PAFAH1B3 Regulates Papillary Thyroid Carcinoma Cell Proliferation and Metastasis by Affecting the EMT


Cite item

Full Text

Abstract

Introduction:Thyroid carcinoma (TC) is currently the prevalent type of endocrine malignancy worldwide, having an incidence of around 15.5 per 100,000 people. However, the underlying mechanisms of TC tumorigenesis remain to be further elucidated.

Methods:Performing the database analyses, Platelet-activating factor acetylhydrolase 1B3 (PAFAH1B3) was found to be dysregulated in several carcinomas and might trigger tumor occurrence as well as the progression of TC. Clinicopathological information of patients from our local validated cohort and The Cancer Genome Atlas (TCGA) cohort also confirmed this hypothesis

Results:Our present research showed that elevated expression of PAFAH1B3 has a close association with worse behavior in papillary thyroid carcinoma (PTC). We utilized the small interfering RNA to obtain the PAFAH1B3-transfected PTC cell lines, including BCPAP, FTC-133, and TPC-1, and then further examined their biological function in vitro. Furthermore, gene set enrichment analysis suggested that PAFAH1B3 is implicated with epithelial-mesenchymal transition (EMT). Afterward, the western blotting assays aimed at EMT-related proteins were performed.

Conclusion:In short, our results revealed that silencing PAFAH1B3 could hinder the capabilities of proliferation, migration, and invasion of PTC cells. Increasing expression of PAFAH1B3 might be of quintessence with lymph node metastasis by triggering EMT in PTC patients

About the authors

Wenjie Jiang

Department of Oncology Surgery, First Affiliated Hospital of Wenzhou Medical University

Email: info@benthamscience.net

Ruida Quan

Department of Thyroid Surgery, Huamei Hospital of China National University of Science and Technology

Email: info@benthamscience.net

Adheesh Bhandari

Department of Breast Surgery, First Affiliated Hospital of Wenzhou Medical University

Email: info@benthamscience.net

Suzita Hirachan

Department of Surgery, Breast Unit, Tribhuvan University Teaching Hospital

Email: info@benthamscience.net

Chengze Chen

Department of Thyroid Surgery, First Affiliated Hospital of Wenzhou Medical University

Email: info@benthamscience.net

Shihui Lv

Department of Urology Surgery, First Affiliated Hospital of Wenzhou Medical University

Email: info@benthamscience.net

Chen Zheng

Department of Thyroid and Breast Surgery, First Affiliated Hospital of Wenzhou Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Mao, Y.; Xing, M. Recent incidences and differential trends of thyroid cancer in the USA. Endocr Relat Cancer., 2016, 23(4), 313-22.
  2. Shimura, H.; Matsumoto, Y.; Murakami, T.; Fukunari, N.; Kitaoka, M.; Suzuki, S.J.C. Diagnostic strategies for thyroid nodules based on ultrasonographic findings in Japan. Cancers, 2021, 13(18), 4629.
  3. Sebastian, S.O.; Gonzalez, J.R.; Paricio, P.P. Papillary thyroid carcinoma: Prognostic index for survival including the histological variety. Arch Surg, 2000, 135(3), 272-7. doi: 10.1001/archsurg.135.3.272
  4. Kato, K.; Clark, G.D.; Bazan, N.G.; Zorumski, C.F.J.N. Platelet-activating factor as a potential retrograde messenger in CA1 hippocampal long-term potentiation. Nature, 1994, 367(6459), 175-9. doi: 10.1038/367175a0
  5. Vandenberghe, L.; Heindryckx, B.; Smits, K. Platelet-activating factor acetylhydrolase 1B3 (PAFAH1B3) is required for the formation of the meiotic spindle during in vitro oocyte maturation. Reprod Fertil Dev., 2018, 30(12), 1739-1750.
  6. Satoh, K.; Imaizumi, T.-A.; Kawamura, Y. Platelet-activating factor (PAF) stimulates the production of PAF acetylhydrolase by the human hepatoma cell line, HepG2. J. Clin. Invest., 1991, 87(2), 476-481.
  7. Nilsson, R.; Jain, M.; Madhusudhan, N. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat. Commun., 2014, 5, 3128. doi: 10.1038/ncomms4128
  8. Kume, K.; Shimizu, T. Platelet-activating factor (PAF) induces growth stimulation, inhibition, and suppression of oncogenic transformation in NRK cells overexpressing the PAF receptor. J. Biol. Chem., 1997, 272(36), 22898-904.
  9. Seo, K.H.; Ko, H.-M.; Kim, H.-A. Platelet-activating factor induces up-regulation of antiapoptotic factors in a melanoma cell line through nuclear factor-kappaB activation. Cancer Res., 2006, 66(9), 4681-6.
  10. Melnikova, V.O.; Mourad-Zeidan, A.A.; Lev, D.C. Platelet-activating factor mediates MMP-2 expression and activation via phosphorylation of cAMP-response element-binding protein and contributes to melanoma metastasis. J. Biol. Chem., 2006, 281(5), 2911-22.
  11. Xie, T.; Guo, X.; Wu, D. PAFAH1B3 expression is correlated with gastric cancer cell proliferation and immune infiltration. Front. Oncol., 2021, 11, 591545. doi: 10.3389/fonc.2021.591545 PMID: 33732641
  12. Xu, W.; Lu, X.; Liu, J. Identification of PAFAH1B3 as candidate prognosis marker and potential therapeutic target for hepatocellular carcinoma. Front. Oncol., 2021, 11, 700700. doi: 10.3389/fonc.2021.700700
  13. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4), 402-8.
  14. Thiery, J.P.; Acloque, H.; Huang, R.Y. Epithelial-mesenchymal transitions in development and disease. Cell, 2009, 139(5), 871-90.
  15. Wei, J.; Huang, K.; Chen, Z.; Hu, M.; Bai, Y.; Lin, S.; Du, H. Characterization of glycolysis-associated molecules in the tumor microenvironment revealed by pan-cancer tissues and lung cancer single cell data. Cancers, 2020, 12(7), 1788. doi: 10.3390/cancers12071788 PMID: 32635458
  16. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33. doi: 10.3322/caac.21654 PMID: 33433946
  17. Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res., 2014, 74(11), 2913-2921. doi: 10.1158/0008-5472.CAN-14-0155 PMID: 24840647
  18. Morris, L.G.T.; Tuttle, R.M.; Davies, L. Changing trends in the incidence of thyroid cancer in the United States. JAMA Otolaryngol. Head Neck Surg., 2016, 142(7), 709-711. doi: 10.1001/jamaoto.2016.0230 PMID: 27078686
  19. Nikiforov, Y.E.; Seethala, R.R.; Tallini, G.; Baloch, Z.W.; Basolo, F.; Thompson, L.D.R.; Barletta, J.A.; Wenig, B.M.; Al Ghuzlan, A.; Kakudo, K.; Giordano, T.J.; Alves, V.A.; Khanafshar, E.; Asa, S.L.; El-Naggar, A.K.; Gooding, W.E.; Hodak, S.P.; Lloyd, R.V.; Maytal, G.; Mete, O.; Nikiforova, M.N.; Nosé, V.; Papotti, M.; Poller, D.N.; Sadow, P.M.; Tischler, A.S.; Tuttle, R.M.; Wall, K.B.; LiVolsi, V.A.; Randolph, G.W.; Ghossein, R.A. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma. JAMA Oncol., 2016, 2(8), 1023-1029. doi: 10.1001/jamaoncol.2016.0386 PMID: 27078145
  20. Fonseca, E.; Soares, P.; Rossi, S.; Sobrinho-Simões, M. Prognostic factors in thyroid carcinomas. Verh. Dtsch. Ges. Pathol., 1997, 81, 82-96. PMID: 9474858
  21. Gilliland, F.D.; Hunt, W.C.; Morris, D.M.; Key, C.R. Prognostic factors for thyroid carcinoma. Cancer, 1997, 79(3), 564-573. doi: 10.1002/(SICI)1097-0142(19970201)79:33.0.CO;2-0 PMID: 9028369
  22. Hay, I.D.; Bergstralh, E.J.; Goellner, J.R.; Ebersold, J.R.; Grant, C.S. Predicting outcome in papillary thyroid carcinoma: Development of a reliable prognostic scoring system in a cohort of 1779 patients surgically treated at one institution during 1940 through 1989. Surgery, 1993, 114(6), 1050-1057. PMID: 8256208
  23. Mazzaferri, E.L.; Jhiang, S.M. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am. J. Med., 1994, 97(5), 418-428. doi: 10.1016/0002-9343(94)90321-2 PMID: 7977430
  24. Sherman, S.I.; Brierley, J.D.; Sperling, M.; Ain, K.B.; Bigos, S.T.; Cooper, D.S.; Haugen, B.R.; Ho, M.; Klein, I.; Ladenson, P.W.; Robbins, J.; Ross, D.S.; Specker, B.; Taylor, T.; Maxon, H.R., III Prospective multicenter study of thyroiscarcinoma treatment: Initial analysis of staging and outcome. Cancer, 1998, 83(5), 1012-1021. doi: 10.1002/(SICI)1097-0142(19980901)83:53.0.CO;2-9 PMID: 9731906
  25. LiVolsi, V.A.; Fadda, G.; Baloch, Z.W. Prognostic factors in well-differentiated thyroid cancer. Rays, 2000, 25(2), 163-175. PMID: 11370535
  26. Wilson, D.B.; Staren, E.D.; Prinz, R.A. Thyroid reoperations: Indications and risks. Am. Surg., 1998, 64(7), 674-678. PMID: 9655281
  27. White, M.L.; Gauger, P.G.; Doherty, G.M. Central lymph node dissection in differentiated thyroid cancer. World J. Surg., 2007, 31(5), 895-904. doi: 10.1007/s00268-006-0907-6 PMID: 17347896
  28. White, M.L.; Doherty, G.M. Level VI lymph node dissection for papillary thyroid cancer. Minerva Chir., 2007, 62(5), 383-393. PMID: 17947949
  29. Wingert, D.J.; Friesen, S.R.; Iliopoulos, J.I.; Pierce, G.E.; Thomas, J.H.; Hermreck, A.S. Post-thyroidectomy hypocalcemia. Am. J. Surg., 1986, 152(6), 606-610. doi: 10.1016/0002-9610(86)90435-6 PMID: 3789283
  30. Xing, M.; Alzahrani, A.S.; Carson, K.A.; Viola, D.; Elisei, R.; Bendlova, B.; Yip, L.; Mian, C.; Vianello, F.; Tuttle, R.M.; Robenshtok, E.; Fagin, J.A.; Puxeddu, E.; Fugazzola, L.; Czarniecka, A.; Jarzab, B.; O’Neill, C.J.; Sywak, M.S.; Lam, A.K.; Riesco-Eizaguirre, G.; Santisteban, P.; Nakayama, H.; Tufano, R.P.; Pai, S.I.; Zeiger, M.A.; Westra, W.H.; Clark, D.P.; Clifton-Bligh, R.; Sidransky, D.; Ladenson, P.W.; Sykorova, V. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA, 2013, 309(14), 1493-1501. doi: 10.1001/jama.2013.3190 PMID: 23571588
  31. Xing, M.; Alzahrani, A.S.; Carson, K.A.; Shong, Y.K.; Kim, T.Y.; Viola, D.; Elisei, R.; Bendlová, B.; Yip, L.; Mian, C.; Vianello, F.; Tuttle, R.M.; Robenshtok, E.; Fagin, J.A.; Puxeddu, E.; Fugazzola, L.; Czarniecka, A.; Jarzab, B.; O’Neill, C.J.; Sywak, M.S.; Lam, A.K.; Riesco-Eizaguirre, G.; Santisteban, P.; Nakayama, H.; Clifton-Bligh, R.; Tallini, G.; Holt, E.H.; Sýkorová, V. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J. Clin. Oncol., 2015, 33(1), 42-50. doi: 10.1200/JCO.2014.56.8253 PMID: 25332244
  32. Romei, C.; Ciampi, R.; Elisei, R. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat. Rev. Endocrinol., 2016, 12(4), 192-202. doi: 10.1038/nrendo.2016.11 PMID: 26868437
  33. Xing, M.; Haugen, B.R.; Schlumberger, M. Progress in molecular-based management of differentiated thyroid cancer. Lancet, 2013, 381(9871), 1058-1069. doi: 10.1016/S0140-6736(13)60109-9 PMID: 23668556
  34. Wang, Y.; Bhandari, A.; Niu, J.; Yang, F.; Xia, E.; Yao, Z.; Jin, Y.; Zheng, Z.; Lv, S.; Wang, O. The lncRNA UNC5B-AS1 promotes proliferation, migration, and invasion in papillary thyroid cancer cell lines. Hum. Cell, 2019, 32(3), 334-342. doi: 10.1007/s13577-019-00242-8 PMID: 30805847
  35. Wang, Q.; Yang, H.; Wu, L.; Yao, J.; Meng, X.; Jiang, H.; Xiao, C.; Wu, F. Identification of specific long non-coding RNA expression: Profile and analysis of association with clinicopathologic characteristics and BRAF mutation in papillary thyroid Cancer. Thyroid, 2016, 26(12), 1719-1732. doi: 10.1089/thy.2016.0024 PMID: 27758138
  36. Gibb, E.A.; Brown, C.J.; Lam, W.L. The functional role of long non-coding RNA in human carcinomas. Mol. Cancer, 2011, 10(1), 38. doi: 10.1186/1476-4598-10-38 PMID: 21489289
  37. Monillas, E.S.; Caplan, J.L.; Thévenin, A.F.; Bahnson, B.J. Oligomeric state regulated trafficking of human platelet-activating factor acetylhydrolase type-II. Biochim. Biophys. Acta. Proteins Proteomics, 2015, 1854(5), 469-475. doi: 10.1016/j.bbapap.2015.02.007 PMID: 25707358
  38. Stafforini, D.M. Diverse functions of plasma PAF-AH in tumorigenesis. Enzymes, 2015, 38, 157-179. doi: 10.1016/bs.enz.2015.09.005 PMID: 26612652
  39. Fiedler, E.R.C.; Bhutkar, A.; Lawler, E.; Besada, R.; Hemann, M.T. In vivo RNAi screening identifies Pafah1b3 as a target for combination therapy with TKIs in BCR-ABL1+ BCP-ALL. Blood Adv., 2018, 2(11), 1229-1242. doi: 10.1182/bloodadvances.2017015610 PMID: 29853524
  40. Kohnz, R.A.; Mulvihill, M.M.; Chang, J.W.; Hsu, K.L.; Sorrentino, A.; Cravatt, B.F.; Bandyopadhyay, S.; Goga, A.; Nomura, D.K. Activity-based protein profiling of oncogene-driven changes in metabolism reveals broad dysregulation of PAFAH1B2 and 1B3 in cancer. ACS Chem. Biol., 2015, 10(7), 1624-1630. doi: 10.1021/acschembio.5b00053 PMID: 25945974
  41. Fan, J.; Yang, Y.; Qian, J.; Zhang, X.; Ji, J.; Zhang, L.; Li, S.; Yuan, F. Aberrant expression of PAFAH1B3 affects proliferation and apoptosis in osteosarcoma. Front. Oncol., 2021, 11, 664478. doi: 10.3389/fonc.2021.664478 PMID: 34136395
  42. Ribatti, D.; Tamma, R.; Annese, T. Epithelial-Mesenchymal Transition in cancer: A historical overview. Transl. Oncol., 2020, 13(6), 100773. doi: 10.1016/j.tranon.2020.100773 PMID: 32334405

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers