistance. Eur. J. Med. Chem., 2018, 152, 516-526. doi: 10.1016/j.ejmech.2018.05.003 PMID: 29754076
- Murali, K.; Sparkes, H.A.; Rajendra Prasad, K.J. Regio- and stereoselective synthesis of dispirooxindole-pyrrolocarbazole hybrids via 1,3-dipolar cycloaddition reactions: Cytotoxic activity and SAR studies. Eur. J. Med. Chem., 2018, 143, 292-305. doi: 10.1016/j.ejmech.2017.11.039 PMID: 29197734
- Satheeshkumar, R.; Muthusankar, A.; Edatt, L.; Sameer Kumar, V.B.; Sparkes, H.A.; Rajendra Prasad, K.J. Synthesis of heteroannulated cyclopent bindoles: Exploration of in vitro cytotoxicity and molecular docking studies. Synth. Commun., 2018, 48(4), 447-461. doi: 10.1080/00397911.2017.1407792
- Sathish, M.; Kavitha, B.; Nayak, V.L.; Tangella, Y.; Ajitha, A.; Nekkanti, S.; Alarifi, A.; Shankaraiah, N.; Nagesh, N.; Kamal, A. Synthesis of podophyllotoxin linked β-carboline congeners as potential anticancer agents and DNA topoisomerase II inhibitors. Eur. J. Med. Chem., 2018, 144, 557-571. doi: 10.1016/j.ejmech.2017.12.055 PMID: 29289881
- Thirunavukkarasu, T.; Sparkes, H.A.; Natarajan, K. Quinoline based Pd(II) complexes: Synthesis, characterization and evaluation of DNA/protein binding, molecular docking and in vitro anticancer activity. Inorg. Chim. Acta, 2018, 482, 229-239. doi: 10.1016/j.ica.2018.06.003
- Stefański, T.; Mikstacka, R.; Kurczab, R.; Dutkiewicz, Z.; Kucińska, M.; Murias, M.; Zielińska-Przyjemska, M.; Cichocki, M.; Teubert, A.; Kaczmarek, M.; Hogendorf, A.; Sobiak, S. Design, synthesis, and biological evaluation of novel combretastatin A-4 thio derivatives as microtubule targeting agents. Eur. J. Med. Chem., 2018, 144, 797-816. doi: 10.1016/j.ejmech.2017.11.050 PMID: 29291446
- Hekal, M.H.; Abu El-Azm, F.S.M.; Sallam, H.A. Synthesis, spectral characterization, and in vitro biological evaluation of some novel isoquinolinone-based heterocycles as potential antitumor agents. J. Heterocycl. Chem., 2019, 56(3), 795-803. doi: 10.1002/jhet.3448
- Bondock, S.; Alqahtani, S.; Fouda, A.M. Convenient synthesis and antitumor evaluation of some new 9-ethyl-3-(hetaryl)carbazoles. Synth. Commun., 2019, 49(17), 2188-2202. doi: 10.1080/00397911.2019.1616759
- Pan, X.; Liang, L.; Si, R.; Wang, J.; Zhang, Q.; Zhou, H.; Zhang, L.; Zhang, J. Discovery of novel anti-angiogenesis agents. Part 10: Multi-target inhibitors of VEGFR-2, Tie-2 and EphB4 incorporated with 1,2,3-triazol. Eur. J. Med. Chem., 2019, 163, 1-9. doi: 10.1016/j.ejmech.2018.11.042 PMID: 30503935
- Mustafa, M.; Anwar, S.; Elgamal, F.; Ahmed, E.R.; Aly, O.M. Potent combretastatin A-4 analogs containing 1,2,4-triazole: Synthesis, antiproliferative, anti-tubulin activity, and docking study. Eur. J. Med. Chem., 2019, 183, 111697. doi: 10.1016/j.ejmech.2019.111697 PMID: 31536891
- Pang, Y.; Lin, H.; Ou, C.; Cao, Y.; An, B.; Yan, J.; Li, X. Design, synthesis, and biological evaluation of novel benzodiazepine derivatives as anticancer agents through inhibition of tubulin polymerization in vitro and in vivo. Eur. J. Med. Chem., 2019, 182, 111670. doi: 10.1016/j.ejmech.2019.111670 PMID: 31499359
- Patel, O.P.S.; Arun, A.; Singh, P.K.; Saini, D.; Karade, S.S.; Chourasia, M.K.; Konwar, R.; Yadav, P.P. Pyranocarbazole derivatives as potent anti-cancer agents triggering tubulin polymerization stabilization induced activation of caspase-dependent apoptosis and downregulation of Akt/mTOR in breast cancer cells. Eur. J. Med. Chem., 2019, 167, 226-244. doi: 10.1016/j.ejmech.2019.02.003 PMID: 30772606
- Ceramella, J.; Caruso, A.; Occhiuzzi, M.A.; Iacopetta, D.; Barbarossa, A.; Rizzuti, B.; Dallemagne, P.; Rault, S.; El-Kashef, H.; Saturnino, C.; Grande, F.; Sinicropi, M.S. Benzothienoquinazolinones as new multi-target scaffolds: Dual inhibition of human Topoisomerase I and tubulin polymerization. Eur. J. Med. Chem., 2019, 181, 111583. doi: 10.1016/j.ejmech.2019.111583 PMID: 31400710
- Varró, G.; Pálchuber, P.; Pogrányi, B.; Simon, A.; Hegedűs, L.; Kádas, I. (±)-trans-Dihydronarciclasine and (±)-trans-dihydrolycoricidine analogues modified in their ring A: Evaluation of their anticancer activity and a SAR study. Eur. J. Med. Chem., 2019, 173, 76-89. doi: 10.1016/j.ejmech.2019.04.010 PMID: 30986573
- Piechowska, K.; Świtalska, M.; Cytarska, J.; Jaroch, K.; Łuczykowski, K.; Chałupka, J.; Wietrzyk, J.; Misiura, K.; Bojko, B.; Kruszewski, S.; Łączkowski, K.Z. Discovery of tropinone-thiazole derivatives as potent caspase 3/7 activators, and noncompetitive tyrosinase inhibitors with high antiproliferative activity: Rational design, one-pot tricomponent synthesis, and lipophilicity determination. Eur. J. Med. Chem., 2019, 175, 162-171. doi: 10.1016/j.ejmech.2019.05.006 PMID: 31082763
- Li, L.; Quan, D.; Chen, J.; Ding, J.; Zhao, J.; Lv, L.; Chen, J. Design, synthesis, and biological evaluation of 1-substituted -2-aryl imidazoles targeting tubulin polymerization as potential anticancer agents. Eur. J. Med. Chem., 2019, 184, 111732. doi: 10.1016/j.ejmech.2019.111732 PMID: 31610372
- Venkatesh, R.; Kasaboina, S.; Jain, N.; Janardhan, S.; Holagunda, U.D.; Nagarapu, L. Design and synthesis of novel sulphamide tethered quinazolinone hybrids as potential antitumor agents. J. Mol. Struct., 2019, 1181, 403-411. doi: 10.1016/j.molstruc.2018.12.098
- Venkat Swamy, P.; Kiran Kumar, V.; Radhakrishnam Raju, R.; Venkata Reddy, R.; Chatterjee, A.; Kiran, G.; Sridhar, G. Amide derivatives of 4-azaindole: Design, synthesis, and EGFR targeting anticancer agents. Synth. Commun., 2020, 50(1), 71-84. doi: 10.1080/00397911.2019.1683206
- Yavuz, S.Ç.; Akkoç, S.; Sarıpınar, E. The cytotoxic activities of imidazole derivatives prepared from various guanylhydrazone and phenylglyoxal monohydrate. Synth. Commun., 2019, 49(22), 3198-3209. doi: 10.1080/00397911.2019.1661481
- Shen, Q.K.; Deng, H.; Wang, S.B.; Tian, Y.S.; Quan, Z.S. Synthesis, and evaluation of in vitro and in vivo anticancer activity of 14-substituted oridonin analogs: A novel and potent cell cycle arrest and apoptosis inducer through the p53-MDM2 pathway. Eur. J. Med. Chem., 2019, 173, 15-31. doi: 10.1016/j.ejmech.2019.04.005 PMID: 30981113
- Mahanti, S.; Sunkara, S.; Bhavani, R. Synthesis, biological evaluation and computational studies of fused acridine containing 1,2,4-triazole derivatives as anticancer agents. Synth. Commun., 2019, 49(13), 1729-1740. doi: 10.1080/00397911.2019.1608450
- Nishtala, V.B.; Gandamalla, D.; Yellu, N.R.; Basavoju, S. Synthesis of spirooxindoles promoted by the deep eutectic solvent, ZnCl2+ urea via the pseudo four-component reaction: Anticancer, antioxidant, and molecular docking studies. Synth. Commun., 2019, 49(20), 2671-2682. doi: 10.1080/00397911.2019.1639193
- Mirzaei, S.; Eisvand, F.; Hadizadeh, F.; Mosaffa, F.; Ghasemi, A.; Ghodsi, R. Design, synthesis and biological evaluation of novel 5,6,7-trimethoxy-N-aryl-2-styrylquinolin-4-amines as potential anticancer agents and tubulin polymerization inhibitors. Bioorg. Chem., 2020, 98, 103711. doi: 10.1016/j.bioorg.2020.103711 PMID: 32179282
- Donthiboina, K.; Anchi, P.; Gurram, S.; Sai, M. G.; Lakshmi Uppu, J.; Godugu, C.; Shankaraiah, N.; Kamal, A. Synthesis and biological evaluation of substituted N-(2-(1H-benzodimidazol-2-yl)phenyl)cinnamides as tubulin polymerization inhibitors. Bioorg. Chem., 2020, 103, 104191. doi: 10.1016/j.bioorg.2020.104191 PMID: 32891862
- George, R.F.; Kandeel, M.; El-Ansary, D.Y.; El Kerdawy, A.M. Some 1,3,5-trisubstituted pyrazoline derivatives targeting breast cancer: Design, synthesis, cytotoxic activity, EGFR inhibition and molecular docking. Bioorg. Chem., 2020, 99, 103780. doi: 10.1016/j.bioorg.2020.103780 PMID: 32224337
- Gür, M.; Yerlikaya, S.; Şener, N.; Özkınalı, S.; Baloglu, M.C.; Gökçe, H.; Altunoglu, Y.C.; Demir, S.; Şener, İ. Antiproliferative-antimicrobial properties and structural analysis of newly synthesized Schiff bases derived from some 1,3,4-thiadiazole compounds. J. Mol. Struct., 2020, 1219, 128570. doi: 10.1016/j.molstruc.2020.128570
- Desai, S.; Desai, V.; Shingade, S. In-vitro Anti-cancer assay and apoptotic cell pathway of newly synthesized benzoxazole-N-heterocyclic hybrids as potent tyrosine kinase inhibitors. Bioorg. Chem., 2020, 94, 103382. doi: 10.1016/j.bioorg.2019.103382 PMID: 31662214
- Mirzaei, S.; Hadizadeh, F.; Eisvand, F.; Mosaffa, F.; Ghodsi, R. Synthesis, structure-activity relationship and molecular docking studies of novel quinoline-chalcone hybrids as potential anticancer agents and tubulin inhibitors. J. Mol. Struct., 2020, 1202, 127310. doi: 10.1016/j.molstruc.2019.127310
- Kouba, S.; Braire, J.; Félix, R.; Chantôme, A.; Jaffrès, P.A.; Lebreton, J.; Dubreuil, D.; Pipelier, M.; Zhang, X.; Trebak, M.; Vandier, C.; Mathé-Allainmat, M.; Potier-Cartereau, M. Lipidic synthetic alkaloids as SK3 channel modulators. Synthesis and biological evaluation of 2-substituted tetrahydropyridine derivatives with potential anti-metastatic activity. Eur. J. Med. Chem., 2020, 186, 111854. doi: 10.1016/j.ejmech.2019.111854 PMID: 31753515
- Zhou, S.; Huang, G. Design, synthesis and biological evaluation of novel 7H-benzo c 1, 3 dioxolo 4, 5-f chromen-7-one derivatives with potential anti-tumor activity. Bioorg. Chem., 2020, 105, 104381. doi: 10.1016/j.bioorg.2020.104381 PMID: 33113412
- Xue, H.; Svatek, H.; Bertonha, A.F.; Reisenauer, K.; Robinson, J.; Kim, M.; Ingros, A.; Ho, M.; Taube, J.; Romo, D. Synthesis of agelastatin A and derivatives premised on a hidden symmetry element leading to analogs displaying anticancer activity. Tetrahedron, 2021, 94, 132340. doi: 10.1016/j.tet.2021.132340 PMID: 35663119
- Eissa, I.H.; Dahab, M.A.; Ibrahim, M.K.; Alsaif, N.A.; Alanazi, A.Z.; Eissa, S.I.; Mehany, A.B.M.; Beauchemin, A.M. Design and discovery of new antiproliferative 1,2,4-triazin-3(2H)-ones as tubulin polymerization inhibitors targeting colchicine binding site. Bioorg. Chem., 2021, 112, 104965. doi: 10.1016/j.bioorg.2021.104965 PMID: 34020238
- Elimam, D.M.; Elgazar, A.A.; Bonardi, A.; Abdelfadil, M.; Nocentini, A.; El-Domany, R.A.; Abdel-Aziz, H.A.; Badria, F.A.; Supuran, C.T.; Eldehna, W.M. Natural inspired piperine-based sulfonamides and carboxylic acids as carbonic anhydrase inhibitors: Design, synthesis and biological evaluation. Eur. J. Med. Chem., 2021, 225, 113800. doi: 10.1016/j.ejmech.2021.113800 PMID: 34482273
- Chen, Y.Y.; Bai, Y.P.; Li, B.; Zhao, X.B.; Yang, C.J.; Liu, Y.Q.; Gao, J.M.; Guo, J.; Li, C.; Peng, J.W.; Zhao, Z.M.; Zhang, Z.J.; Xu, C.R. Design and synthesis of novel 20(S)-α-aminophosphonate derivatives of camptothecin as potent antitumor agents. Bioorg. Chem., 2021, 114, 105065. doi: 10.1016/j.bioorg.2021.105065 PMID: 34174631
- Hassan, S.M.; Morsy, J.M.; Hassanin, H.M.; Othman, E.S. Synthesis and cytotoxic evaluation of novel brominated N-alkyl pyrano3,2-cquinolinones. J. Heterocycl. Chem., 2021, 58(1), 305-314. doi: 10.1002/jhet.4169
- Kulkarni, M.R.; Lad, N.P.; Khedkar, V.M.; Gaikwad, N.D. Synthesis, in vitro cytotoxicity, and molecular docking study of novel 3, 4-dihydroisoquinolin-1(2H)-one based piperlongumine analogues. J. Heterocycl. Chem., 2021, 58(6), 1359-1370. doi: 10.1002/jhet.4264
- Luan, S.; Gao, Y.; Liang, X.; Zhang, L.; Yin, L.; He, C.; Liu, S.; Yin, Z.; Yue, G.; Zou, Y.; Li, L.; Song, X.; Lv, C.; Zhang, W.; Jing, B. Synthesis and structure-activity relationship of lipo-diterpenoid alkaloids with potential target of topoisomerase IIα for breast cancer treatment. Bioorg. Chem., 2021, 109, 104699. doi: 10.1016/j.bioorg.2021.104699 PMID: 33611138
- Sun, J.; Wang, J.; Wang, X.; Hu, X.; Cao, H.; Bai, J.; Li, D.; Hua, H. Design and synthesis of β-carboline derivatives with nitrogen mustard moieties against breast cancer. Bioorg. Med. Chem., 2021, 45, 116341. doi: 10.1016/j.bmc.2021.116341 PMID: 34365102
- Al-Nemari, R.; Bacha, A.B.; Al-Senaidy, A.; Almutairi, M.H.; Arafah, M.; Al-Saran, H.; Abutaha, N.; Semlali, A. Cytotoxic effects of Annona squamosa leaves against breast cancer cells via apoptotic signaling proteins. J. King Saud Univ. Sci., 2022, 34(4), 102013. doi: 10.1016/j.jksus.2022.102013
- Yang, P.; Cheng, Y.; Huang, X.; Huang, B.; Yi, L.; He, H.; Xie, Y. Identification of a new benzophenanthridine alkaloid from Eomecon chionantha induced necroptosis in breast cancer cells. Nat. Prod. Res., 2023, 37(6), 912-918. doi: 10.1080/14786419.2022.2096606 PMID: 35801972
Supplementary files
