Circulating Levels of 5-HT and BDNF in Adults with Autism Spectrum Conditions: An Investigation in a Sample of Subjects with Autism Spectrum Disorder, their First-degree Relatives and Controls


Cite item

Full Text

Abstract

Background:Several studies investigated circulating levels of serotonin (5- HT) and brain-derived neurotrophic factor (BDNF) in children with Autism spectrum disorder (ASD). More limited literature focused on ASD adults or on populations with subthreshold autism spectrum manifestations, such as relatives of ASD probands. This study aimed to investigate 5-HT and BDNF levels in adults with autism spectrum conditions. Correlations between levels of biochemical variables and ASD symptoms were also evaluated.

Methods:a sample of ASD adults, their first-degree relatives (Broad autism phenotype, BAP group), and controls were recruited and assessed with psychometric scales. Blood samples were collected from all participants. 5-HT and BDNF levels were measured by means of ELISA kits.

Results:ASD adults showed significantly lower platelet-poor plasma (PPP) 5-HT levels than BAP and control groups. No significant difference was found among groups for PPP BDNF levels and intra-platelet 5-HT levels. 5-HT levels were reported to be specifically correlated with some autism symptoms.

Conclusion:This work highlighted the presence in ASD adults of reduced PPP 5-HT levels than in other groups, without significant differences with respect to BDNF levels, supporting the hypothesis that biochemical correlates of ASD in adults may be different from those typically reported in children.

About the authors

Barbara Carpita

Department of clinical and experimental medicine, University of Pisa

Author for correspondence.
Email: info@benthamscience.net

Rossella Stagnari

Department of clinical and experimental medicine, University of Pisa

Email: info@benthamscience.net

Lionella Palego

Department of pharmacy, University of Pisa

Email: info@benthamscience.net

Dario Baroni

Department of pharmacy, University of Pisa

Email: info@benthamscience.net

Gabriele Massimetti

Department of clinical and experimental medicine, University of Pisa

Email: info@benthamscience.net

Benedetta Nardi

Department of clinical and experimental medicine, University of Pisa

Email: info@benthamscience.net

Ivan Cremone

Department of clinical and experimental medicine, University of Pisa

Email: info@benthamscience.net

Laura Betti

Department of pharmacy, University of Pisa

Email: info@benthamscience.net

Gino Giannaccini

Department of pharmacy, University of Pisa

Email: info@benthamscience.net

Liliana Dell'Osso

Department of clinical and experimental medicine, University of Pisa

Email: info@benthamscience.net

References

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed; American Psychiatric Association: Washington, DC, 2013.
  2. Dell’Osso, L.; Lorenzi, P.; Carpita, B. Autistic traits and illness trajectories. Clin. Pract. Epidemiol. Ment. Health, 2019, 15(1), 94-98. doi: 10.2174/1745017901915010094 PMID: 31819756
  3. Dell’Osso, L.; Lorenzi, P.; Carpita, B. The neurodevelopmental continuum towards a neurodevelopmental gradient hypothesis. J. Psychopathol., 2019, 25(4), 179-182.
  4. Losh, M.; Childress, D.; Lam, K.; Piven, J. Defining key features of the broad autism phenotype: A comparison across parents of multiple- and single-incidence autism families. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2008, 147B(4), 424-433. doi: 10.1002/ajmg.b.30612 PMID: 17948871
  5. Baron-Cohen, S.; Wheelwright, S.; Skinner, R.; Martin, J.; Clubley, E. The autism-spectrum quotient (AQ): Evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J. Autism Dev. Disord., 2001, 31(1), 5-17. doi: 10.1023/A:1005653411471 PMID: 11439754
  6. Carpita, B.; Carmassi, C.; Calderoni, S.; Muti, D.; Muscarella, A.; Massimetti, G.; Cremone, I.M.; Gesi, C.; Conti, E.; Muratori, F.; Dell’Osso, L. The broad autism phenotype in real-life: Clinical and functional correlates of autism spectrum symptoms and rumination among parents of patients with autism spectrum disorder. CNS Spectr., 2020, 25(6), 765-773. doi: 10.1017/S1092852919001615 PMID: 31747980
  7. Bailey, A.; Palferman, S.; Heavey, L.; Le Couteur, A. Autism: The phenotype in relatives. J. Autism Dev. Disord., 1998, 28(5), 369-392. doi: 10.1023/A:1026048320785 PMID: 9813774
  8. Dell’Osso, L.; Carpita, B.; Bertelloni, C.A.; Diadema, E.; Barberi, F.M.; Gesi, C.; Carmassi, C. Subthreshold autism spectrum in bipolar disorder: Prevalence and clinical correlates. Psychiatry Res., 2019, 281, 112605. doi: 10.1016/j.psychres.2019.112605 PMID: 31629303
  9. Dell’Osso, L.; Cremone, I.M.; Carpita, B.; Dell’Oste, V.; Muti, D.; Massimetti, G.; Barlati, S.; Vita, A.; Fagiolini, A.; Carmassi, C.; Gesi, C. Rumination, posttraumatic stress disorder, and mood symptoms in borderline personality disorder. Neuropsychiatr. Dis. Treat., 2019, 15, 1231-1238. doi: 10.2147/NDT.S198616 PMID: 31190829
  10. Carpita, B.; Muti, D.; Muscarella, A.; Dell’Oste, V.; Diadema, E.; Massimetti, G.; Signorelli, M.S.; Fusar Poli, L.; Gesi, C.; Aguglia, E.; Politi, P.; Carmassi, C.; Dell’Osso, L. Sex differences in the relationship between PTSD spectrum symptoms and autistic traits in a sample of university students. Clin. Pract. Epidemiol. Ment. Health, 2019, 15(1), 110-119. doi: 10.2174/1745017901915010110 PMID: 31819759
  11. Billeci, L.; Calderoni, S.; Conti, E.; Gesi, C.; Carmassi, C.; Dell’Osso, L.; Cioni, G.; Muratori, F.; Guzzetta, A. The Broad Autism (Endo)Phenotype: Neurostructural and neurofunctional correlates in parents of individuals with autism spectrum disorders. Front. Neurosci., 2016, 10, 346. doi: 10.3389/fnins.2016.00346 PMID: 27499732
  12. Brondino, N.; Fusar-Poli, L.; Rocchetti, M.; Bertoglio, F.; Bloise, N.; Visai, L.; Politi, P. BDNF levels are associated with autistic traits in the general population. Psychoneuroendocrinology, 2018, 89, 131-133. doi: 10.1016/j.psyneuen.2018.01.008 PMID: 29414026
  13. Carpita, B.; Marazziti, D.; Palego, L.; Giannaccini, G.; Betti, L.; Dell’Osso, L. Microbiota, immune system and autism spectrum disorders: An integrative model towards novel treatment options. Curr. Med. Chem., 2020, 27(31), 5119-5136. doi: 10.2174/0929867326666190328151539 PMID: 31448708
  14. Harrington, R.A.; Lee, L.C.; Crum, R.M.; Zimmerman, A.W.; Hertz-Picciotto, I. Serotonin hypothesis of autism: Implications for selective serotonin reuptake inhibitor use during pregnancy. Autism Res., 2013, 6(3), 149-168. doi: 10.1002/aur.1288 PMID: 23495208
  15. Gabriele, S.; Sacco, R.; Persico, A.M. Blood serotonin levels in autism spectrum disorder: A systematic review and meta-analysis. Eur. Neuropsychopharmacol., 2014, 24(6), 919-929. doi: 10.1016/j.euroneuro.2014.02.004 PMID: 24613076
  16. Mulder, E.J.; Anderson, G.M.; Kema, I.P.; de Bildt, A.; van Lang, N.D.J.; den Boer, J.A.; Minderaa, R.B. Platelet serotonin levels in pervasive developmental disorders and mental retardation: Diagnostic group differences, within-group distribution, and behavioral correlates. J. Am. Acad. Child Adolesc. Psychiatry, 2004, 43(4), 491-499. doi: 10.1097/00004583-200404000-00016 PMID: 15187810
  17. Muller, C.L.; Anacker, A.M.J.; Veenstra-VanderWeele, J. The serotonin system in autism spectrum disorder: From biomarker to animal models. Neuroscience, 2016, 321, 24-41. doi: 10.1016/j.neuroscience.2015.11.010 PMID: 26577932
  18. Kolevzon, A.; Newcorn, J.H.; Kryzak, L.; Chaplin, W.; Watner, D.; Hollander, E.; Smith, C.J.; Cook, E.H., Jr; Silverman, J.M. Relationship between whole blood serotonin and repetitive behaviors in autism. Psychiatry Res., 2010, 175(3), 274-276. doi: 10.1016/j.psychres.2009.02.008 PMID: 20044143
  19. Sacco, R.; Curatolo, P.; Manzi, B.; Militerni, R.; Bravaccio, C.; Frolli, A.; Lenti, C.; Saccani, M.; Elia, M.; Reichelt, K.L.; Pascucci, T.; Puglisi-Allegra, S.; Persico, A.M. Principal pathogenetic components and biological endophenotypes in autism spectrum disorders. Autism Res., 2010, 3(5), 237-252. doi: 10.1002/aur.151 PMID: 20878720
  20. Hollander, E.; Soorya, L.; Chaplin, W.; Anagnostou, E.; Taylor, B.P.; Ferretti, C.J.; Wasserman, S.; Swanson, E.; Settipani, C. A double-blind placebo-controlled trial of fluoxetine for repetitive behaviors and global severity in adult autism spectrum disorders. Am. J. Psychiatry, 2012, 169(3), 292-299. doi: 10.1176/appi.ajp.2011.10050764 PMID: 22193531
  21. Meyza, K.Z.; Defensor, E.B.; Jensen, A.L.; Corley, M.J.; Pearson, B.L.; Pobbe, R.L.H.; Bolivar, V.J.; Blanchard, D.C.; Blanchard, R.J. The BTBR T+tf/J mouse model for autism spectrum disorders–in search of biomarkers. Behav. Brain Res., 2013, 251, 25-34. doi: 10.1016/j.bbr.2012.07.021 PMID: 22958973
  22. Gould, G.G.; Burke, T.F.; Osorio, M.D.; Smolik, C.M.; Zhang, W.Q.; Onaivi, E.S.; Gu, T.T.; DeSilva, M.N.; Hensler, J.G. Enhanced novelty-induced corticosterone spike and upregulated serotonin 5-HT1A and cannabinoid CB1 receptors in adolescent BTBR mice. Psychoneuroendocrinology, 2014, 39, 158-169. doi: 10.1016/j.psyneuen.2013.09.003 PMID: 24126181
  23. Murphy, D.L.; Lesch, K.P. Targeting the murine serotonin transporter: insights into human neurobiology. Nat. Rev. Neurosci., 2008, 9(2), 85-96. doi: 10.1038/nrn2284 PMID: 18209729
  24. Lam, K.S.L.; Aman, M.G.; Arnold, L.E. Neurochemical correlates of autistic disorder: A review of the literature. Res. Dev. Disabil., 2006, 27(3), 254-289. doi: 10.1016/j.ridd.2005.03.003 PMID: 16002261
  25. Goldberg, J.; Anderson, G.M.; Zwaigenbaum, L.; Hall, G.B.C.; Nahmias, C.; Thompson, A.; Szatmari, P. Cortical serotonin type-2 receptor density in parents of children with autism spectrum disorders. J. Autism Dev. Disord., 2009, 39(1), 97-104. doi: 10.1007/s10803-008-0604-4 PMID: 18592367
  26. Eissa, N.; Al-Houqani, M.; Sadeq, A.; Ojha, S.K.; Sasse, A.; Sadek, B. Current enlightenment about etiology and pharmacological treatment of autism spectrum disorder. Front. Neurosci., 2018, 12, 304. doi: 10.3389/fnins.2018.00304 PMID: 29867317
  27. Hranilovic, D.; Bujas-Petkovic, Z.; Vragovic, R.; Vuk, T.; Hock, K.; Jernej, B. Hyperserotonemia in adults with autistic disorder. J. Autism Dev. Disord., 2007, 37(10), 1934-1940. doi: 10.1007/s10803-006-0324-6 PMID: 17165147
  28. Padmakumar, M.; Van Raes, E.; Van Geet, C.; Freson, K. Blood platelet research in autism spectrum disorders: In search of biomarkers. Res. Pract. Thromb. Haemost., 2019, 3(4), 566-577. doi: 10.1002/rth2.12239 PMID: 31624776
  29. Hranilović, D.; Bujas-Petković, Z.; Tomičić, M.; Bordukalo-Nikšić, T.; Blažević, S.; Čičin-Šain, L. Hyperserotonemia in autism: activity of 5HT-associated platelet proteins. J. Neural Transm. (Vienna), 2009, 116(4), 493-501. doi: 10.1007/s00702-009-0192-2 PMID: 19221690
  30. Minderaa, R.B.; Anderson, G.M.; Volkmar, F.R.; Harcherick, D.; Akkerhuis, G.W.; Cohen, D.J. Whole blood serotonin and tryptophan in autism: Temporal stability and the effects of medication. J. Autism Dev. Disord., 1989, 19(1), 129-136. doi: 10.1007/BF02212724 PMID: 2708296
  31. Piven, J.; Tsai, G.; Nehme, E.; Coyle, J.T.; Chase, G.A.; Folstein, S.E. Platelet serotonin, a possible marker for familial autism. J. Autism Dev. Disord., 1991, 21(1), 51-59. doi: 10.1007/BF02206997 PMID: 2037549
  32. McBride, P.A.; Anderson, G.M.; Hertzig, M.; Snow, M.; Thompson, S.M.; Khait, V.D.; Shapiro, T.; Cohen, D.J. Effects of diagnosis, race, and puberty on platelet serotonin levels in autism and mental retardation. J. Am. Acad. Child Adolesc. Psychiatry, 1998, 37(7), 767-776. doi: 10.1097/00004583-199807000-00017 PMID: 9666633
  33. Pagan, C.; Delorme, R.; Callebert, J.; Goubran-Botros, H.; Amsellem, F.; Drouot, X.; Boudebesse, C.; Le Dudal, K.; Ngo-Nguyen, N.; Laouamri, H.; Gillberg, C.; Leboyer, M.; Bourgeron, T.; Launay, J-M. The serotonin-N-acetylserotonin–melatonin pathway as a biomarker for autism spectrum disorders. Transl. Psychiatry, 2014, 4(11), e479. doi: 10.1038/tp.2014.120 PMID: 25386956
  34. Croonenberghs, J.; Delmeire, L.; Verkerk, R.; Lin, A.H.; Meskal, A.; Neels, H.; Van der Planken, M.; Scharpe, S.; Deboutte, D.; Pison, G.; Maes, M. Peripheral markers of serotonergic and noradrenergic function in post-pubertal, caucasian males with autistic disorder. Neuropsychopharmacology, 2000, 22(3), 275-283. doi: 10.1016/S0893-133X(99)00131-1 PMID: 10693155
  35. Vered, Y.; Golubchik, P.; Mozes, T.; Strous, R.; Nechmad, A.; Mester, R.; Weizman, A.; Spivak, B. The platelet-poor plasma 5-HT response to carbohydrate rich meal administration in adult autistic patients compared with normal controls. Hum. Psychopharmacol., 2003, 18(5), 395-399. doi: 10.1002/hup.489 PMID: 12858328
  36. Spivak, B.; Golubchik, P.; Mozes, T.; Vered, Y.; Nechmad, A.; Weizman, A.; Strous, R.D. Low platelet-poor plasma levels of serotonin in adult autistic patients. Neuropsychobiology, 2004, 50(2), 157-160. doi: 10.1159/000079108 PMID: 15292671
  37. Shuffrey, L.C.; Guter, S.J.; Delaney, S.; Jacob, S.; Anderson, G.M.; Sutcliffe, J.S.; Cook, E.H.; Veenstra-VanderWeele, J. Is there sexual dimorphism of hyperserotonemia in autism spectrum disorder? Autism Res., 2017, 10(8), 1417-1423. doi: 10.1002/aur.1791 PMID: 28401654
  38. Cook, E.H., Jr; Leventhal, B.L.; Heller, W.; Metz, J.; Wainwright, M.; Freedman, D.X. Autistic children and their first-degree relatives: relationships between serotonin and norepinephrine levels and intelligence. J. Neuropsychiatry Clin. Neurosci., 1990, 2(3), 268-274. doi: 10.1176/jnp.2.3.268 PMID: 2136085
  39. Leventhal, B.L.; Cook, E.H., Jr; Morford, M.; Ravitz, A.; Freedman, D.X. Relationships of whole blood serotonin and plasma norepinephrine within families. J. Autism Dev. Disord., 1990, 20(4), 499-511. doi: 10.1007/BF02216055 PMID: 2279970
  40. Leboyer, M.; Philippe, A.; Bouvard, M.; Guilloud-Bataille, M.; Bondoux, D.; Tabuteau, F.; Feingold, J.; Mouren-Simeoni, M.C.; Launay, J.M. Whole blood serotonin and plasma beta-endorphin in autistic probands and their first-degree relatives. Biol. Psychiatry, 1999, 45(2), 158-163. doi: 10.1016/S0006-3223(97)00532-5 PMID: 9951562
  41. Bijl, N.; Thys, C.; Wittevrongel, C.; De la Marche, W.; Devriendt, K.; Peeters, H.; Van Geet, C.; Freson, K. Platelet studies in autism spectrum disorder patients and first-degree relatives. Mol. Autism, 2015, 6(1), 57. doi: 10.1186/s13229-015-0051-y PMID: 26500752
  42. Kuperman, S.; Beeghly, J.H.L.; Burns, T.L.; Tsai, L. Serotonin relationships of autistic probands and their first-degree relatives. J. Am. Acad. Child Psychiatry, 1985, 24(2), 186-190. doi: 10.1016/S0002-7138(09)60446-5 PMID: 3989161
  43. Connors, S.L.; Matteson, K.J.; Sega, G.A.; Lozzio, C.B.; Carroll, R.C.; Zimmerman, A.W. Plasma serotonin in autism. Pediatr. Neurol., 2006, 35(3), 182-186. doi: 10.1016/j.pediatrneurol.2006.02.010 PMID: 16939857
  44. Martinowich, K.; Lu, B. Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology, 2008, 33(1), 73-83. doi: 10.1038/sj.npp.1301571 PMID: 17882234
  45. Balaratnasingam, S.; Janca, A. Brain derived neurotrophic factor: A novel neurotrophin involved in psychiatric and neurological disorders. Pharmacol. Ther., 2012, 134(1), 116-124. doi: 10.1016/j.pharmthera.2012.01.006 PMID: 22281237
  46. Francis, K.; Dougali, A.; Sideri, K.; Kroupis, C.; Vasdekis, V.; Dima, K.; Douzenis, A. Brain-derived neurotrophic factor (BDNF) in children with ASD and their parents: a 3-year follow-up. Acta Psychiatr. Scand., 2018, 137(5), 433-441. doi: 10.1111/acps.12872 PMID: 29532458
  47. Molendijk, M.L.; Spinhoven, P.; Polak, M.; Bus, B A A.; Penninx, B.W.J.H.; Elzinga, B.M. Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N=9484). Mol. Psychiatry, 2014, 19(7), 791-800. doi: 10.1038/mp.2013.105 PMID: 23958957
  48. Ahmed, A.O.; Mantini, A.M.; Fridberg, D.J.; Buckley, P.F. Brain-derived neurotrophic factor (BDNF) and neurocognitive deficits in people with schizophrenia: A meta-analysis. Psychiatry Res., 2015, 226(1), 1-13. doi: 10.1016/j.psychres.2014.12.069 PMID: 25681004
  49. Fernandes, B.S.; Molendijk, M.L.; Köhler, C.A.; Soares, J.C.; Leite, C.M.G.S.; Machado-Vieira, R.; Ribeiro, T.L.; Silva, J.C.; Sales, P.M.G.; Quevedo, J.; Oertel-Knöchel, V.; Vieta, E.; González-Pinto, A.; Berk, M.; Carvalho, A.F. Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: a meta-analysis of 52 studies. BMC Med., 2015, 13(1), 289. doi: 10.1186/s12916-015-0529-7 PMID: 26621529
  50. Qin, X.Y.; Feng, J.C.; Cao, C.; Wu, H.T.; Loh, Y.P.; Cheng, Y. Association of peripheral blood levels of brain-derived neurotrophic factor with autism spectrum disorder in children. JAMA Pediatr., 2016, 170(11), 1079-1086. doi: 10.1001/jamapediatrics.2016.1626 PMID: 27654278
  51. Ormstad, H.; Bryn, V.; Verkerk, R.; Skjeldal, O.H.; Halvorsen, B.; Saugstad, O.D.; Isaksen, J.; Maes, M. Serumtryptophan, tryptophan catabolites and brain-derived neurotrophic factor in subgroups of youngsters with autism spectrum disorders. CNS Neurol. Disord. Drug Targets, 2018, 17(8), 626-639. doi: 10.2174/1871527317666180720163221 PMID: 30033880
  52. Armeanu, R.; Mokkonen, M.; Crespi, B. Meta-analysis of BDNF levels in autism. Cell. Mol. Neurobiol., 2017, 37(5), 949-954. doi: 10.1007/s10571-016-0415-7 PMID: 27501933
  53. Zheng, Z.; Zhang, L.; Zhu, T.; Huang, J.; Qu, Y.; Mu, D. Peripheral brain-derived neurotrophic factor in autism spectrum disorder: a systematic review and meta-analysis. Sci. Rep., 2016, 6(1), 31241. doi: 10.1038/srep31241 PMID: 27506602
  54. Saghazadeh, A.; Rezaei, N. Brain-derived neurotrophic factor levels in autism: A systematic review and meta-analysis. J. Autism Dev. Disord., 2017, 47(4), 1018-1029. doi: 10.1007/s10803-016-3024-x PMID: 28138831
  55. Zhang, Q.; Jiang, L.; kong, L.Y.; Lu, Y.J. Serum Brain-derived neurotrophic factor levels in Chinese children with autism spectrum disorders: A pilot study. Int. J. Dev. Neurosci., 2014, 37(1), 65-68. doi: 10.1016/j.ijdevneu.2014.06.013 PMID: 24984148
  56. Meng, W.D.; Sun, S.J.; Yang, J.; Chu, R.X.; Tu, W.; Liu, Q. Elevated serum brain-derived neurotrophic factor (BDNF) but not BDNF gene Val66Met polymorphism is associated with autism spectrum disorders. Mol. Neurobiol., 2017, 54(2), 1167-1172. doi: 10.1007/s12035-016-9721-9 PMID: 26820673
  57. Yeom, C.W.; Park, Y.J.; Choi, S.W.; Bhang, S.Y. Association of peripheral BDNF level with cognition, attention and behavior in preschool children. Child Adolesc. Psychiatry Ment. Health, 2016, 10(1), 10. doi: 10.1186/s13034-016-0097-4 PMID: 27200107
  58. First, M.B.; Williams, J.B.; Karg, R.S.; Spitzer, R.L. SCID-5-CV: Structured Clinical Interview for DSM-5 Disorders, Clinician Version; American Psychiatric Association: Arlington, VA, 2015.
  59. Dell’Osso, L.; Gesi, C.; Massimetti, E.; Cremone, I.M.; Barbuti, M.; Maccariello, G.; Moroni, I.; Barlati, S.; Castellini, G.; Luciano, M.; Bossini, L.; Rocchetti, M.; Signorelli, M.; Aguglia, E.; Fagiolini, A.; Politi, P.; Ricca, V.; Vita, A.; Carmassi, C.; Maj, M. Adult Autism Subthreshold Spectrum (AdAS Spectrum): Validation of a questionnaire investigating subthreshold autism spectrum. Compr. Psychiatry, 2017, 73, 61-83. doi: 10.1016/j.comppsych.2016.11.001 PMID: 27918948
  60. Eriksson, J.M.; Andersen, L.M.J.; Bejerot, S. RAADS-14 Screen: validity of a screening tool for autism spectrum disorder in an adult psychiatric population. Mol. Autism, 2013, 4(1), 49. doi: 10.1186/2040-2392-4-49 PMID: 24321513
  61. Nolen-Hoeksema, S.; Morrow, J. A prospective study of depression and posttraumatic stress symptoms after a natural disaster: The 1989 Loma Prieta earthquake. J. Pers. Soc. Psychol., 1991, 61(1), 115-121. doi: 10.1037/0022-3514.61.1.115 PMID: 1890582
  62. Palmieri, R.; Gapsarre, A.; Lanciano, T. A dispositional measure of depressive rumination: The Nolen-Hoeksema and Morrow RRS. Psychofenia: Research and Psychological Analysis, 2007, 17, 15-33.
  63. Mundt, J.C.; Marks, I.M.; Shear, M.K.; Greist, J.M. The work and social adjustment scale: A simple measure of impairment in functioning. Br. J. Psychiatry, 2002, 180(5), 461-464. doi: 10.1192/bjp.180.5.461 PMID: 11983645
  64. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254. doi: 10.1016/0003-2697(76)90527-3 PMID: 942051
  65. Carpita, B.; Nardi, B.; Palego, L.; Cremone, I.M.; Massimetti, G.; Carmassi, C.; Betti, L.; Giannaccini, G.; Dell’Osso, L. Kynurenine pathway and autism spectrum phenotypes: an investigation among adults with autism spectrum disorder and their first-degree relatives. CNS Spectr., 2022, 1-12. doi: 10.1017/S1092852922000840 PMID: 35634735
  66. Anderson, G.M.; Hertzig, M.E.; McBride, P.A. Brief report: Platelet-poor plasma serotonin in autism. J. Autism Dev. Disord., 2012, 42(7), 1510-1514. doi: 10.1007/s10803-011-1371-1 PMID: 21979109
  67. Walsh, J.J.; Llorach, P.; Cardozo Pinto, D.F.; Wenderski, W.; Christoffel, D.J.; Salgado, J.S.; Heifets, B.D.; Crabtree, G.R.; Malenka, R.C. Systemic enhancement of serotonin signaling reverses social deficits in multiple mouse models for ASD. Neuropsychopharmacology, 2021, 46(11), 2000-2010. doi: 10.1038/s41386-021-01091-6 PMID: 34239048
  68. Pittendreigh, C.; Solomons, K.; Maurer-Spurej, E. The influence of selective serotonin reuptake inhibitors on human platelet serotonin. Thromb. Haemost., 2004, 91(1), 119-128. doi: 10.1160/TH03-05-0330 PMID: 14691577
  69. Starlinger, P.; Pereyra, D.; Hackl, H.; Ortmayr, G.; Braunwarth, E.; Santol, J.; Najarnia, S.; Driedger, M.R.; Gregory, L.; Alva-Ruiz, R.; Glasgow, A.; Assinger, A.; Nagorney, D.M.; Habermann, E.B.; Staetttner, S.; Cleary, S.P.; Smoot, R.L.; Gruenberger, T. Consequences of perioperative serotonin reuptake inhibitor treatment during hepatic surgery. Hepatology, 2021, 73(5), 1956-1966. doi: 10.1002/hep.31601 PMID: 33078426
  70. Misiak, B.; Frydecka, D.; Łaczmański, Ł.; Ślęzak, R.; Kiejna, A. Effects of second-generation antipsychotics on selected markers of one-carbon metabolism and metabolic syndrome components in first-episode schizophrenia patients. Eur. J. Clin. Pharmacol., 2014, 70(12), 1433-1441. doi: 10.1007/s00228-014-1762-2 PMID: 25291992
  71. Savino, R.; Carotenuto, M.; Polito, A.N.; Di Noia, S.; Albenzio, M.; Scarinci, A.; Ambrosi, A.; Sessa, F.; Tartaglia, N.; Messina, G. Analyzing the potential biological determinants of autism spectrum disorder: From neuroinflammation to the kynurenine pathway. Brain Sci., 2020, 10(9), 631. doi: 10.3390/brainsci10090631 PMID: 32932826
  72. Zhuang, X.; Xu, H.; Fang, Z.; Xu, C.; Xue, C.; Hong, X. Platelet serotonin and serotonin transporter as peripheral surrogates in depression and anxiety patients. Eur. J. Pharmacol., 2018, 834, 213-220. doi: 10.1016/j.ejphar.2018.07.033 PMID: 30031795
  73. DeLong, G.R.; Teague, L.A.; Kamran, M.M.S. Effects of fluoxetine treatment in young children with idiopathic autism. Dev. Med. Child Neurol., 1998, 40(8), 551-562. doi: 10.1111/j.1469-8749.1998.tb15414.x PMID: 9746008
  74. Rappaport, L.M.; Russell, J.J.; Hedeker, D.; Pinard, G.; Bleau, P.; Moskowitz, D.S. Affect, interpersonal behaviour and interpersonal perception during open-label, uncontrolled paroxetine treatment of people with social anxiety disorder: a pilot study. J. Psychiatry Neurosci., 2018, 43(6), 407-415. doi: 10.1503/jpn.170141 PMID: 30375835
  75. Kiser, D.; SteemerS, B.; Branchi, I.; Homberg, J.R. The reciprocal interaction between serotonin and social behaviour. Neurosci. Biobehav. Rev., 2012, 36(2), 786-798. doi: 10.1016/j.neubiorev.2011.12.009 PMID: 22206901
  76. Beis, D.; Holzwarth, K.; Flinders, M.; Bader, M.; Wöhr, M.; Alenina, N. Brain serotonin deficiency leads to social communication deficits in mice. Biol. Lett., 2015, 11(3), 20150057. doi: 10.1098/rsbl.2015.0057 PMID: 25808003
  77. Andersson, M.; Tangen, Ä.; Farde, L.; Bölte, S.; Halldin, C.; Borg, J.; Lundberg, J. Serotonin transporter availability in adults with autism—a positron emission tomography study. Mol. Psychiatry, 2021, 26(5), 1647-1658. doi: 10.1038/s41380-020-00868-3 PMID: 32848204
  78. Evers, E.; van der Veen, F.; Fekkes, D.; Jolles, J. Serotonin and cognitive flexibility: neuroimaging studies into the effect of acute tryptophan depletion in healthy volunteers. Curr. Med. Chem., 2007, 14(28), 2989-2995. doi: 10.2174/092986707782794032 PMID: 18220735
  79. Clarke, H.F.; Dalley, J.W.; Crofts, H.S.; Robbins, T.W.; Roberts, A.C. Cognitive inflexibility after prefrontal serotonin depletion. Science, 2004, 304(5672), 878-880. doi: 10.1126/science.1094987 PMID: 15131308
  80. Clarke, H.F.; Walker, S.C.; Crofts, H.S.; Dalley, J.W.; Robbins, T.W.; Roberts, A.C. Prefrontal serotonin depletion affects reversal learning but not attentional set shifting. J. Neurosci., 2005, 25(2), 532-538. doi: 10.1523/JNEUROSCI.3690-04.2005 PMID: 15647499
  81. Weinberg-Wolf, H.; Fagan, N.A.; Anderson, G.M.; Tringides, M.; Dal Monte, O.; Chang, S.W.C. The effects of 5-hydroxytryptophan on attention and central serotonin neurochemistry in the rhesus macaque. Neuropsychopharmacology, 2018, 43(7), 1589-1598. doi: 10.1038/s41386-017-0003-7 PMID: 29463909
  82. Waterhouse, B.D.; Moises, H.C.; Woodward, D.J. Interaction of serotonin with somatosensory cortical neuronal responses to afferent synaptic inputs and putative neurotransmitters. Brain Res. Bull., 1986, 17(4), 507-518. doi: 10.1016/0361-9230(86)90218-2 PMID: 2877719
  83. Siemann, J.K.; Muller, C.L.; Forsberg, C.G.; Blakely, R.D.; Veenstra-VanderWeele, J.; Wallace, M.T. An autism-associated serotonin transporter variant disrupts multisensory processing. Transl. Psychiatry, 2017, 7(3), e1067. doi: 10.1038/tp.2017.17 PMID: 28323282
  84. McDougle, C.J.; Kresch, L.E.; Posey, D.J. Repetitive thoughts and behavior in pervasive developmental disorders: Treatment with serotonin reuptake inhibitors. J. Autism Dev. Disord., 2000, 30(5), 427-435. doi: 10.1023/A:1005551523657 PMID: 11098879

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers