Activation of Stimulator of Interferon Genes (STING): Promising Strategy to Overcome Immune Resistance in Prostate Cancer


如何引用文章

全文:

详细

:Prostate cancer (PCa) is the most frequent and second-lethal cancer among men. Despite considerable efforts to explore treatments like autologous cellular immunotherapy and immune checkpoint inhibitors, their success remains limited. The intricate tumor microenvironment (TME) and its interaction with the immune system pose significant challenges in PCa treatment. Consequently, researchers have directed their focus on augmenting the immune system's anti-tumor response by targeting the STimulator of the Interferon Genes (STING) pathway. The STING pathway is activated when foreign DNA is detected in the cytoplasm of innate immune cells, resulting in the activation of endoplasmic reticulum (ER) STING. This, in turn, triggers an augmentation of signaling, leading to the production of type I interferon (IFN) and other pro-inflammatory cytokines. Numerous studies have demonstrated that activation of the STING pathway induces immune system rejection and targeted elimination of PCa cells. Researchers have been exploring various methods to activate the STING pathway, including the use of bacterial vectors to deliver STING agonists and the combination of radiation therapy with STING agonists. Achieving effective radiation therapy with minimal side effects and optimal anti-tumor immune responses necessitates precise adjustments to radiation dosing and fractionation schedules. This comprehensive review discusses promising findings from studies focusing on activating the STING pathway to combat PCa. The STING pathway exhibits the potential to serve as an effective treatment modality for PCa, offering new hope for improving the lives of those affected by this devastating disease.

作者简介

Mohammed Alnukhali

Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami

Email: info@benthamscience.net

Omar Altabbakh

College of Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University

Email: info@benthamscience.net

Ammad Farooqi

National Institute for Genomics and Advanced Biotechnology, Institute of Biomedical and Genetic Engineering (IBGE)

Email: info@benthamscience.net

Alan Pollack

Department of Radiation Oncology, Miller School of Medicine, University of Miami

Email: info@benthamscience.net

Sylvia Daunert

Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami

Email: info@benthamscience.net

Sapna Deo

Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami

编辑信件的主要联系方式.
Email: info@benthamscience.net

Wensi Tao

Department of Radiation Oncology, Miller School of Medicine, University of Miami

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Noone, A.M. Cancer statistics review 1975-2017 - SEER Statistics, 2018. Available from: https://seer.cancer.gov/archive/csr/1975_2017/ cited 2023 Apr 26.
  2. Deb, P.; Dai, J.; Singh, S.; Kalyoussef, E.; Fitzgerald-Bocarsly, P. Triggering of the cGAS–STING pathway in human plasmacytoid dendritic cells inhibits tlr9-mediated ifn production. J. Immunol., 2020, 205(1), 223-236. doi: 10.4049/jimmunol.1800933 PMID: 32471881
  3. Pu, F.; Chen, F.; Liu, J.; Zhang, Z.; Shao, Z. Immune regulation of the cgas-sting signaling pathway in the tumor microenvironment and its clinical application. OncoTargets Ther., 2021, 14, 1501-1516. doi: 10.2147/OTT.S298958 PMID: 33688199
  4. Stultz, J.; Fong, L. How to turn up the heat on the cold immune microenvironment of metastatic prostate cancer; Prostate Cancer and Prostatic Diseases. Springer Nature, 2021, 24, pp. 697-717.
  5. Xu, Y.; Li, H.; Fan, Y. Progression patterns, treatment, and prognosis beyond resistance of responders to immunotherapy in advanced non-small cell lung cancer. Front. Oncol., 2021, 11, 642883. doi: 10.3389/fonc.2021.642883 PMID: 33747966
  6. Vogelzang, N.J.; Beer, T.M.; Gerritsen, W.; Oudard, S.; Wiechno, P.; Kukielka-Budny, B.; Samal, V.; Hajek, J.; Feyerabend, S.; Khoo, V.; Stenzl, A.; Csöszi, T.; Filipovic, Z.; Goncalves, F.; Prokhorov, A.; Cheung, E.; Hussain, A.; Sousa, N.; Bahl, A.; Hussain, S.; Fricke, H.; Kadlecova, P.; Scheiner, T.; Korolkiewicz, R.P.; Bartunkova, J.; Spisek, R.; Stadler, W.; Berg, A.S.; Kurth, K-H.; Higano, C.S.; Aapro, M.; Krainer, M.; Hruby, S.; Meran, J.; Polyakov, S.; Machiels, J-P.; Roumeguere, T.; Ackaert, K.; Lumen, N.; Gil, T.; Minchev, V.; Tomova, A.; Dimitrov, B.; Koleva, M.; Juretic, A.; Fröbe, A.; Vojnovic, Z.; Drabek, M.; Jarolim, L.; Buchler, T.; Kindlova, E.; Schraml, J.; Zemanova, M.; Prausova, J.; Melichar, B.; Chodacka, M.; Jansa, J.; Daugaard, G.; Delonchamps, N.; Duclos, B.; Culine, S.; Deplanque, G.; Le Moulec, S.; Hammerer, P.; Rodemer, G.; Ritter, M.; Merseburger, A.; Grimm, M-O.; Damjanoski, I.; Wirth, M.; Burmester, M.; Miller, K.; Herden, J.; Keck, B.; Wuelfing, C.; Winter, A.; Boegemann, M.; von Schmeling, I.K.; Fornara, P.; Jaeger, E.; Bodoky, G.; Pápai, Z.; Böszörményi-Nagy, G.; Vanella, P.; SotoParra, H.; Passalacqua, R.; Ferrau, F.; Maio, M.; Fratino, L.; Cortesi, E.; Purkalne, G.; Asadauskiene, J.; Janciauskiene, R.; Tulyte, S.; Cesas, A.; Polee, M.; Haberkorn, B.; van de Eertwegh, F.; van den Berg, P.; Beeker, A.; Nieboer, P.; Zdrojowy, R.; Staroslawska, E.; Fijuth, J.; Sikora-Kupis, B.; Karaszewska, B.; Fernandes, I.; Sousa, G.; Rodrigues, T.; Dzamic, Z.; Babovic, N.; Cvetkovic, B.; Sokol, R.; Mikuláš, J.; Gajdos, M.; Brezovsky, M.; Mincik, I.; Breza, J.; Arranz, J.A.; Calvo, V.; Rubio, G.; Chapado, M.S.; Boreu, P.G.; Montesa, A.; Olmos, D.; Mellado, B.; Castellano, D.; Puente, J.; Karlsson, E.T.; Ahlgren, J.; Pandha, H.; Mazhar, D.; Vilarino-Varela, M.; Elliott, T.; Pedley, I.; Zarkar, A.; Law, A.; Slater, D.; Karlin, G.; Bilusic, M.; Redfern, C.; Gaur, R.; McCroskey, R.; Clarkson, D.; Agrawal, M.; Shtivelband, M.; Nordquist, L.; Karim, N.; Hauke, R.; Flaig, T.; Jhangiani, H.; Singal, R.; Choi, B.; Reyes, E.; Corman, J.; Hwang, C.; Appleman, L.; McClay, E.; Fleming, M.; Gunuganti, V.; Cheung, E.; Gartrell, B.; Sartor, A.; Williamson, S.; Gandhi, J.; Schnadig, I.; Burke, J.; Bloom, S.; Shore, N.; Mayer, T.; Oh, W.; Bryce, A.; Belkoff, L.; Vaishampayan, U.; Agarwala, S.; Kucuk, O.; Agrawal, A.; Walsh, W.; Poiesz, B.; Harshman, L.; Dawson, N.; Sharma, S. Efficacy and safety of autologous dendritic cell–based immunotherapy, docetaxel, and prednisone vs placebo in patients with metastatic castration-resistant prostate cancer. JAMA Oncol., 2022, 8(4), 546-552. doi: 10.1001/jamaoncol.2021.7298 PMID: 35142815
  7. Wang, Y.; Xiang, Y.; Xin, V.W.; Wang, X.W.; Peng, X.C.; Liu, X.Q.; Wang, D.; Li, N.; Cheng, J.T.; Lyv, Y.N.; Cui, S.Z.; Ma, Z.; Zhang, Q.; Xin, H.W. Dendritic cell biology and its role in tumor immunotherapy. J. Hematol. Oncol., 2020, 13(1), 107. doi: 10.1186/s13045-020-00939-6 PMID: 32746880
  8. Venkatachalam, S.; McFarland, T.R.; Agarwal, N.; Swami, U. Immune checkpoint inhibitors in prostate cancer. Cancers, 2021, 13(9), 2187. doi: 10.3390/cancers13092187 PMID: 34063238
  9. Kim, T.J.; Koo, K.C. Current status and future perspectives of checkpoint inhibitor immunotherapy for prostate cancer: A comprehensive review. Int. J. Mol. Sci., 2020, 21(15), 5484. doi: 10.3390/ijms21155484 PMID: 32751945
  10. Madan, R.A.; Antonarakis, E.S.; Drake, C.G.; Fong, L.; Yu, E.Y.; McNeel, D.G.; Lin, D.W.; Chang, N.N.; Sheikh, N.A.; Gulley, J.L. Putting the pieces together: Completing the mechanism of action jigsaw for sipuleucel-T. J. Natl. Cancer Inst., 2020, 112(6), 562-573. doi: 10.1093/jnci/djaa021 PMID: 32145020
  11. Kwon, J.; Bakhoum, S.F. The cytosolic dna-sensing cGAS–STING pathway in cancer. Cancer Discov., 2020, 10(1), 26-39. doi: 10.1158/2159-8290.CD-19-0761 PMID: 31852718
  12. Dou, Z.; Ghosh, K.; Vizioli, M.G.; Zhu, J.; Sen, P.; Wangensteen, K.J.; Simithy, J.; Lan, Y.; Lin, Y.; Zhou, Z.; Capell, B.C.; Xu, C.; Xu, M.; Kieckhaefer, J.E.; Jiang, T.; Shoshkes-Carmel, M.; Tanim, K.M.A.A.; Barber, G.N.; Seykora, J.T.; Millar, S.E.; Kaestner, K.H.; Garcia, B.A.; Adams, P.D.; Berger, S.L. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature, 2017, 550(7676), 402-406. doi: 10.1038/nature24050 PMID: 28976970
  13. Chen, Q.; Sun, L.; Chen, Z.J. Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat. Immunol., 2016, 17(10), 1142-1149. doi: 10.1038/ni.3558 PMID: 27648547
  14. Jiang, M.; Chen, P.; Wang, L.; Li, W.; Chen, B.; Liu, Y.; Wang, H.; Zhao, S.; Ye, L.; He, Y.; Zhou, C. cGAS-STING, an important pathway in cancer immunotherapy. J. Hematol. Oncol., 2020, 13(1), 81. doi: 10.1186/s13045-020-00916-z PMID: 32571374
  15. Suter, M.A.; Tan, N.Y.; Thiam, C.H.; Khatoo, M.; MacAry, P.A.; Angeli, V.; Gasser, S.; Zhang, Y.L. cGAS–STING cytosolic DNA sensing pathway is suppressed by JAK2-STAT3 in tumor cells. Sci. Rep., 2021, 11(1), 7243. doi: 10.1038/s41598-021-86644-x PMID: 33790360
  16. Sen, T.; Rodriguez, B.L.; Chen, L.; Corte, C.M.D.; Morikawa, N.; Fujimoto, J.; Cristea, S.; Nguyen, T.; Diao, L.; Li, L.; Fan, Y.; Yang, Y.; Wang, J.; Glisson, B.S.; Wistuba, I.I.; Sage, J.; Heymach, J.V.; Gibbons, D.L.; Byers, L.A. Targeting DNA damage response promotes antitumor immunity through sting-mediated t-cell activation in small cell lung cancer. Cancer Discov., 2019, 9(5), 646-661. doi: 10.1158/2159-8290.CD-18-1020 PMID: 30777870
  17. Maleki Vareki, S. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors. J. Immunother. Cancer, 2018, 6(1), 157. doi: 10.1186/s40425-018-0479-7 PMID: 30587233
  18. Liu, Y.T.; Sun, Z.J. Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics, 2021, 11(11), 5365-5386. doi: 10.7150/thno.58390 PMID: 33859752
  19. Han, G.; Yang, G.; Hao, D.; Lu, Y.; Thein, K.; Simpson, B.S.; Chen, J.; Sun, R.; Alhalabi, O.; Wang, R.; Dang, M.; Dai, E.; Zhang, S.; Nie, F.; Zhao, S.; Guo, C.; Hamza, A.; Czerniak, B.; Cheng, C.; Siefker-Radtke, A.; Bhat, K.; Futreal, A.; Peng, G.; Wargo, J.; Peng, W.; Kadara, H.; Ajani, J.; Swanton, C.; Litchfield, K.; Ahnert, J.R.; Gao, J.; Wang, L. 9p21 loss confers a cold tumor immune microenvironment and primary resistance to immune checkpoint therapy. Nat. Commun., 2021, 12(1), 5606. doi: 10.1038/s41467-021-25894-9 PMID: 34556668
  20. Bonaventura, P.; Shekarian, T.; Alcazer, V.; Valladeau-Guilemond, J.; Valsesia-Wittmann, S.; Amigorena, S.; Caux, C.; Depil, S. Cold tumors: A therapeutic challenge for immunotherapy. Front. Immunol., 2019, 10(FEB), 168. doi: 10.3389/fimmu.2019.00168 PMID: 30800125
  21. Nair, S.S.; Weil, R.; Dovey, Z.; Davis, A.; Tewari, A.K. The tumor microenvironment and immunotherapy in prostate and bladder cancer. Urol. Clin. North Am., 2020, 47(4), e17-e54. doi: 10.1016/j.ucl.2020.10.005 PMID: 33446323
  22. Drake, C.G.; Doody, A.D.H.; Mihalyo, M.A.; Huang, C.T.; Kelleher, E.; Ravi, S.; Hipkiss, E.L.; Flies, D.B.; Kennedy, E.P.; Long, M.; McGary, P.W.; Coryell, L.; Nelson, W.G.; Pardoll, D.M.; Adler, A.J. Androgen ablation mitigates tolerance to a prostate/prostate cancer-restricted antigen. Cancer Cell, 2005, 7(3), 239-249. doi: 10.1016/j.ccr.2005.01.027 PMID: 15766662
  23. Zitvogel, L.; Galluzzi, L.; Kepp, O.; Smyth, M.J.; Kroemer, G. Type I interferons in anticancer immunity. Nat. Rev. Immunol., 2015, 15(7), 405-414. doi: 10.1038/nri3845 PMID: 26027717
  24. Anderson, M.J.; Shafer-Weaver, K.; Greenberg, N.M.; Hurwitz, A.A. Tolerization of tumor-specific T cells despite efficient initial priming in a primary murine model of prostate cancer. J. Immunol., 2007, 178(3), 1268-1276. doi: 10.4049/jimmunol.178.3.1268 PMID: 17237372
  25. Ebelt, K.; Babaryka, G.; Figel, A.M.; Pohla, H.; Buchner, A.; Stief, C.G.; Eisenmenger, W.; Kirchner, T.; Schendel, D.J.; Noessner, E. Dominance of CD4+ lymphocytic infiltrates with disturbed effector cell characteristics in the tumor microenvironment of prostate carcinoma. Prostate, 2008, 68(1), 1-10. doi: 10.1002/pros.20661 PMID: 17948280
  26. Owen, K.L.; Gearing, L.J.; Zanker, D.J.; Brockwell, N.K.; Khoo, W.H.; Roden, D.L.; Cmero, M.; Mangiola, S.; Hong, M.K.; Spurling, A.J.; McDonald, M.; Chan, C.L.; Pasam, A.; Lyons, R.J.; Duivenvoorden, H.M.; Ryan, A.; Butler, L.M.; Mariadason, J.M.; Giang Phan, T.; Hayes, V.M.; Sandhu, S.; Swarbrick, A.; Corcoran, N.M.; Hertzog, P.J.; Croucher, P.I.; Hovens, C.; Parker, B.S. Prostate cancer cell-intrinsic interferon signaling regulates dormancy and metastatic outgrowth in bone. EMBO Rep., 2020, 21(6), e50162. doi: 10.15252/embr.202050162 PMID: 32314873
  27. Sanaei, M.J.; Salimzadeh, L.; Bagheri, N. Crosstalk between myeloid-derived suppressor cells and the immune system in prostate cancer. J. Leukoc. Biol., 2020, 107(1), 43-56. doi: 10.1002/JLB.4RU0819-150RR PMID: 31721301
  28. Fleming, V.; Hu, X.; Weber, R.; Nagibin, V.; Groth, C.; Altevogt, P.; Utikal, J.; Umansky, V. Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression. Front. Immunol., 2018, 9(MAR), 398. doi: 10.3389/fimmu.2018.00398 PMID: 29552012
  29. Lopez-Bujanda, Z.; Drake, C.G. Myeloid-derived cells in prostate cancer progression: phenotype and prospective therapies. J. Leukoc. Biol., 2017, 102(2), 393-406. doi: 10.1189/jlb.5VMR1116-491RR PMID: 28550116
  30. Idorn, M.; Køllgaard, T.; Kongsted, P.; Sengeløv, L.; thor Straten, P. Correlation between frequencies of blood monocytic myeloid-derived suppressor cells, regulatory T cells and negative prognostic markers in patients with castration-resistant metastatic prostate cancer. Cancer Immunol. Immunother., 2014, 63(11), 1177-1187. doi: 10.1007/s00262-014-1591-2 PMID: 25085000
  31. Muthuswamy, R.; Corman, J.M.; Dahl, K.; Chatta, G.S.; Kalinski, P. Functional reprogramming of human prostate cancer to promote local attraction of effector CD8+ T cells. Prostate, 2016, 76(12), 1095-1105. doi: 10.1002/pros.23194 PMID: 27199259
  32. Vitkin, N.; Nersesian, S.; Siemens, D.R.; Koti, M. The tumor immune contexture of prostate cancer. In: Frontiers in Immunology; Frontiers Media S.A., 2019. 10.
  33. Vidotto, T.; Saggioro, F.P.; Jamaspishvili, T.; Chesca, D.L.; Picanço de Albuquerque, C.G.; Reis, R.B.; Graham, C.H.; Berman, D.M.; Siemens, D.R.; Squire, J.A.; Koti, M. PTEN-deficient prostate cancer is associated with an immunosuppressive tumor microenvironment mediated by increased expression of IDO1 and infiltrating FoxP3+ T regulatory cells. Prostate, 2019, 79(9), 969-979. doi: 10.1002/pros.23808 PMID: 30999388
  34. Garcia-Lora, A.; Algarra, I.; Garrido, F. MHC class I antigens, immune surveillance, and tumor immune escape. J. Cell. Physiol., 2003, 195(3), 346-355. doi: 10.1002/jcp.10290 PMID: 12704644
  35. Sanda, M.G.; Restifo, N.P.; Walsh, J.C.; Kawakami, Y.; Nelson, W.G.; Pardoll, D.M.; Simons, J.W. Molecular characterization of defective antigen processing in human prostate cancer. J. Natl. Cancer Inst., 1995, 87(4), 280-285. doi: 10.1093/jnci/87.4.280 PMID: 7707419
  36. Shen, Y.C.; Ghasemzadeh, A.; Kochel, C.M.; Nirschl, T.R.; Francica, B.J.; Lopez-Bujanda, Z.A. Combining intratumoral Treg depletion with androgen deprivation therapy (ADT): Preclinical activity in the Myc-CaP model. Prost. Cancer Prost. Dis., 2017, 21(1), 113-125.
  37. Lei, Q.; Wang, D.; Sun, K.; Wang, L.; Zhang, Y. Resistance mechanisms of Anti-PD1/PDL1 therapy in solid tumors. Front. Cell Dev. Biol., 2020, 8, 672. doi: 10.3389/fcell.2020.00672 PMID: 32793604
  38. Ribas, A. Adaptive immune resistance: How cancer protects from immune attack. Cancer Discov., 2015, 5(9), 915-919. doi: 10.1158/2159-8290.CD-15-0563 PMID: 26272491
  39. Montoya, M.; Schiavoni, G.; Mattei, F.; Gresser, I.; Belardelli, F.; Borrow, P.; Tough, D.F. Type I interferons produced by dendritic cells promote their phenotypic and functional activation. Blood, 2002, 99(9), 3263-3271. doi: 10.1182/blood.V99.9.3263 PMID: 11964292
  40. Isaacs, A.; Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B Biol. Sci., 1957, 147(927), 258-267. doi: 10.1098/rspb.1957.0048 PMID: 13465720
  41. Yu, R.; Zhu, B.; Chen, D. Type I interferon-mediated tumor immunity and its role in immunotherapy. Cell. Mol. Life Sci., 2022, 79(3), 191. doi: 10.1007/s00018-022-04219-z PMID: 35292881
  42. Diamond, M.S.; Kinder, M.; Matsushita, H.; Mashayekhi, M.; Dunn, G.P.; Archambault, J.M.; Lee, H.; Arthur, C.D.; White, J.M.; Kalinke, U.; Murphy, K.M.; Schreiber, R.D. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med., 2011, 208(10), 1989-2003. doi: 10.1084/jem.20101158 PMID: 21930769
  43. Wan, D.; Jiang, W.; Hao, J. Research advances in how the cGAS-STING pathway controls the cellular inflammatory response. Front. Immunol., 2020, 11, 615. doi: 10.3389/fimmu.2020.00615 PMID: 32411126
  44. Sun, W.; Li, Y.; Chen, L.; Chen, H.; You, F.; Zhou, X.; Zhou, Y.; Zhai, Z.; Chen, D.; Jiang, Z. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc. Natl. Acad. Sci. USA, 2009, 106(21), 8653-8658. doi: 10.1073/pnas.0900850106 PMID: 19433799
  45. Lv, M.; Chen, M.; Zhang, R.; Zhang, W.; Wang, C.; Zhang, Y.; Wei, X.; Guan, Y.; Liu, J.; Feng, K.; Jing, M.; Wang, X.; Liu, Y.C.; Mei, Q.; Han, W.; Jiang, Z. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Res., 2020, 30(11), 966-979. doi: 10.1038/s41422-020-00395-4 PMID: 32839553
  46. Li, T.; Chen, Z.J. The cGAS–cGAMP–STING pathway connects DNA damage to inflammation, senescence, and cancer. J. Exp. Med., 2018, 215(5), 1287-1299. doi: 10.1084/jem.20180139 PMID: 29622565
  47. Baird, J.R.; Friedman, D.; Cottam, B.; Dubensky, T.W., Jr; Kanne, D.B.; Bambina, S.; Bahjat, K.; Crittenden, M.R.; Gough, M.J. Radiotherapy combined with novel sting-targeting oligonucleotides results in regression of established tumors. Cancer Res., 2016, 76(1), 50-61. doi: 10.1158/0008-5472.CAN-14-3619 PMID: 26567136
  48. Gajewski, T.F.; Schreiber, H.; Fu, Y.X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol., 2013, 14(10), 1014-1022. doi: 10.1038/ni.2703 PMID: 24048123
  49. Kumar, S.; Han, J.A.; Michael, I.J.; Ki, D.; Sunkara, V.; Park, J.; Gautam, S.; Ha, H.K.; Zhang, L.; Cho, Y-K. Human platelet membrane functionalized microchips with plasmonic codes for cancer detection. Adv. Funct. Mater., 2019, 29(30), 1902669. doi: 10.1002/adfm.201902669
  50. Gao, P.; Ascano, M.; Wu, Y.; Barchet, W.; Gaffney, B.L.; Zillinger, T.; Serganov, A.A.; Liu, Y.; Jones, R.A.; Hartmann, G.; Tuschl, T.; Patel, D.J. Cyclic G(2′,5′)pA(3′,5′)p is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell, 2013, 153(5), 1094-1107. doi: 10.1016/j.cell.2013.04.046 PMID: 23647843
  51. Kang, J.; Wu, J.; Liu, Q.; Wu, X.; Zhao, Y.; Ren, J. Post-translational modifications of STING: A potential therapeutic target. Front. Immunol., 2022, 13, 888147. doi: 10.3389/fimmu.2022.888147 PMID: 35603197
  52. Tao, J.; Zhou, X.; Jiang, Z. cGAS-cGAMP-STING: The three musketeers of cytosolic DNA sensing and signaling. IUBMB Life, 2016, 68(11), 858-870. doi: 10.1002/iub.1566 PMID: 27706894
  53. Gao, Y.; Zheng, X.; Chang, B.; Lin, Y.; Huang, X.; Wang, W.; Ding, S.; Zhan, W.; Wang, S.; Xiao, B.; Huo, L.; Yu, Y.; Chen, Y.; Gong, R.; Wu, Y.; Zhang, R.; Zhong, L.; Wang, X.; Chen, Q.; Gao, S.; Jiang, Z.; Wei, D.; Kang, T. Intercellular transfer of activated STING triggered by RAB22A-mediated non-canonical autophagy promotes antitumor immunity. Cell Res., 2022, 32(12), 1086-1104. doi: 10.1038/s41422-022-00731-w PMID: 36280710
  54. Hu, X.; Zhang, H.; Zhang, Q.; Yao, X.; Ni, W.; Zhou, K. Emerging role of STING signalling in CNS injury: Inflammation, autophagy, necroptosis, ferroptosis and pyroptosis. J. Neuroinflammation, 2022, 19(1), 242. doi: 10.1186/s12974-022-02602-y PMID: 36195926
  55. Jianfeng, W.; Yutao, W.; Jianbin, B. Indolethylamine-N-Methyltransferase inhibits proliferation and promotes apoptosis of human prostate cancer cells: A mechanistic exploration. Front. Cell Dev. Biol., 2022, 10, 805402. doi: 10.3389/fcell.2022.805402 PMID: 35252179
  56. Ihle, C.L.; Provera, M.D.; Straign, D.M.; Smith, E.E.; Edgerton, S.M.; Van Bokhoven, A.; Lucia, M.S.; Owens, P. Distinct tumor microenvironments of lytic and blastic bone metastases in prostate cancer patients. J. Immunother. Cancer, 2019, 7(1), 293. doi: 10.1186/s40425-019-0753-3 PMID: 31703602
  57. Lindblad, K.E.; Ruiz de Galarreta, M.; Lujambio, A. Tumor-intrinsic mechanisms regulating immune exclusion in liver cancers. Front. Immunol., 2021, 12, 642958>. doi: 10.3389/fimmu.2021.642958 PMID: 33981303
  58. O’Donnell, J.S.; Madore, J.; Li, X.Y.; Smyth, M.J. Tumor intrinsic and extrinsic immune functions of CD155. Semin. Cancer Biol., 2020, 65, 189-196. doi: 10.1016/j.semcancer.2019.11.013 PMID: 31883911
  59. Rowshanravan, B.; Halliday, N.; Sansom, D.M. CTLA-4: A moving target in immunotherapy. Blood, 2018, 131(1), 58-67. doi: 10.1182/blood-2017-06-741033 PMID: 29118008
  60. Stamper, C.C.; Zhang, Y.; Tobin, J.F.; Erbe, D.V.; Ikemizu, S.; Davis, S.J.; Stahl, M.L.; Seehra, J.; Somers, W.S.; Mosyak, L. Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature, 2001, 410(6828), 608-611. doi: 10.1038/35069118 PMID: 11279502
  61. Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol., 2020, 20(11), 651-668. doi: 10.1038/s41577-020-0306-5
  62. Degl’Innocenti, E.; Grioni, M.; Boni, A.; Camporeale, A.; Bertilaccio, M.T.S.; Freschi, M.; Monno, A.; Arcelloni, C.; Greenberg, N.M.; Bellone, M. Peripheral T cell tolerance occurs early during spontaneous prostate cancer development and can be rescued by dendritic cell immunization. Eur. J. Immunol., 2005, 35(1), 66-75. doi: 10.1002/eji.200425531 PMID: 15597325
  63. Li, X.; Khorsandi, S.; Wang, Y.; Santelli, J.; Huntoon, K.; Nguyen, N.; Yang, M.; Lee, D.; Lu, Y.; Gao, R.; Kim, B.Y.S.; de Gracia Lux, C.; Mattrey, R.F.; Jiang, W.; Lux, J. Cancer immunotherapy based on image-guided STING activation by nucleotide nanocomplex-decorated ultrasound microbubbles. Nat. Nanotechnol., 2022, 17(8), 891-899. doi: 10.1038/s41565-022-01134-z PMID: 35637356
  64. Sun, X.; Zhang, Y.; Li, J.; Park, K.S.; Han, K.; Zhou, X.; Xu, Y.; Nam, J.; Xu, J.; Shi, X.; Wei, L.; Lei, Y.L.; Moon, J.J. Amplifying STING activation by cyclic dinucleotide– manganese particles for local and systemic cancer metalloimmunotherapy. Nat. Nanotechnol., 2021, 16(11), 1260-1270. doi: 10.1038/s41565-021-00962-9 PMID: 34594005
  65. Lin, H.; Wang, K.; Xiong, Y.; Zhou, L.; Yang, Y.; Chen, S.; Xu, P.; Zhou, Y.; Mao, R.; Lv, G.; Wang, P.; Zhou, D. Identification of tumor antigens and immune subtypes of glioblastoma for mRNA vaccine development. Front. Immunol., 2022, 13, 773264. doi: 10.3389/fimmu.2022.773264 PMID: 35185876
  66. Shortman, K.; Lahoud, M.H.; Caminschi, I. Improving vaccines by targeting antigens to dendritic cells. Exp. Mol. Med., 2009, 41(2), 61-66. doi: 10.3858/emm.2009.41.2.008 PMID: 19287186
  67. Kratzer, T.B.; Jemal, A.; Miller, K.D.; Nash, S.; Wiggins, C.; Redwood, D.; Smith, R.; Siegel, R.L. Cancer statistics for A merican I ndian and A laska N ative individuals, 2022: Including increasing disparities in early onset colorectal cancer. CA Cancer J. Clin., 2023, 73(2), 120-146. doi: 10.3322/caac.21757 PMID: 36346402
  68. Sun, L.; Wu, J.; Du, F.; Chen, X.; Chen, Z.J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science, 2013, 339(6121), 786-791. doi: 10.1126/science.1232458 PMID: 23258413
  69. Liu, Y.; Zeng, G. Cancer and innate immune system interactions: translational potentials for cancer immunotherapy. J. Immunother., 2012, 35(4), 299-308. doi: 10.1097/CJI.0b013e3182518e83 PMID: 22495387
  70. Disis, M.L. Immune regulation of cancer. J. Clin. Oncol., 2010, 28(29), 4531-4538. doi: 10.1200/JCO.2009.27.2146 PMID: 20516428
  71. Chaplin, D.D. Overview of the immune response. J. Allergy Clin. Immunol., 2010, 125(2)(Suppl. 2), S3-S23. doi: 10.1016/j.jaci.2009.12.980 PMID: 20176265
  72. Del Prete, A.; Salvi, V.; Soriani, A.; Laffranchi, M.; Sozio, F.; Bosisio, D.; Sozzani, S. Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell. Mol. Immunol., 2023, 20(5), 432-447. doi: 10.1038/s41423-023-00990-6 PMID: 36949244
  73. Das, P.; Shen, T.; McCord, R.P. Characterizing the variation in chromosome structure ensembles in the context of the nuclear microenvironment. PLOS Comput. Biol., 2022, 18(8), e1010392. doi: 10.1371/journal.pcbi.1010392 PMID: 35969616
  74. Strickfaden, H.; Zunhammer, A.; van Koningsbruggen, S.; Köhler, D.; Cremer, T. 4D Chromatin dynamics in cycling cells. Nucleus, 2010, 1(3), 284-297. doi: 10.4161/nucl.11969 PMID: 21327076
  75. Ho, S.S.W.; Zhang, W.Y.L.; Tan, N.Y.J.; Khatoo, M.; Suter, M.A.; Tripathi, S.; Cheung, F.S.G.; Lim, W.K.; Tan, P.H.; Ngeow, J.; Gasser, S. The DNA structure-specific endonuclease mus81 mediates dna sensor sting-dependent host rejection of prostate cancer cells. Immunity, 2016, 44(5), 1177-1189. doi: 10.1016/j.immuni.2016.04.010 PMID: 27178469
  76. Zhang, W.; Li, G.; Luo, R.; Lei, J.; Song, Y.; Wang, B.; Ma, L.; Liao, Z.; Ke, W.; Liu, H.; Hua, W.; Zhao, K.; Feng, X.; Wu, X.; Zhang, Y.; Wang, K.; Yang, C. Cytosolic escape of mitochondrial DNA triggers cGAS-STING-NLRP3 axis-dependent nucleus pulposus cell pyroptosis. Exp. Mol. Med., 2022, 54(2), 129-142. doi: 10.1038/s12276-022-00729-9 PMID: 35145201
  77. Newman, L.E.; Shadel, G.S. Mitochondrial DNA release in innate immune signaling. Annu. Rev. Biochem., 2023, 92(1), 299-332. doi: 10.1146/annurev-biochem-032620-104401 PMID: 37001140
  78. Singh, J.; Boettcher, M.; Dölling, M.; Heuer, A.; Hohberger, B.; Leppkes, M.; Naschberger, E.; Schapher, M.; Schauer, C.; Schoen, J.; Stürzl, M.; Vitkov, L.; Wang, H.; Zlatar, L.; Schett, G.A.; Pisetsky, D.S.; Liu, M.L.; Herrmann, M.; Knopf, J. Moonlighting chromatin: When DNA escapes nuclear control. Cell Death Differ., 2023, 30(4), 861-875. doi: 10.1038/s41418-023-01124-1 PMID: 36755071
  79. Vassilieva, E.V.; Taylor, D.W.; Compans, R.W. Combination of STING pathway agonist with saponin is an effective adjuvant in immunosenescent mice. Front. Immunol., 2019, 10, 3006. doi: 10.3389/fimmu.2019.03006 PMID: 31921219
  80. Liu, Y.; Lu, X.; Qin, N.; Qiao, Y.; Xing, S.; Liu, W.; Feng, F.; Liu, Z.; Sun, H. STING, a promising target for small molecular immune modulator: A review. Eur. J. Med. Chem., 2021, 211, 113113. doi: 10.1016/j.ejmech.2020.113113 PMID: 33360799
  81. Ross, P.; Weinhouse, H.; Aloni, Y.; Michaeli, D.; Weinberger-Ohana, P.; Mayer, R.; Braun, S.; de Vroom, E.; van der Marel, G.A.; van Boom, J.H.; Benziman, M. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature, 1987, 325(6101), 279-281. doi: 10.1038/325279a0 PMID: 18990795
  82. Elmanfi, S.; Yilmaz, M.; Ong, W.W.S.; Yeboah, K.S.; Sintim, H.O.; Gürsoy, M.; Könönen, E.; Gürsoy, U.K. Bacterial cyclic dinucleotides and the cGAS–cGAMP–STING pathway: A role in periodontitis? Pathogens, 2021, 10(6), 675. doi: 10.3390/pathogens10060675 PMID: 34070809
  83. Gonugunta, V.K.; Sakai, T.; Pokatayev, V.; Yang, K.; Wu, J.; Dobbs, N.; Yan, N. Trafficking-mediated STING degradation requires sorting to acidified endolysosomes and can be targeted to enhance anti-tumor response. Cell Rep., 2017, 21(11), 3234-3242. doi: 10.1016/j.celrep.2017.11.061 PMID: 29241549
  84. Ohkuri, T.; Kosaka, A.; Ishibashi, K.; Kumai, T.; Hirata, Y.; Ohara, K.; Nagato, T.; Oikawa, K.; Aoki, N.; Harabuchi, Y.; Celis, E.; Kobayashi, H. Intratumoral administration of cGAMP transiently accumulates potent macrophages for anti-tumor immunity at a mouse tumor site. Cancer Immunol. Immunother., 2017, 66(6), 705-716. doi: 10.1007/s00262-017-1975-1 PMID: 28243692
  85. Ji, N.; Wang, M.; Tan, C. Liposomal delivery of MIW815 (ADU-S100) for potentiated STING activation. Pharmaceutics, 2023, 15(2), 638. doi: 10.3390/pharmaceutics15020638 PMID: 36839960
  86. Corrales, L.; Glickman, L.H.; McWhirter, S.M.; Kanne, D.B.; Sivick, K.E.; Katibah, G.E.; Woo, S.R.; Lemmens, E.; Banda, T.; Leong, J.J.; Metchette, K.; Dubensky, T.W., Jr; Gajewski, T.F. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep., 2015, 11(7), 1018-1030. doi: 10.1016/j.celrep.2015.04.031 PMID: 25959818
  87. Harrington, K.J.; Brody, J.; Ingham, M.; Strauss, J.; Cemerski, S.; Wang, M.; Tse, A.; Khilnani, A.; Marabelle, A.; Golan, T. Preliminary results of the first-in-human (FIH) study of MK-1454, an agonist of stimulator of interferon genes (STING), as monotherapy or in combination with pembrolizumab (pembro) in patients with advanced solid tumors or lymphomas. Ann. Oncol., 2018, 29, viii712. doi: 10.1093/annonc/mdy424.015
  88. Papaevangelou, E.; Esteves, A.M.; Dasgupta, P.; Galustian, C. Cyto-IL-15 synergizes with the STING agonist ADU-S100 to eliminate prostate tumors and confer durable immunity in mouse models. Front. Immunol., 2023, 14, 1196829. doi: 10.3389/fimmu.2023.1196829 PMID: 37465665
  89. Cui, X.; Zhang, R.; Cen, S.; Zhou, J. STING modulators: Predictive significance in drug discovery. Eur. J. Med. Chem., 2019, 182, 111591. doi: 10.1016/j.ejmech.2019.111591 PMID: 31419779
  90. Jassar, A.S.; Suzuki, E.; Kapoor, V.; Sun, J.; Silverberg, M.B.; Cheung, L.; Burdick, M.D.; Strieter, R.M.; Ching, L.M.; Kaiser, L.R.; Albelda, S.M. Activation of tumor-associated macrophages by the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid induces an effective CD8+ T-cell-mediated antitumor immune response in murine models of lung cancer and mesothelioma. Cancer Res., 2005, 65(24), 11752-11761. doi: 10.1158/0008-5472.CAN-05-1658 PMID: 16357188
  91. Kanwar, KRPSCLKGW, JR Vascular attack by 5,6-dimethylxanthenone-4-acetic acid combined with B7.1 (CD80)-mediated immunotherapy overcomes immune resistance and leads to the eradication of large tumors and multiple tumor foci. Cancer Res. , 2001, 61(5), 1948-1956.
  92. Lara, P.N., Jr; Douillard, J.Y.; Nakagawa, K.; von Pawel, J.; McKeage, M.J.; Albert, I.; Losonczy, G.; Reck, M.; Heo, D.S.; Fan, X.; Fandi, A.; Scagliotti, G. Randomized phase III placebo-controlled trial of carboplatin and paclitaxel with or without the vascular disrupting agent vadimezan (ASA404) in advanced non-small-cell lung cancer. J. Clin. Oncol., 2011, 29(22), 2965-2971. doi: 10.1200/JCO.2011.35.0660 PMID: 21709202
  93. Woon, S.T.; Zwain, S.; Schooltink, M.A.; Newth, A.L.; Baguley, B.C.; Ching, L.M. NF-kappa B activation in vivo in both host and tumour cells by the antivascular agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA). Eur. J. Cancer, 2003, 39(8), 1176-1183. doi: 10.1016/S0959-8049(03)00196-5 PMID: 12736120
  94. Ching, L-M.; Cao, Z.; Kieda, C.; Zwain, S.; Jameson, M.B.; Baguley, B.C. Induction of endothelial cell apoptosis by the antivascular agent 5,6-dimethylxanthenone-4-acetic acid. Br. J. Cancer, 2002, 86(12), 1937-1942. doi: 10.1038/sj.bjc.6600368 PMID: 12085190
  95. Wang, Y.; Luo, J.; Alu, A.; Han, X.; Wei, Y.; Wei, X. cGAS-STING pathway in cancer biotherapy. Mol. Cancer, 2020, 19(1), 136. doi: 10.1186/s12943-020-01247-w PMID: 32887628
  96. Garland, K.M.; Sheehy, T.L.; Wilson, J.T. Chemical and biomolecular strategies for STING pathway activation in cancer immunotherapy. Chem. Rev., 2022, 122(6), 5977-6039. doi: 10.1021/acs.chemrev.1c00750 PMID: 35107989
  97. Ramanjulu, J.M.; Pesiridis, G.S.; Yang, J.; Concha, N.; Singhaus, R.; Zhang, S.Y.; Tran, J.L.; Moore, P.; Lehmann, S.; Eberl, H.C.; Muelbaier, M.; Schneck, J.L.; Clemens, J.; Adam, M.; Mehlmann, J.; Romano, J.; Morales, A.; Kang, J.; Leister, L.; Graybill, T.L.; Charnley, A.K.; Ye, G.; Nevins, N.; Behnia, K.; Wolf, A.I.; Kasparcova, V.; Nurse, K.; Wang, L.; Puhl, A.C.; Li, Y.; Klein, M.; Hopson, C.B.; Guss, J.; Bantscheff, M.; Bergamini, G.; Reilly, M.A.; Lian, Y.; Duffy, K.J.; Adams, J.; Foley, K.P.; Gough, P.J.; Marquis, R.W.; Smothers, J.; Hoos, A.; Bertin, J. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature, 2018, 564(7736), 439-443. doi: 10.1038/s41586-018-0705-y PMID: 30405246
  98. Pan, B.S.; Perera, S.A.; Piesvaux, J.A.; Presland, J.P.; Schroeder, G.K.; Cumming, J.N.; Trotter, B.W.; Altman, M.D.; Buevich, A.V.; Cash, B.; Cemerski, S.; Chang, W.; Chen, Y.; Dandliker, P.J.; Feng, G.; Haidle, A.; Henderson, T.; Jewell, J.; Kariv, I.; Knemeyer, I.; Kopinja, J.; Lacey, B.M.; Laskey, J.; Lesburg, C.A.; Liang, R.; Long, B.J.; Lu, M.; Ma, Y.; Minnihan, E.C.; O’Donnell, G.; Otte, R.; Price, L.; Rakhilina, L.; Sauvagnat, B.; Sharma, S.; Tyagarajan, S.; Woo, H.; Wyss, D.F.; Xu, S.; Bennett, D.J.; Addona, G.H. An orally available non-nucleotide STING agonist with antitumor activity. Science, 2020, 369(6506), eaba6098. doi: 10.1126/science.aba6098 PMID: 32820094
  99. Deng, L.; Liang, H.; Xu, M.; Yang, X.; Burnette, B.; Arina, A.; Li, X.D.; Mauceri, H.; Beckett, M.; Darga, T.; Huang, X.; Gajewski, T.F.; Chen, Z.J.; Fu, Y.X.; Weichselbaum, R.R. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity, 2014, 41(5), 843-852. doi: 10.1016/j.immuni.2014.10.019 PMID: 25517616
  100. Le Naour, J.; Zitvogel, L.; Galluzzi, L.; Vacchelli, E.; Kroemer, G. Trial watch: STING agonists in cancer therapy. OncoImmunology, 2020, 9(1), 1777624. doi: 10.1080/2162402X.2020.1777624 PMID: 32934881
  101. Guo, F.; Han, Y.; Zhao, X.; Wang, J.; Liu, F.; Xu, C.; Wei, L.; Jiang, J.D.; Block, T.M.; Guo, J.T.; Chang, J. STING agonists induce an innate antiviral immune response against hepatitis B virus. Antimicrob. Agents Chemother., 2015, 59(2), 1273-1281. doi: 10.1128/AAC.04321-14 PMID: 25512416
  102. Bhatnagar, S.; Revuri, V.; Shah, M.; Larson, P.; Shao, Z.; Yu, D.; Prabha, S.; Griffith, T.S.; Ferguson, D.; Panyam, J. Combination of STING and TLR 7/8 agonists as vaccine adjuvants for cancer immunotherapy. Cancers (Basel), 2022, 14(24), 6091. doi: 10.3390/cancers14246091 PMID: 36551577
  103. Wobma, H.; Shin, D.S.; Chou, J.; Dedeoğlu, F. Dysregulation of the cGAS-STING pathway in monogenic autoinflammation and lupus. Front. Immunol., 2022, 13, 905109. doi: 10.3389/fimmu.2022.905109 PMID: 35693769
  104. Leventhal, D.S.; Sokolovska, A.; Li, N.; Plescia, C.; Kolodziej, S.A.; Gallant, C.W.; Christmas, R.; Gao, J.R.; James, M.J.; Abin-Fuentes, A.; Momin, M.; Bergeron, C.; Fisher, A.; Miller, P.F.; West, K.A.; Lora, J.M. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nat. Commun., 2020, 11(1), 2739. doi: 10.1038/s41467-020-16602-0 PMID: 32483165
  105. Toulany, M. Targeting DNA double-strand break repair pathways to improve radiotherapy response. Genes, 2019, 10(1), 25. doi: 10.3390/genes10010025 PMID: 30621219
  106. Hoong, B.Y.D.; Gan, Y.H.; Liu, H.; Chen, E.S. cGAS-STING pathway in oncogenesis and cancer therapeutics. Oncotarget, 2020, 11(30), 2930-2955. doi: 10.18632/oncotarget.27673 PMID: 32774773
  107. Motwani, M.; Pesiridis, S.; Fitzgerald, K.A. DNA sensing by the cGAS–STING pathway in health and disease. Nat. Rev. Genet., 2019, 20(11), 657-674. doi: 10.1038/s41576-019-0151-1 PMID: 31358977
  108. Storozynsky, Q.; Hitt, M.M. The impact of radiation-induced DNA damage on cGAS-STING-mediated immune responses to cancer. Int. J. Mol. Sci., 2020, 21(22), 8877. doi: 10.3390/ijms21228877 PMID: 33238631
  109. Lhuillier, C.; Rudqvist, N.P.; Elemento, O.; Formenti, S.C.; Demaria, S. Radiation therapy and anti-tumor immunity: Exposing immunogenic mutations to the immune system. Genome Med., 2019, 11(1), 40. doi: 10.1186/s13073-019-0653-7 PMID: 31221199
  110. Fillon, M. Lung cancer radiation may increase the risk of major adverse cardiac events. CA Cancer J. Clin., 2019, 69(6), 435-437. doi: 10.3322/caac.21581 PMID: 31545880
  111. Xue, A.; Shang, Y.; Jiao, P.; Zhang, S.; Zhu, C.; He, X.; Feng, G.; Fan, S. Increased activation of CGAS-STING pathway enhances radiosensitivity of non-small cell lung cancer cells. Thorac. Cancer, 2022, 13(9), 1361-1368. doi: 10.1111/1759-7714.14400 PMID: 35429143
  112. Liu, Y.; Crowe, W.N.; Wang, L.; Lu, Y.; Petty, W.J.; Habib, A.A.; Zhao, D. An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term control of lung metastases. Nat. Commun., 2019, 10(1), 5108. doi: 10.1038/s41467-019-13094-5 PMID: 31704921
  113. Luo, M.; Liu, Z.; Zhang, X.; Han, C.; Samandi, L.Z.; Dong, C.; Sumer, B.D.; Lea, J.; Fu, Y.X.; Gao, J. Synergistic STING activation by PC7A nanovaccine and ionizing radiation improves cancer immunotherapy. J. Control. Release, 2019, 300, 154-160. doi: 10.1016/j.jconrel.2019.02.036 PMID: 30844475
  114. Patel, R.B.; Ye, M.; Carlson, P.M.; Jaquish, A.; Zangl, L.; Ma, B.; Wang, Y.; Arthur, I.; Xie, R.; Brown, R.J.; Wang, X.; Sriramaneni, R.; Kim, K.; Gong, S.; Morris, Z.S. Development of an in situ cancer vaccine via combinational radiation and bacterial-membrane-coated nanoparticles. Adv. Mater., 2019, 31(43), 1902626. doi: 10.1002/adma.201902626 PMID: 31523868
  115. Gan, Y.; Li, X.; Han, S.; Liang, Q.; Ma, X.; Rong, P.; Wang, W.; Li, W. The cGAS/STING pathway: A novel target for cancer therapy. Front. Immunol., 2022, 12, 795401. doi: 10.3389/fimmu.2021.795401 PMID: 35046953
  116. Wang, Y.; Deng, W.; Li, N.; Neri, S.; Sharma, A.; Jiang, W.; Lin, S.H. Combining immunotherapy and radiotherapy for cancer treatment: Current challenges and future directions. Front. Pharmacol., 2018, 9(MAR), 185. doi: 10.3389/fphar.2018.00185 PMID: 29556198
  117. Ukleja, J.; Kusaka, E.; Miyamoto, D.T. Immunotherapy combined with radiation therapy for genitourinary malignancies. Front. Oncol., 2021, 11, 663852. doi: 10.3389/fonc.2021.663852
  118. Vanpouille-Box, C.; Alard, A.; Aryankalayil, M.J.; Sarfraz, Y.; Diamond, J.M.; Schneider, R.J.; Inghirami, G.; Coleman, C.N.; Formenti, S.C.; Demaria, S. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun., 2017, 8(1), 15618. doi: 10.1038/ncomms15618 PMID: 28598415
  119. Constanzo, J.; Faget, J.; Ursino, C.; Badie, C.; Pouget, J.P. Radiation-induced immunity and toxicities: The versatility of the cGAS-STING pathway. Front. Immunol., 2021, 12, 680503. doi: 10.3389/fimmu.2021.680503 PMID: 34079557
  120. Kaidar-Person, O.; Zagar, T.M.; Deal, A.; Moschos, S.J.; Ewend, M.G.; Sasaki-Adams, D.; Lee, C.B.; Collichio, F.A.; Fried, D.; Marks, L.B.; Chera, B.S. The incidence of radiation necrosis following stereotactic radiotherapy for melanoma brain metastases. Anticancer Drugs, 2017, 28(6), 669-675. doi: 10.1097/CAD.0000000000000497 PMID: 28368903
  121. Wang, H.; Guan, Y.; Li, C.; Chen, J.; Yue, S.; Qian, J.; Dai, B.; Jiang, C.; Wen, C.; Wen, L.; Liang, C.; Zhang, Y.; Zhang, L. PEGylated manganese–zinc ferrite nanocrystals combined with intratumoral implantation of micromagnets enabled synergetic prostate cancer therapy via ferroptotic and immunogenic cell death. Small, 2023, 19(22), 2207077. doi: 10.1002/smll.202207077 PMID: 36861297
  122. Hsu, S.C.; Chen, C.L.; Cheng, M.L.; Chu, C.Y.; Changou, C.A.; Yu, Y.L.; Yeh, S.D.; Kuo, T.C.; Kuo, C.C.; Chuu, C.P.; Li, C.F.; Wang, L.H.; Chen, H.W.; Yen, Y.; Ann, D.K.; Wang, H.J.; Kung, H.J. Arginine starvation elicits chromatin leakage and cGAS-STING activation via epigenetic silencing of metabolic and DNA-repair genes. Theranostics, 2021, 11(15), 7527-7545. doi: 10.7150/thno.54695 PMID: 34158865
  123. Esteves, A.M.; Papaevangelou, E.; Dasgupta, P.; Galustian, C. Combination of interleukin-15 with a STING agonist, ADU-S100 analog: A potential immunotherapy for prostate cancer. Front. Oncol., 2021, 11, 621550. doi: 10.3389/fonc.2021.621550 PMID: 33777767
  124. Ager, C.R.; Reilley, M.J.; Nicholas, C.; Bartkowiak, T.; Jaiswal, A.R.; Curran, M.A. Intratumoral STING activation with T-cell checkpoint modulation generates systemic antitumor immunity. Cancer Immunol. Res., 2017, 5(8), 676-684. doi: 10.1158/2326-6066.CIR-17-0049 PMID: 28674082
  125. Ma, Z.; Zhang, W.; Dong, B.; Xin, Z.; Ji, Y.; Su, R.; Shen, K.; Pan, J.; Wang, Q.; Xue, W. Docetaxel remodels prostate cancer immune microenvironment and enhances checkpoint inhibitor-based immunotherapy. Theranostics, 2022, 12(11), 4965-4979. doi: 10.7150/thno.73152 PMID: 35836810
  126. Huang, W.; Randhawa, R.; Jain, P.; Hubbard, S.; Eickhoff, J.; Kummar, S.; Wilding, G.; Basu, H.; Roy, R. A novel artificial intelligence–powered method for prediction of early recurrence of prostate cancer after prostatectomy and cancer drivers. JCO Clin. Cancer Inform., 2022, 6(6), e2100131. doi: 10.1200/CCI.21.00131 PMID: 35192404
  127. Geng, C.; Zhang, M.C.; Manyam, G.C.; Vykoukal, J.V.; Fahrmann, J.F.; Peng, S.; Wu, C.; Park, S.; Kondraganti, S.; Wang, D.; Robinson, B.D.; Loda, M.; Barbieri, C.E.; Yap, T.A.; Corn, P.G.; Hanash, S.; Broom, B.M.; Pilié, P.G.; Thompson, T.C. SPOP mutations target STING1 signaling in prostate cancer and create therapeutic vulnerabilities to PARP inhibitor-induced growth suppression. Clin. Cancer Res., 2023, 29(21), 4464-4478. doi: 10.1158/1078-0432.CCR-23-1439 PMID: 37581614
  128. Olson, B.M.; Chaudagar, K.; Bao, R.; Saha, S.S.; Hong, C.; Li, M.; Rameshbabu, S.; Chen, R.; Thomas, A.; Patnaik, A. BET inhibition sensitizes immunologically cold rb-deficient prostate cancer to immune checkpoint blockade. Mol. Cancer Ther., 2023, 22(6), 751-764. doi: 10.1158/1535-7163.MCT-22-0369 PMID: 37014264

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024