Involvement of Nrf2 Signaling in Lead-induced Toxicity

  • Authors: Arabnezhad M.1, Haghani F.2, Ghaffarian-Bahraman A.3, Jafarzadeh E.4, Mohammadi H.5, Yadegari J.6, Farkhondeh T.7, Aschner M.8, Darroudi M.9, Marouzi S.10, Samarghandian S.11
  • Affiliations:
    1. Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences
    2. Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences
    3. Occupational Environment Research Center, Rafsanjan University of Medical Sciences
    4. Department of Toxicology and Pharmacology, Faculty of Pharmacy,, Tehran University of Medical Sciences (TUMS)
    5. Department of Pharmacology and Toxicology, Faculty of Pharmacy, Lorestan University of Medical Sciences
    6. Department of Pharmacognosy, Faculty of Pharmacy, Lorestan University of Medical Sciences
    7. Department of Toxicology and Pharmacology, School of Pharmacy,, Birjand University of Medical Sciences
    8. Department of Molecular Pharmacology, Albert Einstein College of Medicine
    9. Nuclear Medicine Research Center, Mashhad University of Medical Sciences,
    10. Department of Basic Medical Sciences, Neyshabur University of Medical Sciences
    11. Healthy Ageing Research Centre, Neyshabur University of Medical Sciences
  • Issue: Vol 31, No 23 (2024)
  • Pages: 3529-3549
  • Section: Anti-Infectives and Infectious Diseases
  • URL: https://rjmseer.com/0929-8673/article/view/645221
  • DOI: https://doi.org/10.2174/0929867330666230522143341
  • ID: 645221

Cite item

Full Text

Abstract

Nuclear factor erythroid 2-related factor 2 (Nrf2) is used as one of the main protective factors against various pathological processes, as it regulates cells resistant to oxidation. Several studies have extensively explored the relationship between environmental exposure to heavy metals, particularly lead (Pb), and the development of various human diseases. These metals have been reported to be able to, directly and indirectly, induce the production of reactive oxygen species (ROS) and cause oxidative stress in various organs. Since Nrf2 signaling is important in maintaining redox status, it has a dual role depending on the specific biological context. On the one hand, Nrf2 provides a protective mechanism against metal-induced toxicity; on the other hand, it can induce metalinduced carcinogenesis upon prolonged exposure and activation. Therefore, the aim of this review was to summarize the latest knowledge on the functional interrelation between toxic metals, such as Pb and Nrf2 signaling.

About the authors

Mohammad-Reza Arabnezhad

Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences

Email: info@benthamscience.net

Fatemeh Haghani

Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences

Email: info@benthamscience.net

Ali Ghaffarian-Bahraman

Occupational Environment Research Center, Rafsanjan University of Medical Sciences

Email: info@benthamscience.net

Emad Jafarzadeh

Department of Toxicology and Pharmacology, Faculty of Pharmacy,, Tehran University of Medical Sciences (TUMS)

Email: info@benthamscience.net

Hamidreza Mohammadi

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Lorestan University of Medical Sciences

Email: info@benthamscience.net

Javad Yadegari

Department of Pharmacognosy, Faculty of Pharmacy, Lorestan University of Medical Sciences

Email: info@benthamscience.net

Tahereh Farkhondeh

Department of Toxicology and Pharmacology, School of Pharmacy,, Birjand University of Medical Sciences

Email: info@benthamscience.net

Michael Aschner

Department of Molecular Pharmacology, Albert Einstein College of Medicine

Email: info@benthamscience.net

Majid Darroudi

Nuclear Medicine Research Center, Mashhad University of Medical Sciences,

Email: info@benthamscience.net

Somayeh Marouzi

Department of Basic Medical Sciences, Neyshabur University of Medical Sciences

Email: info@benthamscience.net

Saeed Samarghandian

Healthy Ageing Research Centre, Neyshabur University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Krajka-Kuźniak, V.; Paluszczak, J.; Baer-Dubowska, W. The Nrf2-ARE signaling pathway: An update on its regulation and possible role in cancer prevention and treatment. Pharmacol. Rep., 2017, 69(3), 393-402. doi: 10.1016/j.pharep.2016.12.011 PMID: 28267640
  2. Sun, Z.; Chin, Y.E.; Zhang, D.D. Acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 during the antioxidant response. Mol. Cell. Biol., 2009, 29(10), 2658-2672. doi: 10.1128/MCB.01639-08 PMID: 19273602
  3. Theodore, M.; Kawai, Y.; Yang, J.; Kleshchenko, Y.; Reddy, S.P.; Villalta, F.; Arinze, I.J. Multiple nuclear localization signals function in the nuclear import of the transcription factor Nrf2. J. Biol. Chem., 2008, 283(14), 8984-8994. doi: 10.1074/jbc.M709040200 PMID: 18238777
  4. Katoh, Y.; Itoh, K.; Yoshida, E.; Miyagishi, M.; Fukamizu, A.; Yamamoto, M. Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes Cells, 2001, 6(10), 857-868. doi: 10.1046/j.1365-2443.2001.00469.x PMID: 11683914
  5. Nioi, P.; Nguyen, T.; Sherratt, P.J.; Pickett, C.B. The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation. Mol. Cell. Biol., 2005, 25(24), 10895-10906. doi: 10.1128/MCB.25.24.10895-10906.2005 PMID: 16314513
  6. Rojo, A.I.; Medina-Campos, O.N.; Rada, P.; Zúñiga-Toalá, A.; López-Gazcón, A.; Espada, S.; Pedraza-Chaverri, J.; Cuadrado,, A. Signaling pathways activated by the phytochemical nordihydroguaiaretic acid contribute to a Keap1-independent regulation of Nrf2 stability: Role of glycogen synthase kinase-3. Free Radic. Biol. Med., 2012, 52(2), 473-487. doi: 10.1016/j.freeradbiomed.2011.11.003 PMID: 22142471
  7. Yang, G.; Zhao, K.; Ju, Y.; Mani, S.; Cao, Q.; Puukila, S.; Khaper, N.; Wu, L.; Wang, R. Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid. Redox Signal., 2013, 18(15), 1906-1919. doi: 10.1089/ars.2012.4645 PMID: 23176571
  8. Jaramillo, M.C.; Zhang, D.D. The emerging role of the Nrf2–Keap1 signaling pathway in cancer. Genes Dev., 2013, 27(20), 2179-2191. doi: 10.1101/gad.225680.113 PMID: 24142871
  9. Kansanen, E.; Kuosmanen, S.M.; Leinonen, H.; Levonen, A.L. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol., 2013, 1(1), 45-49. doi: 10.1016/j.redox.2012.10.001 PMID: 24024136
  10. Furukawa, M.; Xiong, Y. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol. Cell. Biol., 2005, 25(1), 162-171. doi: 10.1128/MCB.25.1.162-171.2005 PMID: 15601839
  11. Niture, S.K.; Khatri, R.; Jaiswal, A.K. Regulation of Nrf2—an update. Free Radic. Biol. Med., 2014, 66, 36-44. doi: 10.1016/j.freeradbiomed.2013.02.008 PMID: 23434765
  12. Ogura, T.; Tong, K.I.; Mio, K.; Maruyama, Y.; Kurokawa, H.; Sato, C.; Yamamoto, M. Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-terminal domains. Proc. Natl. Acad. Sci. , 2010, 107(7), 2842-2847. doi: 10.1073/pnas.0914036107 PMID: 20133743
  13. Zipper, L.M.; Mulcahy, R.T. The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm. J. Biol. Chem., 2002, 277(39), 36544-36552. doi: 10.1074/jbc.M206530200 PMID: 12145307
  14. Hayes, J.D.; McMahon, M. NRF2 and KEAP1 mutations: Permanent activation of an adaptive response in cancer. Trends Biochem. Sci., 2009, 34(4), 176-188. doi: 10.1016/j.tibs.2008.12.008 PMID: 19321346
  15. Komatsu, M.; Kurokawa, H.; Waguri, S.; Taguchi, K.; Kobayashi, A.; Ichimura, Y.; Sou, Y.S.; Ueno, I.; Sakamoto, A.; Tong, K.I.; Kim, M.; Nishito, Y.; Iemura, S.; Natsume, T.; Ueno, T.; Kominami, E.; Motohashi, H.; Tanaka, K.; Yamamoto, M. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol., 2010, 12(3), 213-223. doi: 10.1038/ncb2021 PMID: 20173742
  16. Taguchi, K.; Motohashi, H.; Yamamoto, M. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells, 2011, 16(2), 123-140. doi: 10.1111/j.1365-2443.2010.01473.x PMID: 21251164
  17. Um, H.C.; Jang, J.H.; Kim, D.H.; Lee, C.; Surh, Y.J. Nitric oxide activates Nrf2 through S-nitrosylation of Keap1 in PC12 cells. Nitric Oxide, 2011, 25(2), 161-168. doi: 10.1016/j.niox.2011.06.001 PMID: 21703357
  18. Kansanen, E.; Jyrkkänen, H.K.; Levonen, A.L. Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids. Free Radic. Biol. Med., 2012, 52(6), 973-982. doi: 10.1016/j.freeradbiomed.2011.11.038 PMID: 22198184
  19. Hayes, J.D.; McMahon, M.; Chowdhry, S.; Dinkova-Kostova, A.T. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid. Redox Signal., 2010, 13(11), 1713-1748. doi: 10.1089/ars.2010.3221 PMID: 20446772
  20. Itoh, K.; Wakabayashi, N.; Katoh, Y.; Ishii, T.; Igarashi, K.; Engel, J.D.; Yamamoto, M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev., 1999, 13(1), 76-86. doi: 10.1101/gad.13.1.76 PMID: 9887101
  21. Kim, J-H.; Yu, S.; Chen, J.D.; Kong, A.N. The nuclear cofactor RAC3/AIB1/SRC-3 enhances Nrf2 signaling by interacting with transactivation domains. Oncogene, 2013, 32(4), 514-527. doi: 10.1038/onc.2012.59 PMID: 22370642
  22. Rachakonda, G.; Xiong, Y.; Sekhar, K.R.; Stamer, S.L.; Liebler, D.C.; Freeman, M.L. Covalent modification at Cys151 dissociates the electrophile sensor Keap1 from the ubiquitin ligase CUL3. Chem. Res. Toxicol., 2008, 21(3), 705-710. doi: 10.1021/tx700302s PMID: 18251510
  23. Chowdhry, S.; Zhang, Y.; McMahon, M.; Sutherland, C.; Cuadrado, A.; Hayes, J.D. Nrf2 is controlled by two distinct β-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene, 2013, 32(32), 3765-3781. doi: 10.1038/onc.2012.388 PMID: 22964642
  24. Wardyn, J.D.; Ponsford, A.H.; Sanderson, C.M. Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem. Soc. Trans., 2015, 43(4), 621-626. doi: 10.1042/BST20150014 PMID: 26551702
  25. Itoh, K.; Chiba, T.; Takahashi, S.; Ishii, T.; Igarashi, K.; Katoh, Y.; Oyake, T.; Hayashi, N.; Satoh, K.; Hatayama, I.; Yamamoto, M.; Nabeshima, Y. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun., 1997, 236(2), 313-322. doi: 10.1006/bbrc.1997.6943 PMID: 9240432
  26. Ashrafizadeh, M.; Ahmadi, Z.; Kotla, N.G.; Afshar, E.G.; Samarghandian, S.; Mandegary, A.; Pardakhty, A.; Mohammadinejad, R.; Sethi, G. Nanoparticles targeting STATs in cancer therapy. Cells, 2019, 8(10), 1158.
  27. Wielandt, A.M.; Vollrath, V.; Farias, M.; Chianale, J. Bucillamine induces glutathione biosynthesis via activation of the transcription factor Nrf2. Biochem. Pharmacol., 2006, 72(4), 455-462. doi: 10.1016/j.bcp.2006.05.011 PMID: 16806086
  28. Karin, M.; Yamamoto, Y.; Wang, Q.M. The IKK NF-κB system: A treasure trove for drug development. Nat. Rev. Drug Discov., 2004, 3(1), 17-26. doi: 10.1038/nrd1279 PMID: 14708018
  29. Soares, M.P.; Seldon, M.P.; Gregoire, I.P.; Vassilevskaia, T.; Berberat, P.O.; Yu, J.; Tsui, T.Y.; Bach, F.H. Heme oxygenase-1 modulates the expression of adhesion molecules associated with endothelial cell activation. J. Immunol., 2004, 172(6), 3553-3563. doi: 10.4049/jimmunol.172.6.3553 PMID: 15004156
  30. Ganesh Yerra, V.; Negi, G.; Sharma, S.S.; Kumar, A. Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy. Redox Biol., 2013, 1(1), 394-397. doi: 10.1016/j.redox.2013.07.005 PMID: 24024177
  31. Chen, L-G.; Zhang, Y-Q.; Wu, Z-Z.; Hsieh, C-W.; Chu, C-S.; Wung, B-S.J.I.J.M.M. Peanut arachidin-1 enhances Nrf2-mediated protective mechanisms against TNF-α- induced ICAM-1 expression and NF-κB activation in endothelial cells Int. J. Mol. Med., 2018, 41(1), 541-547. PMID: 29115410
  32. Liu, G.H.; Qu, J.; Shen, X. NF-κB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochim. Biophys. Acta Mol. Cell Res., 2008, 1783(5), 713-727. doi: 10.1016/j.bbamcr.2008.01.002 PMID: 18241676
  33. Ichimura, Y.; Waguri, S.; Sou, Y.; Kageyama, S.; Hasegawa, J.; Ishimura, R.; Saito, T.; Yang, Y.; Kouno, T.; Fukutomi, T.; Hoshii, T.; Hirao, A.; Takagi, K.; Mizushima, T.; Motohashi, H.; Lee, M.S.; Yoshimori, T.; Tanaka, K.; Yamamoto, M.; Komatsu, M. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol. Cell, 2013, 51(5), 618-631. doi: 10.1016/j.molcel.2013.08.003 PMID: 24011591
  34. Chen, W.; Sun, Z.; Wang, X.J.; Jiang, T.; Huang, Z.; Fang, D.; Zhang, D.D. Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Mol. Cell, 2009, 34(6), 663-673. doi: 10.1016/j.molcel.2009.04.029 PMID: 19560419
  35. Gorrini, C.; Baniasadi, P.S.; Harris, I.S.; Silvester, J.; Inoue, S.; Snow, B.; Joshi, P.A.; Wakeham, A.; Molyneux, S.D.; Martin, B.; Bouwman, P.; Cescon, D.W.; Elia, A.J.; Winterton-Perks, Z.; Cruickshank, J.; Brenner, D.; Tseng, A.; Musgrave, M.; Berman, H.K.; Khokha, R.; Jonkers, J.; Mak, T.W.; Gauthier, M.L. BRCA1 interacts with Nrf2 to regulate antioxidant signaling and cell survival. J. Exp. Med., 2013, 210(8), 1529-1544. doi: 10.1084/jem.20121337 PMID: 23857982
  36. Bae, S.H.; Sung, S.H.; Oh, S.Y.; Lim, J.M.; Lee, S.K.; Park, Y.N.; Lee, H.E.; Kang, D.; Rhee, S.G. Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab., 2013, 17(1), 73-84. doi: 10.1016/j.cmet.2012.12.002 PMID: 23274085
  37. Huen, M.S.Y.; Sy, S.M.H.; Chen, J. BRCA1 and its toolbox for the maintenance of genome integrity. Nat. Rev. Mol. Cell Biol., 2010, 11(2), 138-148. doi: 10.1038/nrm2831 PMID: 20029420
  38. Silva-Islas, C.A.; Maldonado, P.D. Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol. Res., 2018, 134, 92-99. doi: 10.1016/j.phrs.2018.06.013 PMID: 29913224
  39. Shan, Y.; Wei, Z.; Tao, L.; Wang, S.; Zhang, F.; Shen, C.; Wu, H.; Liu, Z.; Zhu, P.; Wang, A.; Chen, W.; Lu, Y. Prophylaxis of diallyl disulfide on skin carcinogenic model via p21-dependent Nrf2 stabilization. Sci. Rep., 2016, 6(1), 35676. doi: 10.1038/srep35676 PMID: 27759091
  40. Emami, M.H.; Sereshki, N.; Malakoutikhah, Z.; Dehkordi, S.A.E.; Fahim, A.; Mohammadzadeh, S.; Maghool, F. Nrf2 signaling pathway in trace metal carcinogenesis: A crosstalk between oxidative stress and angiogenesis. Comp. Biochem. Physiol. Part - C: Toxicol. Pharmacol., 2022, 254, 109266.
  41. Kim, J.; Keum, Y.S. NRF2, a key regulator of antioxidants with two faces towards cancer. Oxid. Med. Cell. Longev., 2016, 2016, 2746457. doi: 10.1155/2016/2746457
  42. Mohammadi, S.; Shafiee, M.; Faraji, S.N.; Rezaeian, M.; Ghaffarian-Bahraman, A. Contamination of breast milk with lead, mercury, arsenic, and cadmium in Iran: A systematic review and meta-analysis. Biometals, 2022, 35(4), 711-728. doi: 10.1007/s10534-022-00395-4 PMID: 35575819
  43. Krzywy, I.; Krzywy, E.; Pastuszak-Gabinowska, M.; Brodkiewicz, A. Lead-is there something to be afraid of? Ann. Acad. Med. Stetin., 2010, 56(2), 118-128. PMID: 21469290
  44. Ab Latif Wani, A.; Usmani, J. Lead toxicity: A review. Interdiscip. Toxicol., 2015.
  45. Drop, B.; Mariola, J.; Agnieszka, B.; Krzysztof, K.; Nitsch-Osuch, A.; Magdalena, B. Satisfaction with life and adaptive reactions in people treated for chronic obstructive pulmonary disease. In: Clinical Pulmonary Research; Springer, 2018; pp. 41-47. doi: 10.1007/5584_2018_242
  46. Charkiewicz, A.E.; Backstrand, J.R.; Health, P. Lead toxicity and pollution in Poland. Int. Int. J. Environ. Res. Public Health, 2020, 17(12), 4385. doi: 10.3390/ijerph17124385 PMID: 32570851
  47. Ghaffarian-Bahraman, A.; Taherifard, A.; Esmaeili, A.; Ahmadinia, H.; Rezaeian, M. Evaluation of blood lead among painters of buildings and cars. Toxicol. Ind. Health, 2021, 37(12), 737-744. doi: 10.1177/07482337211042731 PMID: 34797729
  48. Wani, A.L.; Ara, A.; Usmani, J.A. Lead toxicity: a review. Interdiscip. Toxicol., 2015, 8(2), 55-64. doi: 10.1515/intox-2015-0009 PMID: 27486361
  49. Bellinger, D.C. Very low lead exposures and children’s neurodevelopment. Curr. Opin. Pediatr., 2008, 20(2), 172-177. doi: 10.1097/MOP.0b013e3282f4f97b PMID: 18332714
  50. Liu, B.; Zhang, H.; Tan, X.; Yang, D.; Lv, Z.; Jiang, H.; Lu, J.; Baiyun, R.; Zhang, Z. GSPE reduces lead-induced oxidative stress by activating the Nrf2 pathway and suppressing miR153 and GSK-3β in rat kidney. Oncotarget, 2017, 8(26), 42226-42237. doi: 10.18632/oncotarget.15033 PMID: 28178683
  51. AL-Megrin, W.A.; Alomar, S..; Alkhuriji, A.F.; Metwally, D.M.; Mohamed,, S.K.; Kassab, R.B.; Abdel Moneim, A.E.; El-Khadragy, M.F. Luteolin protects against testicular injury induced by lead acetate by activating the Nrf2/HO ‐1 pathway. IUBMB Life, 2020, 72(8), 1787-1798. doi: 10.1002/iub.2311 PMID: 32478470
  52. Aglan, H.S.; Gebremedhn, S.; Salilew-Wondim, D.; Neuhof, C.; Tholen, E.; Holker, M.; Schellander, K.; Tesfaye, D. Regulation of Nrf2 and NF-κB during lead toxicity in bovine granulosa cells. Cell Tissue Res., 2020, 380(3), 643-655. doi: 10.1007/s00441-020-03177-x PMID: 32185525
  53. Albarakati, A.J.A.; Baty, R.S.; Aljoudi, A.M.; Habotta, O.A.; Elmahallawy, E.K.; Kassab, R.B.; Abdel Moneim, A.E. Luteolin protects against lead acetate-induced nephrotoxicity through antioxidant, anti-inflammatory, anti-apoptotic, and Nrf2/HO-1 signaling pathways. Mol. Biol. Rep., 2020, 47(4), 2591-2603. doi: 10.1007/s11033-020-05346-1 PMID: 32144527
  54. Liu, C.M.; Tian, Z.K.; Zhang, Y.J.; Ming, Q.L.; Ma, J.Q.; Ji, L.P. Effects of gastrodin against lead-induced brain injury in mice associated with the Wnt/Nrf2 pathway. Nutrients, 2020, 12(6), 1805. doi: 10.3390/nu12061805 PMID: 32560430
  55. Yang, L.; Li, X.; Jiang, A.; Li, X.; Chang, W.; Chen, J.; Ye, F. Metformin alleviates lead-induced mitochondrial fragmentation via AMPK/Nrf2 activation in SH-SY5Y cells. Redox Biol., 2020, 36, 101626. doi: 10.1016/j.redox.2020.101626 PMID: 32863218
  56. Ye, F.; Li, X.; Li, L.; Lyu, L.; Yuan, J.; Chen, J.; Toxicology, C. The role of Nrf2 in protection against Pb-induced oxidative stress and apoptosis in SH-SY5Y cells. Food Chem. Toxicol., 2015, 86, 191-201. doi: 10.1016/j.fct.2015.10.009 PMID: 26498409
  57. Wang, Y.; Fang, J.; Huang, S.; Chen, L.; Fan, G.; Wang, C. The chronic effects of low lead level on the expressions of Nrf2 and Mrp1 of the testes in the rats. Environ. Toxicol. Pharmacol., 2013, 35(1), 109-116. doi: 10.1016/j.etap.2012.12.001 PMID: 23274417
  58. y Ortiz, M.T.; Téllez-Rojo, M.M.; Hu, H.; Wright, A.; HernándezÁvila, R.; Amarasiriwardena,, C.; Lupoli, N.; Mercado-García, A.; Pantic,, I.; Lamadrid-Figueroa, H.J.E.r Lead in candy consumed and blood lead levels of children living in Mexico City Environ. Res., 2016, 147, 497-502.
  59. Staniak, S. Sources and levels of lead in food. Pol. J. Agron., 2014, 19, 36-45.
  60. Rehman, K.; Fatima, F.; Waheed, I.; Akash, M.S.H. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem., 2018, 119(1), 157-184. doi: 10.1002/jcb.26234 PMID: 28643849
  61. Wieczorek, J.; Baran, A.; Urbański, K.; Mazurek, R.; Klimowicz-Pawlas, A. Assessment of the pollution and ecological risk of lead and cadmium in soils. Environ. Geochem. Health, 2018, 40(6), 2325-2342. doi: 10.1007/s10653-018-0100-5 PMID: 29589150
  62. Sirivarasai, J.; Kaojarern, S.; Chanprasertyothin, S.; Panpunuan, P.; Petchpoung, K.; Tatsaneeyapant, A.; Yoovathaworn, K.; Sura, T.; Kaojarern, S.; Sritara, P.J.B.r.i. Environmental lead exposure, catalase gene, and markers of antioxidant and oxidative stress relation to hypertension: An analysis based on the EGAT study. Biomed. Res., 2015, 2015, 856319. doi: 10.1155/2015/856319
  63. Jakubowski, J.J.P.M.O.S.P. Lead and its inorganic compounds, other than lead arsenate and lead chromate as Pb, inhalable fraction. Documentation of suggested occupational exposure limits (OELs). Podstawy Metody Oceny Srodowiska Pracy., 2014, 80, 111-144. doi: 10.5604/1231868X.1111932
  64. Zawadzki, M.; Poreba, R.; Gać, P. Mechanisms and toxic effects of lead on the cardiovascular system. Med. Pr., 2006, 57(6), 543-549. PMID: 17533992
  65. Fu, Z.; Xi, S. The effects of heavy metals on human metabolism. Toxicol. Mech. Methods, 2020, 30(3), 167-176. doi: 10.1080/15376516.2019.1701594 PMID: 31818169
  66. Ghaffarian-Bahraman, A.; Arabnezhad, M.R.; Keshavarzi, M.; Davani-Davari, D.; Jamshidzadeh, A.; Mohammadi-Bardbori, A. Influence of cellular redox environment on aryl hydrocarbon receptor ligands induced melanogenesis. Toxicol. in Vitro, 2022, 79, 105282. doi: 10.1016/j.tiv.2021.105282 PMID: 34856342
  67. Lin, J.L.; Lin-Tan, D.T.; Hsu, K.H.; Yu, C.C. Environmental lead exposure and progression of chronic renal diseases in patients without diabetes. N. Engl. J. Med., 2003, 348(4), 277-286. doi: 10.1056/NEJMoa021672 PMID: 12540640
  68. Wedeen, R.P.; Maesaka, J.K.; Weiner, B.; Lipat, G.A.; Lyons, M.M.; Vitale, L.F.; Joselow, M.M. Occupational lead nephropathy. Am. J. Med., 1975, 59(5), 630-641. doi: 10.1016/0002-9343(75)90224-7 PMID: 1200035
  69. Lin, J.L.; Huang, P.T. Body lead stores and urate excretion in men with chronic renal disease J. Rheumatol., 1994, 21(4), 705-709. PMID: 8035397
  70. Benjelloun, M.; Tarrass, F.; Hachim, K.; Medkouri, G.; Benghanem, M.G.; Ramdani, B. Chronic lead poisoning: A "forgotten" cause of renal disease Saudi J. Kidney Dis. Transpl., 2007, 18(1), 83-86. PMID: 17237897
  71. Haghani, F.; Arabnezhad, M.R.; Mohammadi, S.; Ghaffarian-Bahraman, A. Aloe vera and streptozotocin-induced diabetes mellitus. Rev. Bras. Farmacogn., 2022, 32(2), 174-187. doi: 10.1007/s43450-022-00231-3 PMID: 35287334
  72. Yu, C.C.; Lin, J.L.; Lin-Tan, D.T. Environmental exposure to lead and progression of chronic renal diseases: A four-year prospective longitudinal study. J. Am. Soc. Nephrol., 2004, 15(4), 1016-1022. doi: 10.1097/01.ASN.0000118529.01681.4F PMID: 15034104
  73. Yang, S.; Xiao, L.; Song, P.; Xu, X.; Liu, F.; Sun, L. Is lead chelation therapy effective for chronic kidney disease? A meta-analysis. Nephrology , 2014, 19(1), 56-59. doi: 10.1111/nep.12162 PMID: 24341661
  74. Pant, N.; Upadhyay, G.; Pandey, S.; Mathur, N.; Saxena, D.K.; Srivastava, S.P. Lead and cadmium concentration in the seminal plasma of men in the general population: Correlation with sperm quality. Reprod. Toxicol., 2003, 17(4), 447-450. doi: 10.1016/S0890-6238(03)00036-4 PMID: 12849856
  75. Vigeh, M.; Smith, D.R.; Hsu, P.C. How does lead induce male infertility? Iran. J. Reprod. Med., 2011, 9(1), 1-8. PMID: 25356074
  76. Morán-Martínez, J.; Carranza-Rosales , P.; Morales-Vallarta, M.; A Heredia-Rojas, J.; Bassol-Mayagoitia, S.; Betancourt-Martínez, D.N.; M Cerda-Flores, .R Chronic environmental exposure to lead affects semen quality in a Mexican men population Iran. J. Reprod. Med., 2013, 11(4), 267-274. PMID: 24639755
  77. Guzikowski, W.; Szynkowska, M.I.; Motak-Pochrzęst, H.; Pawlaczyk, A.; Sypniewski, S. Trace elements in seminal plasma of men from infertile couples. Arch. Med. Sci., 2015, 3(3), 591-598. doi: 10.5114/aoms.2015.52363 PMID: 26170853
  78. Taha, E.A.; Sayed, S.K.; Ghandour, N.M.; Mahran, A.M.; Saleh, M.A.; Amin, M.M.; Shamloul, R. Correlation between seminal lead and cadmium and seminal parameters in idiopathic oligoasthenozoospermic males. Urol. Pol., 2013, 65(1), 84-92. doi: 10.5173/ceju.2013.01.art28 PMID: 24579002
  79. Li, C.J.; Yeh, C.Y.; Chen, R.Y.; Tzeng, C.R.; Han, B.C.; Chien, L.C. Biomonitoring of blood heavy metals and reproductive hormone level related to low semen quality. J. Hazard. Mater., 2015, 300, 815-822. doi: 10.1016/j.jhazmat.2015.08.027 PMID: 26340548
  80. Yu, T.; Li, Z.; Wang, X.; Niu, K.; Xiao, J.; Li, B. Effect of lead exposure on male sexual hormone Wei Sheng Yen Chiu, 2010, 39(4), 413-415. PMID: 20726225
  81. Sadeghniat Haghighi, K.; Aminian, O.; Chavoshi, F.; Bahaedini, L.S.; Soltani, S.; Rahmati Najarkolaei, F. Relationship between blood lead level and male reproductive hormones in male lead exposed workers of a battery factory: A cross-sectional study Iran. J. Reprod. Med., 2013, 11(8), 673-676. PMID: 24639806
  82. Chen, C.; Wang, N.; Zhai, H.; Nie, X.; Sun, H.; Han, B.; Li, Q.; Chen, Y.; Cheng, J.; Xia, F.; Zhao, L.; Zheng, Y.; Shen, Z.; Lu, Y. Associations of blood lead levels with reproductive hormone levels in men and postmenopausal women: Results from the SPECT-China Study. Sci. Rep., 2016, 6(1), 37809. doi: 10.1038/srep37809 PMID: 27898110
  83. Mendola, P.; Messer, L.C.; Rappazzo, K. Science linking environmental contaminant exposures with fertility and reproductive health impacts in the adult female. Fertil. Steril., 2008, 89(S2), e81-e94. doi: 10.1016/j.fertnstert.2007.12.036 PMID: 18308071
  84. Balabanič, D.; Rupnik, M.; Klemenčič, A.K. Negative impact of endocrine-disrupting compounds on human reproductive health. Reprod. Fertil. Dev., 2011, 23(3), 403-416. doi: 10.1071/RD09300 PMID: 21426858
  85. Lei, H.L.; Wei, H.J.; Ho, H.Y.; Liao, K.W.; Chien, L.C. Relationship between risk factors for infertility in women and lead, cadmium, and arsenic blood levels: A cross-sectional study from Taiwan. BMC Public Health, 2015, 15(1), 1220. doi: 10.1186/s12889-015-2564-x PMID: 26653029
  86. Park, S.K.; O’Neill, M.S.; Vokonas, P.S.; Sparrow, D.; Wright, R.O.; Coull, B.; Nie, H.; Hu, H.; Schwartz, J. Air pollution and heart rate variability: Effect modification by chronic lead exposure. Epidemiology, 2008, 19(1), 111-120. doi: 10.1097/EDE.0b013e31815c408a PMID: 18091001
  87. Lamadrid-Figueroa, H.; Téllez-Rojo, M.M.; Hernández-Avila, M.; Trejo-Valdivia, B.; Solano-González, M.; Mercado-Garcia, A.; Smith, D.; Hu, H.; Wright, R.O Association between the plasma/whole blood lead ratio and history of spontaneous abortion: A nested cross-sectional study. BMC Pregnancy Childbirth, 2007, 7(1), 22. doi: 10.1186/1471-2393-7-22 PMID: 17900368
  88. Vigeh, M.; Yokoyama, K.; Shinohara, A.; Afshinrokh, M.; Yunesian, M. Early pregnancy blood lead levels and the risk of premature rupture of the membranes. Reprod. Toxicol., 2010, 30(3), 477-480. doi: 10.1016/j.reprotox.2010.05.007 PMID: 20576532
  89. Zhu, M.; Fitzgerald, E.F.; Gelberg, K.H.; Lin, S.; Druschel, C.M. Maternal low-level lead exposure and fetal growth. Environ. Health Perspect., 2010, 118(10), 1471-1475. doi: 10.1289/ehp.0901561 PMID: 20562053
  90. Rzymski, P.; Tomczyk, K.; Rzymski, P.; Poniedziałek, B.; Opala, T.; Wilczak, M. Impact of heavy metals on the female reproductive system. Ann. Agric. Environ. Med., 2015, 22(2), 259-264. doi: 10.5604/12321966.1152077 PMID: 26094520
  91. Seyom, E.; Abera, M.; Tesfaye, M.; Fentahun, N. Maternal and fetal outcome of pregnancy related hypertension in Mettu Karl Referral Hospital, Ethiopia. J. Ovarian Res., 2015, 8(1), 10. doi: 10.1186/s13048-015-0135-5 PMID: 25824330
  92. Yazbeck, C.; Thiebaugeorges, O.; Moreau, T.; Goua, V.; Debotte, G.; Sahuquillo, J.; Forhan, A.; Foliguet, B.; Magnin, G.; Slama, R.; Charles, M.A.; Huel, G. Maternal blood lead levels and the risk of pregnancy-induced hypertension: The EDEN cohort study. Environ. Health Perspect., 2009, 117(10), 1526-1530. doi: 10.1289/ehp.0800488 PMID: 20019901
  93. Hong, Y.C.; Kulkarni, S.S.; Lim, Y.H.; Kim, E.; Ha, M.; Park, H.; Kim, Y.; Kim, B.N.; Chang, N.; Oh, S.Y.; Kim, Y.J.; Park, C.; Ha, E. Postnatal growth following prenatal lead exposure and calcium intake. Pediatrics, 2014, 134(6), 1151-1159. doi: 10.1542/peds.2014-1658 PMID: 25422017
  94. Dyer, CA Heavy metals as endocrine-disrupting chemicals. Endocrine-disrupting chemicals: from basic research to clinical practice 2007, 111-33.
  95. Selevan, S.G.; Rice, D.C.; Hogan, K.A.; Euling, S.Y.; Pfahles-Hutchens, A.; Bethel, J. Blood lead concentration and delayed puberty in girls. N. Engl. J. Med., 2003, 348(16), 1527-1536. doi: 10.1056/NEJMoa020880 PMID: 12700372
  96. Dearth, R.K.; Hiney, J.K.; Srivastava, V.; Burdick, S.B.; Bratton, G.R.; Dees, W.L. Effects of lead (Pb) exposure during gestation and lactation on female pubertal development in the rat. Reprod. Toxicol., 2002, 16(4), 343-352. doi: 10.1016/S0890-6238(02)00037-0 PMID: 12220594
  97. Eum, K-D.; Weisskopf, M.G.; Nie, L.H.; Hu, H.; Korrick, S.A.J.E.h.p Cumulative lead exposure and age at menopause in the Nurses’ Health Study cohort Environ. Health Perspect., 2014, 122(3), 229-234.
  98. Doumouchtsis, K.K.; Doumouchtsis, S.K.; Doumouchtsis, E.K.; Perrea, D.N. The effect of lead intoxication on endocrine functions. J. Endocrinol. Invest., 2009, 32(2), 175-183. doi: 10.1007/BF03345710 PMID: 19411819
  99. Schantz, S.L.; Widholm, J.J. Cognitive effects of endocrine-disrupting chemicals in animals. Environ. Health Perspect., 2001, 109(12), 1197-1206. doi: 10.1289/ehp.011091197 PMID: 11748026
  100. Hirsch, H.V.B.; Possidente, D.; Possidente, B. Pb2+: An endocrine disruptor in Drosophila? Physiol. Behav., 2010, 99(2), 254-259. doi: 10.1016/j.physbeh.2009.09.014 PMID: 19800356
  101. Dobrakowski, M.; Kasperczyk, A.; Czuba, Z.P.; Machoń-Grecka, A.; Szlacheta, Z.; Kasperczyk, S.; Toxicology, E. The influence of chronic and subacute exposure to lead on the levels of prolactin, leptin, osteopontin, and follistatin in humans. Hum. Exp. Toxicol., 2017, 36(6), 587-593. doi: 10.1177/0960327116658106 PMID: 27402680
  102. Peschke, E.; Kaiser, H.U.; Schrank, F.; Schumann, J. . Morphological studies on the adrenal cortex of Wistar rats following lead poisoning and experimental hypothyroidism. Gegenbaurs Morphol. Jahrb., 1981, 127(6), 869-900. PMID: 7341352
  103. Thang, N.Q.; Huy, B.T.; Van Tan, L.; Phuong, N.T.K. toxicology, Lead and arsenic accumulation and its effects on plasma cortisol levels in Oreochromis sp. Bull. Environ. Contam. Toxicol., 2017, 99(2), 187-193. doi: 10.1007/s00128-017-2113-7 PMID: 28528485
  104. Kim, D.; Lawrence, D.A. Immunotoxic effects of inorganic lead on host resistance of mice with different circling behavior preferences. Brain Behav. Immun., 2000, 14(4), 305-317. doi: 10.1006/brbi.2000.0609 PMID: 11120598
  105. Singh, B.; Chandran, V.; Bandhu, H.K.; Mittal, B.R.; Bhattacharya, A.; Jindal, S.K.; Varma, S. Impact of lead exposure on pituitary-thyroid axis in humans. Biometals, 2000, 13(2), 187-192. doi: 10.1023/A:1009201426184 PMID: 11016408
  106. Pekcici, R.; Kavlakoğlu, B.; Yilmaz, S.; Şahin, M.; Delibaşi, T.J.C.E.m. Effects of lead on thyroid functions in lead-exposed workers Cent. Eur. J. Med., 2010, 5(2), 215-218.
  107. Mitra, P.; Sharma, S.; Purohit, P.; Sharma, P. Clinical and molecular aspects of lead toxicity: An update. Crit. Rev. Clin. Lab. Sci., 2017, 54(7-8), 506-528. doi: 10.1080/10408363.2017.1408562 PMID: 29214886
  108. Cleveland, L.M.; Minter, M.L.; Cobb, K.A.; Scott, A.A.; German, V.F. Lead hazards for pregnant women and children: part 1: Immigrants and the poor shoulder most of the burden of lead exposure in this country. Part 1 of a two-part article details how exposure happens, whom it affects, and the harm it can do. Am. J. Nurs., 2008, 108(10), 40-49. doi: 10.1097/01.NAJ.0000337736.76730.66
  109. Needleman, H.L.; Schell, A.; Bellinger, D.; Leviton, A.; Allred, E.N. The long-term effects of exposure to low doses of lead in childhood. An 11-year follow-up report. N. Engl. J. Med., 1990, 322(2), 83-88. doi: 10.1056/NEJM199001113220203 PMID: 2294437
  110. Liu, J.; Li, L.; Wang, Y.; Yan, C.; Liu, X. Impact of low blood lead concentrations on IQ and school performance in Chinese children. PLoS One, 2013, 8(5), e65230. doi: 10.1371/journal.pone.0065230 PMID: 23734241
  111. Liu, J.; Liu, X.; Wang, W.; McCauley, L.; Pinto-Martin, J.; Wang, Y.; Li, L.; Yan, C.; Rogan, W.J. Blood lead concentrations and children’s behavioral and emotional problems: A cohort study. JAMA Pediatr., 2014, 168(8), 737-745. doi: 10.1001/jamapediatrics.2014.332 PMID: 25090293
  112. Sanders, T.; Liu, Y.; Buchner, V.; Tchounwou, P.B. Neurotoxic effects and biomarkers of lead exposure: A review. Rev. Environ. Health, 2009, 24(1), 15-45. doi: 10.1515/REVEH.2009.24.1.15 PMID: 19476290
  113. Wright, J.P.; Dietrich, K.N.; Ris, M.D.; Hornung, R.W.; Wessel, S.D.; Lanphear, B.P.; Ho, M.; Rae, M.N. Association of prenatal and childhood blood lead concentrations with criminal arrests in early adulthood. PLoS Med., 2008, 5(5), e101. doi: 10.1371/journal.pmed.0050101 PMID: 18507497
  114. Basha, M.R.; Wei, W.; Bakheet, S.A.; Benitez, N.; Siddiqi, H.K.; Ge, Y.W.; Lahiri, D.K.; Zawia, N.H. The fetal basis of amyloidogenesis: Exposure to lead and latent overexpression of amyloid precursor protein and beta-amyloid in the aging brain. J. Neurosci., 2005, 25(4), 823-829. doi: 10.1523/JNEUROSCI.4335-04.2005 PMID: 15673661
  115. Patrick, L. Lead toxicity part II: the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity Altern. Med. Rev., 2006, 11(2), 114-127. PMID: 16813461
  116. Samarghandian, S.; Asadi-Samani, M.; Farkhondeh, T.; Bahmani, M. Assessment the effect of saffron ethanolic extract (Crocus sativus L.) on oxidative damages in aged male rat liver. Der. Pharm. Lett., 2016, 8(3), 283-290.
  117. Reuben, A.; Caspi, A.; Belsky, D.W.; Broadbent, J.; Harrington, H.; Sugden, K.; Houts, R.M.; Ramrakha, S.; Poulton, R.; Moffitt, T.E. Association of childhood blood lead levels with cognitive function and socioeconomic status at age 38 years and with IQ change and socioeconomic mobility between childhood and adulthood. JAMA, 2017, 317(12), 1244-1251. doi: 10.1001/jama.2017.1712 PMID: 28350927
  118. Zheng, W.; Aschner, M.; Ghersi-Egea, J.F. Brain barrier systems: A new frontier in metal neurotoxicological research. Toxicol. Appl. Pharmacol., 2003, 192(1), 1-11. doi: 10.1016/S0041-008X(03)00251-5 PMID: 14554098
  119. Bhowmik, A.; Khan, R.; Ghosh, M.K.J.B.R.I. Blood brain barrier: A challenge for effectual therapy of brain tumors. Biomed Res. Int., 2015, 2015, 320941. doi: 10.1155/2015/320941
  120. Markovac, J.; Goldstein, G.W. Picomolar concentrations of lead stimulate brain protein kinase C. Nature, 1988, 334(6177), 71-73. doi: 10.1038/334071a0 PMID: 3386747
  121. Guilarte, T.R.; Miceli, R.C.; Jett, D.A.J.N. Neurochemical aspects of hippocampal and cortical Pb2+ neurotoxicity. Neurotoxicology, 1994, 15(3), 459-466. PMID: 7854579
  122. Sadiq, S.; Ghazala, Z.; Chowdhury, A.; Büsselberg, D.J.J.T. Metal toxicity at the synapse: Presynaptic, postsynaptic, and long-term effects. J. Toxicol., 2012, 2012, 132671. doi: 10.1155/2012/132671
  123. Toscano, C.D.; Guilarte, T.R. Lead neurotoxicity: From exposure to molecular effects. Brain Res. Brain Res. Rev., 2005, 49(3), 529-554. doi: 10.1016/j.brainresrev.2005.02.004 PMID: 16269318
  124. Neal, A.P.; Worley, P.F.; Guilarte, T.R. Lead exposure during synaptogenesis alters NMDA receptor targeting via NMDA receptor inhibition. Neurotoxicology, 2011, 32(2), 281-289. doi: 10.1016/j.neuro.2010.12.013 PMID: 21192972
  125. Stansfield, K.H.; Pilsner, J.R.; Lu, Q.; Wright, R.O.; Guilarte, T.R. Dysregulation of BDNF-TrkB signaling in developing hippocampal neurons by Pb(2+): Implications for an environmental basis of neurodevelopmental disorders. Toxicol. Sci., 2012, 127(1), 277-295. doi: 10.1093/toxsci/kfs090 PMID: 22345308
  126. Chen, W.W.; Zhang, X.; Huang, W.J.E.R.M.P.S. Neural stem cells in lead toxicity Eur. Rev. Med. Pharmacol. Sci., 2016, 20(24), 5174-5177. PMID: 28051273
  127. Baranowska-Bosiacka, I.; Gutowska, I.; Rybicka, M.; Nowacki, P.; Chlubek, D. Neurotoxicity of lead. Hypothetical molecular mechanisms of synaptic function disorders. Neurol. Neurochir. Pol., 2012, 46(6), 569-578. doi: 10.5114/ninp.2012.31607 PMID: 23319225
  128. Thomson, R.M.; Parry, G.J. Neuropathies associated with excessive exposure to lead. Muscle Nerve, 2006, 33(6), 732-741. doi: 10.1002/mus.20510 PMID: 16477615
  129. Rubens, O.; Logina, I.; Kravale, I.; Eglîte, M.; Donaghy, M. Peripheral neuropathy in chronic occupational inorganic lead exposure: a clinical and electrophysiological study. J. Neurol. Neurosurg. Psychiatry, 2001, 71(2), 200-204. doi: 10.1136/jnnp.71.2.200 PMID: 11459892
  130. Yang, L.; Hung, L.Y.; Zhu, Y.; Ding, S.; Margolis, K.G.; Leong, K.W.J.c. Long title: Materials Engineering in Gut Microbiome and Human Health Research, 2022, 2022, 9804014.
  131. Obeng-Gyasi, E.; Armijos, R.; Weigel, M.; Filippelli, G.; Sayegh, M. Cardiovascular-related outcomes in US adults exposed to lead. Int. J. Environ. Res. Public Health, 2018, 15(4), 759. doi: 10.3390/ijerph15040759 PMID: 29662032
  132. Aros, C.; Remuzzi, G. The renin-angiotensin system in progression, remission and regression of chronic nephropathies. J. Hypertens. Suppl., 2002, 20(3), S45-S53. PMID: 12184055
  133. Vaziri, N.D.; Ding, Y. Effect of lead on nitric oxide synthase expression in coronary endothelial cells: Role of superoxide. Hypertension, 2001, 37(2), 223-226. doi: 10.1161/01.HYP.37.2.223 PMID: 11230275
  134. Vaziri, N.D.; Ding, Y.; Ni, Z.; Therapeutics, E. . Compensatory up-regulation of nitric-oxide synthase isoforms in leadinduced hypertension; reversal by a superoxide dismutasemimetic drug J. Pharmacol. Exp. Ther., 2001, 298(2), 679-685. PMID: 11454931
  135. Vaziri, N.D.; Physiology, C. Mechanisms of lead-induced hypertension and cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol., 2008, 295(2), H454-H465. doi: 10.1152/ajpheart.00158.2008 PMID: 18567711
  136. Peters, J.L.; Kubzansky, L.D.; Ikeda, A.; Fang, S.C.; Sparrow, D.; Weisskopf, M.G.; Wright, R.O.; Vokonas, P.; Hu, H.; Schwartz, J. Lead concentrations in relation to multiple biomarkers of cardiovascular disease: The Normative Aging Study. Environ. Health Perspect., 2012, 120(3), 361-366. doi: 10.1289/ehp.1103467 PMID: 22142875
  137. Bhatnagar, A. Environmental cardiology. Circ. Res., 2006, 99(7), 692-705. doi: 10.1161/01.RES.0000243586.99701.cf PMID: 17008598
  138. Xu, C.; Shu, Y.; Fu, Z.; Hu, Y.; Mo, X.J.S. Associations between lead concentrations and cardiovascular risk factors in US adolescents Sci. Rep., 2017, 7(1), 1-8. PMID: 28127051
  139. Ademuyiwa, O.; Ugbaja, R.N.; Idumebor, F.; Adebawo, O. Plasma lipid profiles and risk of cardiovascular disease in occupational lead exposure in Abeokuta, Nigeria. Lipids Health Dis., 2005, 4(1), 19. doi: 10.1186/1476-511X-4-19 PMID: 16191200
  140. Valentino, M.; Rapisarda, V.; Santarelli, L.; Bracci, M.; Scorcelletti, M.; Di Lorenzo, L.; Cassano, F.; Soleo, L. Effect of lead on the levels of some immunoregulatory cytokines in occupationally exposed workers. Hum. Exp. Toxicol., 2007, 26(7), 551-556. doi: 10.1177/0960327107073817 PMID: 17884957
  141. Khazdair, M.R.; Boskabady, M.H.; Afshari, R.; Dadpour, B.; Behforouz, A.; Javidi, M.; Abbasnezhad, A.; Moradi, V.; Tabatabaie, S.S. Respiratory symptoms and pulmonary function testes in lead exposed workers. Iran. Red Crescent Med. J., 2012, 14(11), 738-743. doi: 10.5812/ircmj.4134 PMID: 23396762
  142. Leem, A.Y.; Kim, S.K.; Chang, J.; Kang, Y.A.; Kim, Y.S.; Park, M.S.; Kim, S.Y.; Kim, E.Y.; Chung, K.S.; Jung, J.Y. ERelationship between blood levels of heavy metals and lung function based on the Korean National Health and Nutrition Examination Survey IV-V Int. J. Chron. Obstruct. Pulmon. Dis., 2015, 10, 1559-1570. PMID: 26345298
  143. Dietert, R.R.; Lee, J.E.; Hussain, I.; Piepenbrink, M. Developmental immunotoxicology of lead. Toxicol. Appl. Pharmacol., 2004, 198(2), 86-94. doi: 10.1016/j.taap.2003.08.020 PMID: 15236947
  144. Min, J.Y.; Min, K.B.; Kim, R.; Cho, S.I.; Paek, D. Blood lead levels and increased bronchial responsiveness. Biol. Trace Elem. Res., 2008, 123(1-3), 41-46. doi: 10.1007/s12011-008-8099-6 PMID: 18286239
  145. Pugh Smith, P.; Nriagu, J.O. Lead poisoning and asthma among low-income and African American children in Saginaw, Michigan. Environ. Res., 2011, 111(1), 81-86. doi: 10.1016/j.envres.2010.11.007 PMID: 21144501
  146. Mohammed, A.A.; Mohamed, F.Y.; El-Okda, E.S.; Ahmed, A.B. Blood lead levels and childhood asthma. Indian Pediatr., 2015, 52(4), 303-306. doi: 10.1007/s13312-015-0628-8 PMID: 25929627
  147. Hong, Y.C.; Hwang, S.S.; Kim, J.H.; Lee, K.H.; Lee, H.J.; Lee, K.H.; Yu, S.D.; Kim, D.S. Metals in particulate pollutants affect peak expiratory flow of schoolchildren. Environ. Health Perspect., 2007, 115(3), 430-434. doi: 10.1289/ehp.9531 PMID: 17431494
  148. Madaniyazi, L.; Guo, Y.; Ye, X.; Kim, D.; Zhang, Y.; Pan, X. Effects of airborne metals on lung function in inner Mongolian schoolchildren. J. Occup. Environ. Med., 2013, 55(1), 80-86. doi: 10.1097/JOM.0b013e31826ef177 PMID: 23247605
  149. Rokadia, H.K.; Agarwal, S. Serum heavy metals and obstructive lung disease: Results from the National Health and Nutrition Examination Survey. Chest, 2013, 143(2), 388-397. doi: 10.1378/chest.12-0595 PMID: 22911427
  150. Samarghandian, S.; Borji, A.; Afshari, R.; Delkhosh, M.B.; Gholami, A. The effect of lead acetate on oxidative stress and antioxidant status in rat bronchoalveolar lavage fluid and lung tissue. Toxicol. Mech. Methods, 2013, 23(6), 432-436.
  151. Vij, A.G.; Dhundasi, S.J.A.A.J.M.S. Hemopoietic, hemostatic and mutagenic effects of lead and possible prevention by zinc and vitamin C Al Ameen J. Med. Sci., 2009, 2(2), 27-36.
  152. Flora, G.; Gupta, D.; Tiwari, A. Toxicity of lead: A review with recent updates. Interdiscip. Toxicol., 2012, 5(2), 47-58. doi: 10.2478/v10102-012-0009-2 PMID: 23118587
  153. Ahamed, M.; Verma, S.; Kumar, A.; Siddiqui, M.K.J. Environmental exposure to lead and its correlation with biochemical indices in children. Sci. Total Environ., 2005, 346(1-3), 48-55. doi: 10.1016/j.scitotenv.2004.12.019 PMID: 15993681
  154. Jangid, A.P.; John, P.; Yadav, D.; Mishra, S.; Sharma, P.J.I.J.O.C.B. Impact of chronic lead exposure on selected biological markers. Indian J. Clin. Biochem., 2012, 27(1), 83-89. doi: 10.1007/s12291-011-0163-x
  155. Carocci, A.; Catalano, A.; Lauria, G.; Sinicropi, M.S.; Genchi, G. toxicology, Lead toxicity, antioxidant defense and environment Rev. Environ. Contam. Toxicol., 2016, 238, 45-67. PMID: 26670034
  156. Mushak, P. Bioavailability, Gastro-intestinal absorption of lead in children and adults: overview of biological and biophysico-chemical aspects. Chem. Spec. Bioavail., 1991, 3(3-4), 87-104. doi: 10.1080/09542299.1991.11083160
  157. Mudipalli, A. Lead hepatotoxicity & potential health effects. Indian J. Med. Res., 2007, 126(6), 518-527. PMID: 18219078
  158. Janin, Y.; Couinaud, C.; Stone, A.; Wise, L. The "leadinduced colic" syndrome in lead intoxication Surg. Annu., 1985, 17, 287-307. PMID: 3156432
  159. Yang, C.C.; Chuang, C.S.; Lin, C.I.; Wang, C.L.; Huang, Y.C.; Chuang, H.Y. The association of the blood lead level and serum lipid concentrations may be modified by the genetic combination of the metallothionein 2A polymorphisms rs10636 GC and rs28366003 AA. J. Clin. Lipidol., 2017, 11(1), 234-241. doi: 10.1016/j.jacl.2016.12.010 PMID: 28391890
  160. Mhillaj, E.; Catino, S.; Miceli, F.M.; Santangelo, R.; Trabace, L.; Cuomo, V.; Mancuso, C. Ferulic acid improves cognitive skills through the activation of the heme oxygenase system in the rat. Mol. Neurobiol., 2018, 55(2), 905-916. doi: 10.1007/s12035-017-0381-1 PMID: 28083818
  161. Yu, C.; Pan, S.; Dong, M.; Niu, Y. Astragaloside IV attenuates lead acetate-induced inhibition of neurite outgrowth through activation of Akt-dependent Nrf2 pathway in vitro. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(6), 1195-1203. doi: 10.1016/j.bbadis.2017.03.006 PMID: 28315454
  162. Yu, C.L.; Zhao, X.M.; Niu, Y.C. Ferulic acid protects against lead acetate-induced inhibition of neurite outgrowth by upregulating HO-1 in PC12 cells: Involvement of ERK1/2-Nrf2 pathway. Mol. Neurobiol., 2016, 53(9), 6489-6500. doi: 10.1007/s12035-015-9555-x PMID: 26611834
  163. Yu, C.; Zhang, J.; Li, X.; Liu, J.; Niu, Y. Astragaloside IV-induced Nrf2 nuclear translocation ameliorates lead-related cognitive impairments in mice. Biochim. Biophys. Acta Mol. Cell Res., 2021, 1868(1), 118853. doi: 10.1016/j.bbamcr.2020.118853 PMID: 32941941
  164. Miceli, N.; Cavò, E.; Ragusa, S.; Cacciola, S.; Dugo,, P.; Mondello, L.; Marino, A.; Cincotta, F.; Condurso,, C.; Taviano, M.F Biodiversity, phytochemical characterization and biological activities of a hydroalcoholic extract obtained from the aerial parts of Matthiola incana (L.) R. Br. subsp. incana (Brassicaceae) growing wild in Sicily (Italy). Chem. Biodivers., 2019, 16(4), e1800677. doi: 10.1002/cbdv.201800677 PMID: 30779421
  165. Soleimanzadeh, A.; Kian, M.; Moradi, S.; Mahmoudi, S. Carob (Ceratonia siliqua L.) fruit hydro-alcoholic extract alleviates reproductive toxicity of lead in male mice: Evidence on sperm parameters, sex hormones, oxidative stress biomarkers and expression of Nrf2 and iNOS Avicenna J. Phytomed., 2020, 10(1), 35-49. PMID: 31921606
  166. Rao, F.; Zhai, Y.; Sun, F. Punicalagin mollifies lead acetate-induced oxidative imbalance in male reproductive system. Int. J. Mol. Sci., 2016, 17(8), 1269. doi: 10.3390/ijms17081269 PMID: 27529221
  167. Alotaibi, M.F.; Al-Joufi, F.; Abou Seif, H.S.; Alzoghaibi, M.A.; Djouhri, L.; Ahmeda, A.F.; Mahmoud, A.M. Development; Therapy, umbelliferone inhibits spermatogenic defects and testicular injury in lead-intoxicated rats by suppressing oxidative stress and inflammation, and improving Nrf2/HO-1 signaling. Drug Des. Devel. Ther., 2020, 14, 4003-4019. doi: 10.2147/DDDT.S265636 PMID: 33061305
  168. Jiang, X.; Xing, X.; Zhang, Y.; Zhang, C.; Wu, Y.; Chen, Y.; Meng, R.; Jia, H.; Cheng, Y.; Zhang, Y.; Su, J. Lead exposure activates the Nrf2/Keap1 pathway, aggravates oxidative stress, and induces reproductive damage in female mice. Ecotoxicol. Environ. Saf., 2021, 207, 111231. doi: 10.1016/j.ecoenv.2020.111231 PMID: 32916527
  169. Li, N.; Zhao, Y.; Shen, Y.; Cheng, Y.; Qiao, M.; Song, L.; Huang, X.; Safety, E. Protective effects of folic acid on oxidative damage of rat spleen induced by lead acetate. Ecotoxicol. Environ. Saf., 2021, 211, 111917. doi: 10.1016/j.ecoenv.2021.111917 PMID: 33497860
  170. Silveira, E.A.; Siman, F.D.M.; de Oliveira Faria, T.; Vescovi, M.V.A.; Furieri, L.B.; Lizardo, J.H.F.; Stefanon, I.; Padilha, A.S.; Vassallo, D.V. Low-dose chronic lead exposure increases systolic arterial pressure and vascular reactivity of rat aortas. Free Radic. Biol. Med., 2014, 67, 366-376. doi: 10.1016/j.freeradbiomed.2013.11.021 PMID: 24308934
  171. Omidi, M.; Ghafarian-Bahraman, A.; Mohammadi-Bardbori, A. GSH/GSSG redox couple plays central role in aryl hydrocarbon receptor-dependent modulation of cytochrome P450 1A1. J. Biochem. Mol. Toxicol., 2018, 32(7), e22164. doi: 10.1002/jbt.22164 PMID: 29975444
  172. Samarghandian, S.; Azimi-Nezhad, M.; Mehrad-Majd, H.; Mirhafez, S.R. Thymoquinone ameliorates acute renal failure in gentamicin-treated adult male rats. Pharmacol., 2015, 96(3-4), 112-7.
  173. Liu, B.; Jiang, H.; Lu, J.; Baiyun, R.; Li, S.; Lv, Y.; Li, D.; Wu, H.; Zhang, Z. Grape seed procyanidin extract ameliorates lead-induced liver injury via miRNA153 and AKT/GSK-3β/Fyn-mediated Nrf2 activation. J. Nutr. Biochem., 2018, 52, 115-123. doi: 10.1016/j.jnutbio.2017.09.025 PMID: 29175668
  174. Li, Y.; Darwish, W.S.; Chen, Z.; Hui, T.; Wu, Y.; Hirotaka, S.; Chiba, H.; Hui, S.P. Identification of lead-produced lipid hydroperoxides in human HepG2 cells and protection using rosmarinic and ascorbic acids with a reference to their regulatory roles on Nrf2-Keap1 antioxidant pathway. Chem. Biol. Interact., 2019, 314, 108847. doi: 10.1016/j.cbi.2019.108847 PMID: 31610155
  175. Long, M.; Liu, Y.; Cao, Y.; Wang, N.; Dang, M.; He, J. Proanthocyanidins attenuation of chronic lead-induced liver oxidative damage in kunming mice via the Nrf2/ARE pathway. Nutrients, 2016, 8(10), 656. doi: 10.3390/nu8100656 PMID: 27775649
  176. Song, Y.; Sun, H.; Gao, S.; Tang, K.; Zhao, Y.; Xie, G.; Gao, H.; Toxicology, P.P.C. Saikosaponin a attenuates lead-induced kidney injury through activating Nrf2 signaling pathway. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2021, 242, 108945. doi: 10.1016/j.cbpc.2020.108945 PMID: 33278595
  177. Zhang, Y.; Zhang, P.; Yu, P.; Shang, X.; Fu, Y.; Lu, Y.; Li, Y. Protective effects of andrographolide on lead-induced kidney injury through inhibiting inflammatory and oxidative responses in common carp. Aquacult. Rep., 2020, 17, 100395. doi: 10.1016/j.aqrep.2020.100395
  178. Keshavarzi, M.; Khoshnoud, M.J.; Ghaffarian Bahraman, A.; Mohammadi-Bardbori, A. An endogenous ligand of aryl hydrocarbon receptor 6-formylindolo 3, 2-b carbazole (FICZ) is a signaling molecule in neurogenesis of adult hippocampal neurons. J. Mol. Neurosci., 2020, 70(5), 806-817. doi: 10.1007/s12031-020-01506-x PMID: 32040828
  179. Cao, Y.; Wang, D.; Li, Q.; Liu, H.; Jin, C.; Yang, J.; Wu, S.; Lu, X.; Cai, Y. Activation of Nrf2 by lead sulfide nanoparticles induces impairment of learning and memory. Metallomics, 2020, 12(1), 34-41. doi: 10.1039/c9mt00151d PMID: 31687725
  180. Li, H.; Lan, T.; Yun, C.; Yang, K.; Du, Z.; Luo, X.; Hao, E.; Deng, J. Mangiferin exerts neuroprotective activity against lead-induced toxicity and oxidative stress via Nrf2 pathway. Chin. Herb. Med., 2020, 12(1), 36-46. doi: 10.1016/j.chmed.2019.12.002 PMID: 36117559
  181. Hoseinrad, H.; Shahrestanaki, J.K.; Moosazadeh Moghaddam, M.; Mousazadeh, A.; Yadegari, P.; Afsharzadeh, N. Protective effect of vitamin D3 against Pb-induced neurotoxicity by regulating the Nrf2 and NF-κB pathways. Neurotox. Res., 2021, 39(3), 687-696. doi: 10.1007/s12640-020-00322-w PMID: 33400182
  182. S. Yousef, A.O.; A Fahad, A.; Abdel Moneim, A.E.; Metwally, D.M; El-Khadragy, M.F; Kassab, R.B The neuroprotective role of coenzyme Q10 against lead acetate-induced neurotoxicity is mediated by antioxidant, anti-inflammatory and anti-apoptotic activities. Int. J. Environ. Res. Public Health, 2019, 16(16), 2895. doi: 10.3390/ijerph16162895 PMID: 31412628
  183. Ye, F.; Li, X.; Li, L.; Yuan, J.; Chen, J.J.O.M. t-BHQ provides protection against lead neurotoxicity via Nrf2/HO-1 pathway Oxid. Med. Cell. Longev., 2016, 2016, 2075915.
  184. Su, P.; Zhang, J.; Wang, S.; Aschner, M.; Cao, Z.; Zhao, F.; Wang, D.; Chen, J.; Luo, W.J.N. Genistein alleviates leadinduced neurotoxicity in vitro and in vivo: Involvement of multiple signaling pathways Neurotoxicology, 2016, 53, 153-164.
  185. Li, C.; Pan, Z.; Xu, T.; Zhang, C.; Wu, Q.; Niu, Y. Puerarin induces the upregulation of glutathione levels and nuclear translocation of Nrf2 through PI3K/Akt/GSK-3β signaling events in PC12 cells exposed to lead. Neurotoxicol. Teratol., 2014, 46, 1-9. doi: 10.1016/j.ntt.2014.08.007 PMID: 25195717
  186. Li, R.; Li, X.; Wu, H.; Yang, Z.; Fei, L.; Zhu, J. Theaflavin attenuates cerebral ischemia/reperfusion injury by abolishing miRNA-128-3p-mediated Nrf2 inhibition and reducing oxidative stress. Mol. Med. Rep., 2019, 20(6), 4893-4904. doi: 10.3892/mmr.2019.10755 PMID: 31638230
  187. Zhang, X-J.; Cui, H-Y.; Yang, Y.; Zhang, C.; Zhu, C.H.; Miao, J.Y.; Chen, R. Rosmarinic acid elicits neuroprotection in ischemic stroke via Nrf2 and heme oxygenase 1 signaling. Neural Regen. Res., 2018, 13(12), 2119-2128. doi: 10.4103/1673-5374.241463 PMID: 30323140
  188. Li, W.; Suwanwela, N.C.; Patumraj, S. Curcumin by down-regulating NF-kB and elevating Nrf2, reduces brain edema and neurological dysfunction after cerebral I/R. Microvasc. Res., 2016, 106, 117-127. doi: 10.1016/j.mvr.2015.12.008 PMID: 26686249
  189. Narayanan, S.V.; Dave, K.R.; Saul, I.; Perez-Pinzon, M.A. Resveratrol preconditioning protects against cerebral ischemic injury via nuclear erythroid 2–related factor 2. Stroke, 2015, 46(6), 1626-1632. doi: 10.1161/STROKEAHA.115.008921 PMID: 25908459
  190. Wu, S.; Yue, Y.; Peng, A.; Zhang, L.; Xiang, J.; Cao, X.; Ding, H.; Yin, S. Myricetin ameliorates brain injury and neurological deficits via Nrf2 activation after experimental stroke in middle-aged rats. Food Funct., 2016, 7(6), 2624-2634. doi: 10.1039/C6FO00419A PMID: 27171848
  191. Wicha, P.; Tocharus, J.; Janyou, A.; Jittiwat, J.; Changtam, C.; Suksamrarn, A.; Tocharus, C. Hexahydrocurcumin protects against cerebral ischemia/reperfusion injury, attenuates inflammation, and improves antioxidant defenses in a rat stroke model. PLoS One, 2017, 12(12), e0189211. doi: 10.1371/journal.pone.0189211 PMID: 29220411
  192. Wu, S.; Yue, Y.; Li, J.; Li, Z.; Li, X.; Niu, Y.; Xiang, J.; Ding, H. Procyanidin B2 attenuates neurological deficits and blood-brain barrier disruption in a rat model of cerebral ischemia. Mol. Nutr. Food Res., 2015, 59(10), 1930-1941. doi: 10.1002/mnfr.201500181 PMID: 26228251
  193. Guo, M.; Lu, H.; Qin, J.; Qu, S.; Wang, W.; Guo, Y.; Liao, W.; Song, M.; Chen, J.; Wang, Y. research, c., Biochanin A provides neuroprotection against cerebral ischemia/reperfusion injury by Nrf2-mediated inhibition of oxidative stress and inflammation signaling pathway in rats. Med. Sci. Monit., 2019, 25, 8975-8983. doi: 10.12659/MSM.918665 PMID: 31767824
  194. Zhao, X.; Sun, G.; Ting, S.M.; Song, S.; Zhang, J.; Edwards, N.J.; Aronowski, J. Cleaning up after ICH: the role of Nrf2 in modulating microglia function and hematoma clearance. J. Neurochem., 2015, 133(1), 144-152. doi: 10.1111/jnc.12974 PMID: 25328080
  195. Liu, D.; Wang, H.; Zhang, Y.; Zhang, Z. development; therapy, Protective effects of chlorogenic acid on cerebral ischemia/reperfusion injury rats by regulating oxidative stress-related Nrf2 pathway. Drug Des. Devel. Ther., 2020, 14, 51-60. doi: 10.2147/DDDT.S228751 PMID: 32021091
  196. Yang, Z.; Weian, C.; Susu, H.; Hanmin, W. Protective effects of mangiferin on cerebral ischemia–reperfusion injury and its mechanisms. Eur. J. Pharmacol., 2016, 771, 145-151. doi: 10.1016/j.ejphar.2015.12.003 PMID: 26656757
  197. Farkhondeh, T.; Samarghandian, S.; Azimin-Nezhad, M.; Samini, F. Effect of chrysin on nociception in formalin test and serum levels of noradrenalin and corticosterone in rats. Int. J. Clin. Exp. Med., 2015, 8(2), 2465.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers