Treatment of MRSA Infection: Where are We?


Cite item

Full Text

Abstract

Staphylococcus aureus is a leading cause of septicemia, endocarditis, pneumonia, skin and soft tissue infections, bone and joint infections, and hospital-acquired infections. In particular, methicillin-resistant Staphylococcus aureus (MRSA) is associated with high morbidity and mortality, and continues to be a major public health problem. The emergence of multidrug-resistant MRSA strains along with the wide consumption of antibiotics has made anti-MRSA treatment a huge challenge. Novel treatment strategies (e.g., novel antimicrobials and new administrations) against MRSA are urgently needed. In the past decade, pharmaceutical companies have invested more in the research and development (R&D) of new antimicrobials and strategies, spurred by favorable policies. All research articles were collected from authentic online databases, including Google Scholar, PubMed, Scopus, and Web of Science, by using different combinations of keywords, including ‘anti-MRSA’, ‘antibiotic’, ‘antimicrobial’, ‘clinical trial’, ‘clinical phase’, clinical studies’, and ‘pipeline’. The information extracted from articles was compared to information provided on the drug manufacturer’s website and ClinicalTrials.gov (https://clinicaltrials.gov/) to confirm the latest development phase of anti-MRSA agents. The present review focuses on the current development status of new anti-MRSA strategies concerning chemistry, pharmacological target(s), indications, route of administration, efficacy and safety, pharmacokinetics, and pharmacodynamics, and aims to discuss the challenges and opportunities in developing drugs for anti-MRSA infections.

About the authors

Adila Nazli

Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University

Email: info@benthamscience.net

Wenlan Tao

, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing)

Email: info@benthamscience.net

Hengyao You

Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University

Email: info@benthamscience.net

Xiaoli He

, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing)

Author for correspondence.
Email: info@benthamscience.net

Yun He

Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Walsh, L.; Johnson, C.N.; Hill, C.; Ross, R.P. Efficacy of phage- and bacteriocin-based therapies in combatting nosocomial MRSA infections. Front. Mol. Biosci., 2021, 8(4), 654038. doi: 10.3389/fmolb.2021.654038 PMID: 33996906
  2. Diekema, D.J.; Climo, M. Preventing MRSA infections. JAMA, 2008, 299(10), 1190-1192. doi: 10.1001/jama.299.10.1190 PMID: 18334697
  3. Harkins, C.P.; Pichon, B.; Doumith, M.; Parkhill, J.; Westh, H.; Tomasz, A.; de Lencastre, H.; Bentley, S.D.; Kearns, A.M.; Holden, M.T.G. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol., 2017, 18(1), 130-141. doi: 10.1186/s13059-017-1252-9 PMID: 28724393
  4. Morell, E.A.; Balkin, D.M. Methicillin-resistant Staphylococcus aureus: A pervasive pathogen highlights the need for new antimicrobial development. Yale J. Biol. Med., 2010, 83(4), 223-233. PMID: 21165342
  5. Shanmuganathan, V.A.; Armstrong, M.; Buller, A.; Tullo, A.B. External ocular infections due to methicillin-resistant Staphylococcus aureus (MRSA). Eye (Lond.), 2005, 19(3), 284-291. doi: 10.1038/sj.eye.6701465 PMID: 15375372
  6. Villegas-Estrada, A.; Lee, M.; Hesek, D.; Vakulenko, S.B.; Mobashery, S. Co-opting the cell wall in fighting methicillin-resistant Staphylococcus aureus: Potent inhibition of PBP 2a by two anti-MRSA β-lactam antibiotics. J. Am. Chem. Soc., 2008, 130(29), 9212-9213. doi: 10.1021/ja8029448 PMID: 18582062
  7. El Amin, N.M.; Faidah, H.S. Methicillin-resistant Staphylococcus aureus in the Western region of Saudi Arabia: Prevalence and antibiotic susceptibility pattern. Ann. Saudi Med., 2012, 32(5), 513-516. doi: 10.5144/0256-4947.2012.513 PMID: 22871621
  8. Chatterjee, S.S.; Ray, P.; Aggarwal, A.; Das, A.; Sharma, M. A community-based study on nasal carriage of Staphylococcus aureus. Indian J. Med. Res., 2009, 130(6), 742-748. PMID: 20090137
  9. Stefani, S.; Chung, D.R.; Lindsay, J.A.; Friedrich, A.W.; Kearns, A.M.; Westh, H.; MacKenzie, F.M. Meticillin-resistant Staphylococcus aureus (MRSA): Global epidemiology and harmonisation of typing methods. Int. J. Antimicrob. Agents, 2012, 39(4), 273-282. doi: 10.1016/j.ijantimicag.2011.09.030 PMID: 22230333
  10. von Eiff, C.; Becker, K.; Machka, K.; Stammer, H.; Peters, G. Nasal carriage as a source of Staphylococcus aureus bacteremia. N. Engl. J. Med., 2001, 344(1), 11-16. doi: 10.1056/NEJM200101043440102 PMID: 11136954
  11. Clarridge, J.E., III; Harrington, A.T.; Roberts, M.C.; Soge, O.O.; Maquelin, K. Impact of strain typing methods on assessment of relationship between paired nares and wound isolates of methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol., 2013, 51(1), 224-231. doi: 10.1128/JCM.02423-12 PMID: 23135945
  12. Lakhundi, S.; Zhang, K. Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev., 2018, 31(4), e00020-18. doi: 10.1128/CMR.00020-18 PMID: 30209034
  13. David, M.Z.; Cadilla, A.; Boyle-Vavra, S.; Daum, R.S. Replacement of HA-MRSA by CA-MRSA infections at an academic medical center in the midwestern United States, 2004-5 to 2008. PLoS One, 2014, 9(4), e92760. doi: 10.1371/journal.pone.0092760 PMID: 24755631
  14. Bean, H.D.; Zhu, J.; Sengle, J.C.; Hill, J.E. Identifying methicillin-resistant Staphylococcus aureus (MRSA) lung infections in mice via breath analysis using secondary electrospray ionization-mass spectrometry (SESI-MS). J. Breath Res., 2014, 8(4), 041001-41001. doi: 10.1088/1752-7155/8/4/041001 PMID: 25307159
  15. Tenover, F.; Biddle, J.W.; Lancaster, M.V. Increasing resistance to vancomycin and other glycopeptides in Staphylococcus aureus. Emerg. Infect. Dis., 2001, 7(2), 327-332. doi: 10.3201/eid0702.010237 PMID: 11294734
  16. Shrivastava, S.; Shrivastava, P.; Ramasamy, J. World health organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. J. Med. Society, 2018, 32(1), 76-77. doi: 10.4103/jms.jms_25_17
  17. Bassetti, M.; Del Puente, F.; Magnasco, L.; Giacobbe, D.R. Innovative therapies for acute bacterial skin and skin-structure infections (ABSSSI) caused by methicillin-resistant Staphylococcus aureus : Advances in phase I and II trials. Expert Opin. Investig. Drugs, 2020, 29(5), 495-506. doi: 10.1080/13543784.2020.1750595 PMID: 32242469
  18. French, G.L. Bactericidal agents in the treatment of MRSA infections--the potential role of daptomycin. J. Antimicrob. Chemother., 2006, 58(6), 1107-1117. doi: 10.1093/jac/dkl393 PMID: 17040922
  19. Zeller, J.L.; Burke, A.E.; Glass, R.M. MRSA Infections. JAMA, 2007, 298(15), 1826-1826. doi: 10.1001/jama.298.15.1826 PMID: 17940240
  20. Wilcox, M.H.; Hall, J.; Pike, H.; Templeton, P.A.; Fawley, W.N.; Parnell, P.; Verity, P. Use of perioperative mupirocin to prevent methicillin-resistant Staphylococcus aureus (MRSA) orthopaedic surgical site infections. J. Hosp. Infect., 2003, 54(3), 196-201. doi: 10.1016/S0195-6701(03)00147-6 PMID: 12855234
  21. Hsu, D.I.; Hidayat, L.K.; Quist, R.; Hindler, J.; Karlsson, A.; Yusof, A.; Wong-Beringer, A. Comparison of method-specific vancomycin minimum inhibitory concentration values and their predictability for treatment outcome of meticillin-resistant Staphylococcus aureus (MRSA) infections. Int. J. Antimicrob. Agents, 2008, 32(5), 378-385. doi: 10.1016/j.ijantimicag.2008.05.007 PMID: 18701261
  22. Kurosu, M.; Siricilla, S.; Mitachi, K. Advances in MRSA drug discovery: Where are we and where do we need to be? Expert Opin. Drug Discov., 2013, 8(9), 1095-1116. doi: 10.1517/17460441.2013.807246 PMID: 23829425
  23. Weis, F.; Beiras-Fernandez, A.; Schelling, G. Daptomycin, a lipopeptide antibiotic in clinical practice. Curr. Opin. Investig. Drugs, 2008, 9(8), 879-884. PMID: 18666036
  24. Tedesco, K.L.; Rybak, M.J. Daptomycin. Pharmacotherapy, 2004, 24(1), 41-57. doi: 10.1592/phco.24.1.41.34802 PMID: 14740787
  25. Enoch, D.A.; Bygott, J.M.; Daly, M.L.; Karas, J.A. Daptomycin. J. Infect., 2007, 55(3), 205-213. doi: 10.1016/j.jinf.2007.05.180 PMID: 17629567
  26. Patel, J.B.; Jevitt, L.A.; Hageman, J.; McDonald, L.C.; Tenover, F.C. An association between reduced susceptibility to daptomycin and reduced susceptibility to vancomycin in Staphylococcus aureus. Clin. Infect. Dis., 2006, 42(11), 1652-1653. doi: 10.1086/504084 PMID: 16652325
  27. Kishor, K.; Dhasmana, N.; Kamble, S.; Sahu, R. Linezolid induced adverse drug reactions-an update. Curr. Drug Metab., 2015, 16(7), 553-559. doi: 10.2174/1389200216666151001121004 PMID: 26424176
  28. Stein, G.E.; Wells, E.M. The importance of tissue penetration in achieving successful antimicrobial treatment of nosocomial pneumonia and complicated skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus : Vancomycin and linezolid. Curr. Med. Res. Opin., 2010, 26(3), 571-588. doi: 10.1185/03007990903512057 PMID: 20055750
  29. Greer, N.D. Tigecycline (Tygacil): The first in the glycylcycline class of antibiotics. Proc. Bayl. Univ. Med. Cent., 2006, 19(2), 155-161. doi: 10.1080/08998280.2006.11928154 PMID: 16609746
  30. Frei, C.R.; Miller, M.L.; Lewis, J.S., II; Lawson, K.A.; Hunter, J.M.; Oramasionwu, C.U.; Talbert, R.L. Trimethoprim-sulfamethoxazole or clindamycin for community-associated MRSA (CA-MRSA) skin infections. J. Am. Board Fam. Med., 2010, 23(6), 714-719. doi: 10.3122/jabfm.2010.06.090270 PMID: 21057066
  31. Goldstein, E.J.C.; Proctor, R.A. Role of folate antagonists in the treatment of methicillin-resistant Staphylococcus aureus infection. Clin. Infect. Dis., 2008, 46(4), 584-593. doi: 10.1086/525536 PMID: 18197761
  32. Kollef, M.H. Limitations of vancomycin in the management of resistant staphylococcal infections. Clin. Infect. Dis., 2007, 45(3)(Suppl. 3), S191-S195. doi: 10.1086/519470 PMID: 17712746
  33. Bassetti, M.; Peghin, M.; Castaldo, N.; Giacobbe, D.R. The safety of treatment options for acute bacterial skin and skin structure infections. Expert Opin. Drug Saf., 2019, 18(8), 635-650. doi: 10.1080/14740338.2019.1621288 PMID: 31106600
  34. Jevitt, L.A.; Smith, A.J.; Williams, P.P.; Raney, P.M.; McGowan, J.E., Jr; Tenover, F.C. In vitro activities of Daptomycin, Linezolid, and Quinupristin-Dalfopristin against a challenge panel of Staphylococci and Enterococci, including vancomycin-intermediate staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Microb. Drug Resist., 2003, 9(4), 389-393. doi: 10.1089/107662903322762833 PMID: 15000746
  35. Sakoulas, G.; Alder, J.; Thauvin-Eliopoulos, C.; Moellering, R.C., Jr; Eliopoulos, G.M. Induction of daptomycin heterogeneous susceptibility in Staphylococcus aureus by exposure to vancomycin. Antimicrob. Agents Chemother., 2006, 50(4), 1581-1585. doi: 10.1128/AAC.50.4.1581-1585.2006 PMID: 16569891
  36. Arbeit, R.D.; Maki, D.; Tally, F.P.; Campanaro, E.; Eisenstein, B.I. The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin. Infect. Dis., 2004, 38(12), 1673-1681. doi: 10.1086/420818 PMID: 15227611
  37. Aikawa, N.; Kusachi, S.; Mikamo, H.; Takesue, Y.; Watanabe, S.; Tanaka, Y.; Morita, A.; Tsumori, K.; Kato, Y.; Yoshinari, T. Efficacy and safety of intravenous daptomycin in Japanese patients with skin and soft tissue infections. J. Infect. Chemother., 2013, 19(3), 447-455. doi: 10.1007/s10156-012-0501-9 PMID: 23085743
  38. Quinn, D.K.; Stern, T.A. Linezolid and serotonin syndrome. Prim. Care Companion J. Clin. Psychiatry, 2009, 11(6), 353-356. doi: 10.4088/PCC.09r00853 PMID: 20098528
  39. Van Wart, S.A.; Cirincione, B.B.; Ludwig, E.A.; Meagher, A.K.; Korth-Bradley, J.M.; Owen, J.S. Population pharmacokinetics of tigecycline in healthy volunteers. J. Clin. Pharmacol., 2007, 47(6), 727-737. doi: 10.1177/0091270007300263 PMID: 17519399
  40. Murchison, A. Quinupristin–dalfopristin: A streptogramin antibiotic. Prim. Care Update Ob Gyns, 2002, 9(5), 176-177. doi: 10.1016/S1068-607X(02)00113-0
  41. Eliopoulos, G.M.; Eliopoulos, G.M. Quinupristin-dalfopristin and linezolid: Evidence and opinion. Clin. Infect. Dis., 2003, 36(4), 473-481. doi: 10.1086/367662 PMID: 12567306
  42. Ma, H.; Cheng, J.; Peng, L.; Gao, Y.; Zhang, G.; Luo, Z. Adjunctive rifampin for the treatment of Staphylococcus aureus bacteremia with deep infections: A meta-analysis. PLoS One, 2020, 15(3), e0230383. doi: 10.1371/journal.pone.0230383 PMID: 32191760
  43. Dryden, M.; Zhang, Y.; Wilson, D.; Iaconis, J.P.; Gonzalez, J. A Phase III, randomized, controlled, non-inferiority trial of ceftaroline fosamil 600 mg every 8 h versus vancomycin plus aztreonam in patients with complicated skin and soft tissue infection with systemic inflammatory response or underlying comorbidities. J. Antimicrob. Chemother., 2016, 71(12), 3575-3584. doi: 10.1093/jac/dkw333 PMID: 27585969
  44. Corey, G.R.; Wilcox, M.; Talbot, G.H.; Friedland, H.D.; Baculik, T.; Witherell, G.W.; Critchley, I.; Das, A.F.; Thye, D. Integrated analysis of CANVAS 1 and 2: Phase 3, multicenter, randomized, double-blind studies to evaluate the safety and efficacy of ceftaroline versus vancomycin plus aztreonam in complicated skin and skin-structure infection. Clin. Infect. Dis., 2010, 51(6), 641-650. doi: 10.1086/655827 PMID: 20695801
  45. Blumenthal, K.G.; Kuhlen, J.L., Jr; Weil, A.A.; Varughese, C.A.; Kubiak, D.W.; Banerji, A.; Shenoy, E.S. Adverse drug reactions associated with ceftaroline use: A 2-center retrospective cohort. J. Allergy Clin. Immunol. Pract., 2016, 4(4), 740-746. doi: 10.1016/j.jaip.2016.03.008 PMID: 27130709
  46. Smieja, M. Current indications for the use of clindamycin: A critical review. Can. J. Infect. Dis., 1998, 9(1), 22-28. doi: 10.1155/1998/538090 PMID: 22346533
  47. Geric, B.; Rupnik, M.; Gerding, D.N.; Grabnar, M.; Johnson, S. Distribution of Clostridium difficile variant toxinotypes and strains with binary toxin genes among clinical isolates in an American hospital. J. Med. Microbiol., 2004, 53(9), 887-894. doi: 10.1099/jmm.0.45610-0 PMID: 15314196
  48. Miller, L.G.; Daum, R.S.; Creech, C.B.; Young, D.; Downing, M.D.; Eells, S.J.; Pettibone, S.; Hoagland, R.J.; Chambers, H.F. Clindamycin versus trimethoprim-sulfamethoxazole for uncomplicated skin infections. N. Engl. J. Med., 2015, 372(12), 1093-1103. doi: 10.1056/NEJMoa1403789 PMID: 25785967
  49. Crellin, E.; Mansfield, K.E.; Leyrat, C.; Nitsch, D.; Douglas, I.J.; Root, A.; Williamson, E.; Smeeth, L.; Tomlinson, L.A. Trimethoprim use for urinary tract infection and risk of adverse outcomes in older patients: Cohort study. BMJ, 2018, 360, k341. doi: 10.1136/bmj.k341 PMID: 29438980
  50. Talan, D.A.; Mower, W.R.; Krishnadasan, A.; Abrahamian, F.M.; Lovecchio, F.; Karras, D.J.; Steele, M.T.; Rothman, R.E.; Hoagland, R.; Moran, G.J. Trimethoprim–sulfamethoxazole versus placebo for uncomplicated skin abscess. N. Engl. J. Med., 2016, 374(9), 823-832. doi: 10.1056/NEJMoa1507476 PMID: 26962903
  51. Shorr, A.F.; Lodise, T.P.; Corey, G.R.; De Anda, C.; Fang, E.; Das, A.F.; Prokocimer, P. Analysis of the phase 3 ESTABLISH trials of tedizolid versus linezolid in acute bacterial skin and skin structure infections. Antimicrob. Agents Chemother., 2015, 59(2), 864-871. doi: 10.1128/AAC.03688-14 PMID: 25421472
  52. Wilson, A.P.R. Comparative safety of teicoplanin and vancomycin. Int. J. Antimicrob. Agents, 1998, 10(2), 143-152. doi: 10.1016/S0924-8579(98)00025-9 PMID: 9716291
  53. Boucher, H.W.; Wilcox, M.; Talbot, G.H.; Puttagunta, S.; Das, A.F.; Dunne, M.W. Once-weekly dalbavancin versus daily conventional therapy for skin infection. N. Engl. J. Med., 2014, 370(23), 2169-2179. doi: 10.1056/NEJMoa1310480 PMID: 24897082
  54. Bouza, E.; Valerio, M.; Soriano, A.; Morata, L.; Carus, E.G.; Rodríguez-González, C.; Hidalgo-Tenorio, M.C.; Plata, A.; Muñoz, P.; Vena, A.; Alvarez-Uria, A.; Fernández-Cruz, A.; Nieto, A.A.; Artero, A.; Allende, J.M.B.; Morell, E.B.; Candel-González, F.J.; Castelo, L.; Cobo, J.; del Carmen Gálvez Contreras, M.; Fernández, R.G.; Horcajada, J.P.; Guisado-Vasco, P.; Losa, J.E.; Hervás, R.; Iftimie, S.M.; Mejías, M.E.J.; Jover, F.; Ferreiro, J.L.L.; Serrano, A.B.L.; Malmierca, E.; Masiá, M.; Sempere, M.R.O.; Nieto, A.R.; Rodriguez-Pardo, D.; Alvarez, S.J.R.; San Juan, R.; Cepeda, C.S.; Berrocal, M.A.S.; Sobrino, B.; Sorlí, L. Dalbavancin in the treatment of different gram-positive infections: A real-life experience. Int. J. Antimicrob. Agents, 2018, 51(4), 571-577. doi: 10.1016/j.ijantimicag.2017.11.008 PMID: 29180276
  55. Stryjewski, M.E.; Graham, D.R.; Wilson, S.E.; O’Riordan, W.; Young, D.; Lentnek, A.; Ross, D.P.; Fowler, V.G.; Hopkins, A.; Friedland, H.D.; Barriere, S.L.; Kitt, M.M.; Corey, G.R. Telavancin versus vancomycin for the treatment of complicated skin and skin-structure infections caused by gram-positive organisms. Clin. Infect. Dis., 2008, 46(11), 1683-1693. doi: 10.1086/587896 PMID: 18444791
  56. Graham, D.R.; Talan, D.A.; Nichols, R.L.; Lucasti, C.; Corrado, M.; Morgan, N.; Fowler, C.L. Once-daily, high-dose levofloxacin versus ticarcillin-clavulanate alone or followed by amoxicillin-clavulanate for complicated skin and skin-structure infections: A randomized, open-label trial. Clin. Infect. Dis., 2002, 35(4), 381-389. doi: 10.1086/341026 PMID: 12145720
  57. Nicodemo, A.C.; Robledo, J.A.; Jasovich, A.; Neto, W. A multicentre, double-blind, randomised study comparing the efficacy and safety of oral levofloxacin versus ciprofloxacin in the treatment of uncomplicated skin and skin structure infections. Int. J. Clin. Pract., 1998, 52(2), 69-74. doi: 10.1111/j.1742-1241.1998.tb11567.x PMID: 9624783
  58. Vick-Fragoso, R.; Hernández-Oliva, G.; Cruz-Alcázar, J.; Amábile-Cuevas, C.F.; Arvis, P.; Reimnitz, P.; Bogner, J.R.; Group, S.S. Efficacy and safety of sequential intravenous/oral moxifloxacin vs intravenous/oral amoxicillin/clavulanate for complicated skin and skin structure infections. Infection, 2009, 37(5), 407-417. doi: 10.1007/s15010-009-8468-x PMID: 19768381
  59. Smith, K.; Leyden, J.J. Safety of doxycycline and minocycline: A systematic review. Clin. Ther., 2005, 27(9), 1329-1342. doi: 10.1016/j.clinthera.2005.09.005 PMID: 16291409
  60. Hershberger, E.; Donabedian, S.; Konstantinou, K.; Zervos, M.J.; Eliopoulos, G.M. Quinupristin-dalfopristin resistance in gram-positive bacteria: Mechanism of resistance and epidemiology. Clin. Infect. Dis., 2004, 38(1), 92-98. doi: 10.1086/380125 PMID: 14679454
  61. Yamaoka, T. The bactericidal effects of anti-MRSA agents with rifampicin and sulfamethoxazole-trimethoprim against intracellular phagocytized MRSA. J. Infect. Chemother., 2007, 13(3), 141-146. doi: 10.1007/s10156-007-0521-Z PMID: 17593499
  62. Saravolatz, L.D.; Pawlak, J.; Johnson, L.; Bonilla, H.; Saravolatz, L.D., II; Fakih, M.G.; Fugelli, A.; Olsen, W.M. In vitro activities of LTX-109, a synthetic antimicrobial peptide, against methicillin-resistant, vancomycin-intermediate, vancomycin-resistant, daptomycin-nonsusceptible, and linezolid-nonsusceptible Staphylococcus aureus. Antimicrob. Agents Chemother., 2012, 56(8), 4478-4482. doi: 10.1128/AAC.00194-12 PMID: 22585222
  63. Nilsson, A.C.; Janson, H.; Wold, H.; Fugelli, A.; Andersson, K.; Håkangård, C.; Olsson, P.; Olsen, W.M. LTX-109 is a novel agent for nasal decolonization of methicillin-resistant and -sensitive Staphylococcus aureus. Antimicrob. Agents Chemother., 2015, 59(1), 145-151. doi: 10.1128/AAC.03513-14 PMID: 25331699
  64. Giuliani, A.; Rinaldi, A.C. Beyond natural antimicrobial peptides: Multimeric peptides and other peptidomimetic approaches. Cell. Mol. Life Sci., 2011, 68(13), 2255-2266. doi: 10.1007/s00018-011-0717-3 PMID: 21598022
  65. Méndez-Samperio, P. Peptidomimetics as a new generation of antimicrobial agents: Current progress. Infect. Drug Resist., 2014, 7, 229-237. doi: 10.2147/IDR.S49229 PMID: 25210467
  66. Mercer, D.K.; O’Neil, D.A. Innate inspiration: Antifungal peptides and other immunotherapeutics from the host immune response. Front. Immunol., 2020, 11, 2177-2205. doi: 10.3389/fimmu.2020.02177 PMID: 33072081
  67. Isaksson, J.; Brandsdal, B.O.; Engqvist, M.; Flaten, G.E.; Svendsen, J.S.M.; Stensen, W. A synthetic antimicrobial peptidomimetic (LTX 109): Stereochemical impact on membrane disruption. J. Med. Chem., 2011, 54(16), 5786-5795. doi: 10.1021/jm200450h PMID: 21732630
  68. Jiang, Y.; Chen, Y.; Song, Z.; Tan, Z.; Cheng, J. Recent advances in design of antimicrobial peptides and polypeptides toward clinical translation. Adv. Drug Deliv. Rev., 2021, 170, 261-280. doi: 10.1016/j.addr.2020.12.016 PMID: 33400958
  69. Saravolatz, L.D.; Pawlak, J.; Martin, H.; Saravolatz, S.; Johnson, L.; Wold, H.; Husbyn, M.; Olsen, W.M. Postantibiotic effect and postantibiotic sub-MIC effect of LTX-109 and mupirocin on Staphylococcus aureus blood isolates. Lett. Appl. Microbiol., 2017, 65(5), 410-413. doi: 10.1111/lam.12792 PMID: 28802058
  70. Koo, H.B.; Seo, J. Antimicrobial peptides under clinical investigation. Pept. Sci. (Hoboken), 2019, 111(5), e24122. doi: 10.1002/pep2.24122
  71. Xu, Z.Q.; Flavin, M.T.; Flavin, J. Combating multidrug-resistant gram-negative bacterial infections. Expert Opin. Investig. Drugs, 2014, 23(2), 163-182. doi: 10.1517/13543784.2014.848853 PMID: 24215473
  72. Rakesh, K.P.; Marichannegowda, M.H.; Srivastava, S.; Chen, X.; Long, S.; Karthik, C.S.; Mallu, P.; Qin, H.L. Combating a master manipulator: Staphylococcus aureus immunomodulatory molecules as targets for combinatorial drug discovery. ACS Comb. Sci., 2018, 20(12), 681-693. doi: 10.1021/acscombsci.8b00088 PMID: 30372025
  73. Kowalski, R.P.; Romanowski, E.G.; Yates, K.A.; Mah, F.S. An independent evaluation of a novel peptide mimetic, brilacidin (PMX30063), for ocular anti-infective. J. Ocul. Pharmacol. Ther., 2016, 32(1), 23-27. doi: 10.1089/jop.2015.0098 PMID: 26501484
  74. Li, J.; Koh, J.J.; Liu, S.; Lakshminarayanan, R.; Verma, C.S.; Beuerman, R.W. Membrane active antimicrobial peptides: Translating mechanistic insights to design. Front. Neurosci., 2017, 11, 73-91. doi: 10.3389/fnins.2017.00073 PMID: 28261050
  75. Boucher, H.W.; Talbot, G.H.; Benjamin, D.K., Jr; Bradley, J.; Guidos, R.J.; Jones, R.N.; Murray, B.E.; Bonomo, R.A.; Gilbert, D. 10 x ’20 Progress--development of new drugs active against gram-negative bacilli: An update from the Infectious Diseases Society of America. Clin. Infect. Dis., 2013, 56(12), 1685-1694. doi: 10.1093/cid/cit152 PMID: 23599308
  76. Wang, M.; Odom, T.; Cai, J. Challenges in the development of next-generation antibiotics: Opportunities of small molecules mimicking mode of action of host-defense peptides. Expert Opin. Ther. Pat., 2020, 30(5), 303-305. doi: 10.1080/13543776.2020.1740683 PMID: 32149532
  77. Mercer, D.K.; O’Neil, D.A. Peptides as the next generation of anti-infectives. Future Med. Chem., 2013, 5(3), 315-337. doi: 10.4155/fmc.12.213 PMID: 23464521
  78. Tillotson, G.S.; Theriault, N. New and alternative approaches to tackling antibiotic resistance. F1000Prime Rep., 2013, 5, 51-60. doi: 10.12703/P5-51 PMID: 24381727
  79. McCool, R.; Gould, I.M.; Eales, J.; Barata, T.; Arber, M.; Fleetwood, K.; Glanville, J.; Kauf, T.L. Systematic review and network meta-analysis of tedizolid for the treatment of acute bacterial skin and skin structure infections caused by MRSA. BMC Infect. Dis., 2017, 17(1), 39. doi: 10.1186/s12879-016-2100-3 PMID: 28061827
  80. Jorgensen, D.; Scott, R.; O’Riordan, W.; Tack, K. A randomized, double-blind study comparing single-dose and short-course brilacidin to daptomycin in the treatment of acute bacterial skin & skin structure infections (ABSSSI 25th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), 2015, pp. 25-28.
  81. Takahashi, Y.; Igarashi, M. Destination of aminoglycoside antibiotics in the ‘post-antibiotic era’. J. Antibiot. (Tokyo), 2018, 71(1), 4-14. doi: 10.1038/ja.2017.117 PMID: 29066797
  82. Singh, G.S. Carbohydrates in Drug Discovery and Development.Carbohydrate-based antibiotics: Opportunities and challenges, 1st ed.; Elsevier Academic Press: Amsterdam, 2006, pp. 523-559.
  83. Lakota, E.A.; Sato, N.; Koresawa, T.; Kondo, K.; Bhavnani, S.M.; Ambrose, P.G.; Rubino, C.M. Population pharmacokinetic analyses for arbekacin after administration of ME1100 inhalation solution. Antimicrob. Agents Chemother., 2019, 63(8), e00267-19. doi: 10.1128/AAC.00267-19 PMID: 31182524
  84. Koulenti, D.; Xu, E.; Song, A.; Sum Mok, I.Y.; Karageorgopoulos, D.E.; Armaganidis, A.; Tsiodras, S.; Lipman, J. Emerging treatment options for infections by multidrug-resistant gram-positive microorganisms. Microorganisms, 2020, 8(2), 191-231. doi: 10.3390/microorganisms8020191 PMID: 32019171
  85. AB Naafs, M. The antimicrobial peptides: Ready for clinical trials. Biomed. J. Sci. Tech. Res., 2018, 7(4), 6038-6042. doi: 10.26717/BJSTR.2018.07.001536
  86. Appelbaum, P.C. 2012 and beyond: Potential for the start of a second pre-antibiotic era? J. Antimicrob. Chemother., 2012, 67(9), 2062-2068. doi: 10.1093/jac/dks213 PMID: 22687888
  87. de Souza Mendes, C.; de Souza Antunes, A. Pipeline of known chemical classes of antibiotics. Antibiotics (Basel), 2013, 2(4), 500-534. doi: 10.3390/antibiotics2040500 PMID: 27029317
  88. Peric, M.; Jacobs, M.R.; Appelbaum, P.C. Antianaerobic activity of a novel fluoroquinolone, WCK 771, compared to those of nine other agents. Antimicrob. Agents Chemother., 2004, 48(8), 3188-3192. doi: 10.1128/AAC.48.8.3188-3192.2004 PMID: 15273148
  89. Liapikou, A.; Cillóniz, C.; Torres, A. Investigational drugs in phase I and phase II clinical trials for the treatment of community-acquired pneumonia. Expert Opin. Investig. Drugs, 2017, 26(11), 1239-1248. doi: 10.1080/13543784.2017.1385761 PMID: 28952384
  90. Jabes, D. The antibiotic R&D pipeline: An update. Curr. Opin. Microbiol., 2011, 14(5), 564-569. doi: 10.1016/j.mib.2011.08.002 PMID: 21873107
  91. Lipsky, B.A.; Tsai, C.Y.; Chang, L.W.; Chang, Y.T.; Hsu, M.C. WITHDRAWN: Nemonoxacin treatment of patients with diabetic foot infection: A pilot study. J. Microbiol. Immunol. Infect., 2019, 72, 397-404. doi: 10.1016/j.jmii.2019.05.015
  92. O’Riordan, W.; Tiffany, C.; Scangarella-Oman, N.; Perry, C.; Hossain, M.; Ashton, T.; Dumont, E. Efficacy, safety, and tolerability of Gepotidacin (GSK2140944) in the treatment of patients with suspected or confirmed gram-positive acute bacterial skin and skin structure infections. Antimicrob. Agents Chemother., 2017, 61(6), e02095-16. doi: 10.1128/AAC.02095-16 PMID: 28373199
  93. Jeong, J.W.; Jung, S.J.; Lee, H.H.; Kim, Y.Z.; Park, T.K.; Cho, Y.L.; Chae, S.E.; Baek, S.Y.; Woo, S.H.; Lee, H.S.; Kwak, J.H. In vitro and in vivo activities of LCB01-0371, a new oxazolidinone. Antimicrob. Agents Chemother., 2010, 54(12), 5359-5362. doi: 10.1128/AAC.00723-10 PMID: 20855730
  94. Vuong, C.; Yeh, A.J.; Cheung, G.Y.C.; Otto, M. Investigational drugs to treat methicillin-resistant Staphylococcus aureus. Expert Opin. Investig. Drugs, 2016, 25(1), 73-93. doi: 10.1517/13543784.2016.1109077 PMID: 26536498
  95. Cho, Y.S.; Lim, H.S.; Lee, S.H.; Cho, Y.L.; Nam, H.; Bae, K.S. Pharmacokinetics, pharmacodynamics, and tolerability of single-dose oral LCB01-0371, a novel oxazolidinone with broad-spectrum activity, in healthy volunteers. ntimicrob. Antimicrob. Agents Chemother., 2018, 62(7), e00451-18. doi: 10.1128/AAC.00451-18
  96. Carvalhaes, C.G.; Duncan, L.R.; Wang, W.; Sader, H.S. In vitro activity and potency of the novel Oxazolidinone Contezolid (MRX-I) tested against Gram-positive clinical isolates from US and Europe. Antimicrob. Agents Chemother., 2020, 64(11), e01195-20. doi: 10.1128/AAC.01195-20 PMID: 32778552
  97. Li, Y.G.; Wang, J.X.; Zhang, G.N.; Zhu, M.; You, X.F.; Hu, X.X.; Zhang, F.; Wang, Y.C. Antibacterial activity and structure− activity relationship of a series of newly synthesized Pleuromutilin derivatives. Chem. Biodivers., 2019, 16(2), e1800560. doi: 10.1002/cbdv.201800560 PMID: 30467968
  98. Pucci, M.J.; Bush, K. Investigational antimicrobial agents of 2013. Clin. Microbiol. Rev., 2013, 26(4), 792-821. doi: 10.1128/CMR.00033-13 PMID: 24092856
  99. Paukner, S.; Riedl, R. Pleuromutilins: Potent drugs for resistant bugs—mode of action and resistance. Cold Spring Harb. Perspect. Med., 2017, 7(1), a027110. doi: 10.1101/cshperspect.a027110 PMID: 27742734
  100. Jones, J.A.; Virga, K.G.; Gumina, G.; Hevener, K.E. Recent advances in the rational design and optimization of antibacterial agents. MedChemComm, 2016, 7(9), 1694-1715. doi: 10.1039/C6MD00232C PMID: 27642504
  101. Giacobbe, D.R.; De Rosa, F.G.; Del Bono, V.; Grossi, P.A.; Pea, F.; Petrosillo, N.; Rossolini, G.M.; Tascini, C.; Tumbarello, M.; Viale, P.; Bassetti, M. Ceftobiprole: Drug evaluation and place in therapy. Expert Rev. Anti Infect. Ther., 2019, 17(9), 689-698. doi: 10.1080/14787210.2019.1667229 PMID: 31553250
  102. Parkes, A.L.; Yule, I.A. Hybrid antibiotics – clinical progress and novel designs. Expert Opin. Drug Discov., 2016, 11(7), 665-680. doi: 10.1080/17460441.2016.1187597 PMID: 27169483
  103. Blais, J.; Lewis, S.R.; Krause, K.M.; Benton, B.M. Antistaphylococcal activity of TD-1792, a multivalent glycopeptide-cephalosporin antibiotic. Antimicrob. Agents Chemother., 2012, 56(3), 1584-1587. doi: 10.1128/AAC.05532-11 PMID: 22203585
  104. Leuthner, K.D.; Vidaillac, C.; Cheung, C.M.; Rybak, M.J. In vitro activity of the new multivalent glycopeptide-cephalosporin antibiotic TD-1792 against vancomycin-nonsusceptible Staphylococcus isolates. Antimicrob. Agents Chemother., 2010, 54(9), 3799-3803. doi: 10.1128/AAC.00452-10 PMID: 20585126
  105. Hegde, S.S.; Okusanya, O.O.; Skinner, R.; Shaw, J.P.; Obedencio, G.; Ambrose, P.G.; Blais, J.; Bhavnani, S.M. Pharmacodynamics of TD-1792, a novel glycopeptide-cephalosporin heterodimer antibiotic used against Gram-positive bacteria, in a neutropenic murine thigh model. Antimicrob. Agents Chemother., 2012, 56(3), 1578-1583. doi: 10.1128/AAC.05382-11 PMID: 22155835
  106. Itoh, H.; Tokumoto, K.; Kaji, T.; Paudel, A.; Panthee, S.; Hamamoto, H.; Sekimizu, K.; Inoue, M. Total synthesis and biological mode of action of WAP-8294A2: A menaquinone-targeting antibiotic. J. Org. Chem., 2018, 83(13), 6924-6935. doi: 10.1021/acs.joc.7b02318 PMID: 29019678
  107. Kato, A.; Nakaya, S.; Ohashi, Y.; Hirata, H.; Fujii, K.; Harada, K. WAP-8294A2, a novel anti-MRSA antibiotic produced by Lysobacter sp. J. Am. Chem. Soc., 1997, 119(28), 6680-6681. doi: 10.1021/ja970895o
  108. Kato, A.; Hirata, H.; Ohashi, Y.; Fujii, K.; Mori, K.; Harada, K. A new anti-MRSA antibiotic complex, WAP-8294A II. Structure characterization of minor components by ESI LCMS and MS/MS. J. Antibiot. (Tokyo), 2011, 64(5), 373-379. doi: 10.1038/ja.2011.9 PMID: 21326252
  109. Ling, J.; Zhu, R.; Laborda, P.; Jiang, T.; Jia, Y.; Zhao, Y.; Liu, F. LbDSF, the Lysobacter brunescens quorum sensing system diffusible signalling factor, regulates anti-xanthomonas XSAC biosynthesis, colony morphology, and surface motility. Front. Microbiol., 2019, 10, 1230-1244. doi: 10.3389/fmicb.2019.01230 PMID: 31275253
  110. Hafkin, B.; Kaplan, N.; Murphy, B. Efficacy and safety of AFN-1252, the first Staphylococcus-specific antibacterial agent, in the treatment of acute bacterial skin and skin structure infections, including those in patients with significant comorbidities. Antimicrob. Agents Chemother., 2016, 60(3), 1695-1701. doi: 10.1128/AAC.01741-15 PMID: 26711777
  111. Butler, M.S.; Paterson, D.L. Antibiotics in the clinical pipeline in October 2019. J. Antibiot. (Tokyo), 2020, 73(6), 329-364. doi: 10.1038/s41429-020-0291-8 PMID: 32152527
  112. Fisher, C.R.; Schmidt-Malan, S.M.; Ma, Z.; Yuan, Y.; He, S.; Patel, R. In vitro activity of TNP-2092 against periprosthetic joint infection–associated staphylococci. Diagn. Microbiol. Infect. Dis., 2020, 97(3), 115040-115065. doi: 10.1016/j.diagmicrobio.2020.115040 PMID: 32354459
  113. Motley, M.P.; Banerjee, K.; Fries, B.C. Monoclonal antibody-based therapies for bacterial infections. Curr. Opin. Infect. Dis., 2019, 32(3), 210-216. doi: 10.1097/QCO.0000000000000539 PMID: 30950853
  114. Peck, M.; Rothenberg, M.E.; Deng, R.; Lewin-Koh, N.; She, G.; Kamath, A.V.; Carrasco-Triguero, M.; Saad, O.; Castro, A.; Teufel, L.; Dickerson, D.S.; Leonardelli, M.; Tavel, J.A. A phase 1, randomized, single-ascending-dose study to investigate the safety, tolerability, and pharmacokinetics of DSTA4637S, an anti-Staphylococcus aureus thiomab antibody-antibiotic conjugate, in healthy volunteers. Antimicrob. Agents Chemother., 2019, 63(6), e02588-18. doi: 10.1128/AAC.02588-18 PMID: 30910894
  115. Fernandes, P.; Pereira, D. Efforts to support the development of fusidic acid in the United States. Clin. Infect. Dis., 2011, 52(7)(Suppl. 7), S542-S546. doi: 10.1093/cid/cir170 PMID: 21546632
  116. Shukla, M.; Soni, I.; Dasgupta, A.; Chopra, S. Drugs under preclinical and clinical testing for the treatment of infections caused due to Staphylococcus aureus. An update, in infectious diseases and your health., (1st ed.. ) 2018, , 239-255.
  117. Biedenbach, D.J.; Rhomberg, P.R.; Mendes, R.E.; Jones, R.N. Spectrum of activity, mutation rates, synergistic interactions, and the effects of pH and serum proteins for fusidic acid (CEM-102). Diagn. Microbiol. Infect. Dis., 2010, 66(3), 301-307. doi: 10.1016/j.diagmicrobio.2009.10.014 PMID: 20159376
  118. Noeske, J.; Huang, J.; Olivier, N.B.; Giacobbe, R.A.; Zambrowski, M.; Cate, J.H.D. Synergy of streptogramin antibiotics occurs independently of their effects on translation. Antimicrob. Agents Chemother., 2014, 58(9), 5269-5279. doi: 10.1128/AAC.03389-14 PMID: 24957822
  119. Liapikou, A.; Torres, A. Emerging drugs on methicillin-resistant Staphylococcus aureus. Expert Opin. Emerg. Drugs, 2013, 18(3), 291-305. doi: 10.1517/14728214.2013.813480 PMID: 23848400
  120. Pankuch, G.A.; Lin, G.; Clark, C.; Appelbaum, P.C. Time-kill activity of the streptogramin NXL 103 against gram-positive and -negative bacteria. Antimicrob. Agents Chemother., 2011, 55(4), 1787-1791. doi: 10.1128/AAC.01159-10 PMID: 21245439
  121. Politano, A.D.; Sawyer, R.G. NXL-103, a combination of flopristin and linopristin, for the potential treatment of bacterial infections including community-acquired pneumonia and MRSA. Curr. Opin. Investig. Drugs, 2010, 11(2), 225-236. PMID: 20112172
  122. Lepak, A.J.; Parhi, A.; Madison, M.; Marchillo, K.; VanHecker, J.; Andes, D.R. In vivo pharmacodynamic evaluation of an FtsZ Inhibitor, TXA-709, and its active metabolite, TXA-707, in a murine neutropenic thigh infection model. Antimicrob. Agents Chemother., 2015, 59(10), 6568-6574. doi: 10.1128/AAC.01464-15 PMID: 26259789
  123. Theuretzbacher, U.; Bush, K.; Harbarth, S.; Paul, M.; Rex, J.H.; Tacconelli, E.; Thwaites, G.E. Critical analysis of antibacterial agents in clinical development. Nat. Rev. Microbiol., 2020, 18(5), 286-298. doi: 10.1038/s41579-020-0340-0 PMID: 32152509
  124. Stephens, L.J.; Werrett, M.V.; Sedgwick, A.C.; Bull, S.D.; Andrews, P.C. Antimicrobial innovation: A current update and perspective on the antibiotic drug development pipeline. Future Med. Chem., 2020, 12(22), 2035-2065. doi: 10.4155/fmc-2020-0225 PMID: 33169622
  125. Kaul, M.; Mark, L.; Zhang, Y.; Parhi, A.K.; Lyu, Y.L.; Pawlak, J.; Saravolatz, S.; Saravolatz, L.D.; Weinstein, M.P.; LaVoie, E.J.; Pilch, D.S. TXA709, an FtsZ-targeting benzamide prodrug with improved pharmacokinetics and enhanced in vivo efficacy against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 2015, 59(8), 4845-4855. doi: 10.1128/AAC.00708-15 PMID: 26033735
  126. Naderer, O.J.; Dumont, E.; Zhu, J.; Kurtinecz, M.; Jones, L.S. Single-dose safety, tolerability, and pharmacokinetics of the antibiotic GSK1322322, a novel peptide deformylase inhibitor. Antimicrob. Agents Chemother., 2013, 57(5), 2005-2009. doi: 10.1128/AAC.01779-12 PMID: 23403431
  127. Corey, R.; Naderer, O.J.; O’Riordan, W.D.; Dumont, E.; Jones, L.S.; Kurtinecz, M.; Zhu, J.Z. Safety, tolerability, and efficacy of GSK1322322 in the treatment of acute bacterial skin and skin structure infections. Antimicrob. Agents Chemother., 2014, 58(11), 6518-6527. doi: 10.1128/AAC.03360-14 PMID: 25136015
  128. Alm, R.A.; Lahiri, S.D. Narrow-spectrum antibacterial agents—benefits and challenges. Antibiotics (Basel), 2020, 9(7), 418-426. doi: 10.3390/antibiotics9070418 PMID: 32708925
  129. Page, J.E.; Walker, S. Natural products that target the cell envelope. Curr. Opin. Microbiol., 2021, 61, 16-24. doi: 10.1016/j.mib.2021.02.001 PMID: 33662818
  130. Traczewski, M.M.; Ambler, J.E.; Schuch, R. Determination of MIC quality control parameters for Exebacase, a novel lysin with anti-staphylococcal activity. J. Clin. Microbiol., 2021, 59(7), e03117-20. doi: 10.1128/JCM.03117-20 PMID: 33910968
  131. Watson, A.; Oh, J.T.; Sauve, K.; Bradford, P.A.; Cassino, C.; Schuch, R. Antimicrobial activity of exebacase (lysin CF-301) against the most common causes of infective endocarditis. Antimicrob. Agents Chemother., 2019, 63(10), e01078-19. doi: 10.1128/AAC.01078-19 PMID: 31332073
  132. Kim, N.H.; Park, W.B.; Cho, J.E.; Choi, Y.J.; Choi, S.J.; Jun, S.Y.; Kang, C.K.; Song, K.H.; Choe, P.G.; Bang, J.H.; Kim, E.S.; Park, S.W.; Kim, N.J.; Oh, M.; Kim, H.B. Effects of phage endolysin SAL200 combined with antibiotics on Staphylococcus aureus infection. Antimicrob. Agents Chemother., 2018, 62(10), e00731-18. doi: 10.1128/AAC.00731-18 PMID: 30038042
  133. Caflisch, K.M.; Patel, R. Implications of bacteriophage-and bacteriophage component-based therapies for the clinical microbiology laboratory. J. Clin. Microbiol., 2019, 57(8), e00229-19. doi: 10.1128/JCM.00229-19 PMID: 31092596
  134. Jun, S.Y.; Jung, G.M.; Yoon, S.J.; Youm, S.Y.; Han, H.Y.; Lee, J.H.; Kang, S.H. Pharmacokinetics of the phage endolysin-based candidate drug SAL 200 in monkeys and its appropriate intravenous dosing period. Clin. Exp. Pharmacol. Physiol., 2016, 43(10), 1013-1016. doi: 10.1111/1440-1681.12613 PMID: 27341401
  135. Channabasappa, S.; Chikkamadaiah, R.; Durgaiah, M.; Kumar, S.; Ramesh, K.; Sreekanthan, A.; Sriram, B. Efficacy of chimeric ectolysin P128 in drug-resistant Staphylococcus aureus bacteraemia in mice. J. Antimicrob. Chemother., 2018, 73(12), 3398-3404. doi: 10.1093/jac/dky365 PMID: 30215762
  136. ClinicalTrials.gov. Safety & efficacy of an antibacterial protein molecule applied topically to the nostrils of volunteers and patients. Available From: https://clinicaltrials.gov/ct2/show/NCT01746654
  137. Bagnoli, F. Staphylococcus aureus toxin antibodies: Good companions of antibiotics and vaccines. Virulence, 2017, 8(7), 1037-1042. doi: 10.1080/21505594.2017.1295205 PMID: 28267417
  138. Varshney, A.K.; Kuzmicheva, G.A.; Lin, J.; Sunley, K.M.; Bowling, R.A., Jr; Kwan, T.Y.; Mays, H.R.; Rambhadran, A.; Zhang, Y.; Martin, R.L.; Cavalier, M.C.; Simard, J.; Shivaswamy, S. A natural human monoclonal antibody targeting Staphylococcus Protein A protects against Staphylococcus aureus bacteremia. PLoS One, 2018, 13(1), e0190537. doi: 10.1371/journal.pone.0190537 PMID: 29364906
  139. Falcó, V.; Burgos, J.; Papiol, E.; Ferrer, R.; Almirante, B. Investigational drugs in phase I and phase II clincial trials for the treatment of hospital-acquired pneumonia. Expert Opin. Investig. Drugs, 2016, 25(6), 653-665. doi: 10.1517/13543784.2016.1168803 PMID: 26998623
  140. Wang-Lin, S.; Balthasar, J. Pharmacokinetic and pharmacodynamic considerations for the use of monoclonal antibodies in the treatment of bacterial infections. Antibodies (Basel), 2018, 7(1), 5-25. doi: 10.3390/antib7010005 PMID: 31544858
  141. Vignon, P.; Laterre, P.F.; Daix, T.; François, B. New agents in development for sepsis: Any reason for hope? Drugs, 2020, 80(17), 1751-1761. doi: 10.1007/s40265-020-01402-z PMID: 32951149
  142. Tabor, D.E.; Yu, L.; Mok, H.; Tkaczyk, C.; Sellman, B.R.; Wu, Y.; Oganesyan, V.; Slidel, T.; Jafri, H.; McCarthy, M.; Bradford, P.; Esser, M.T. Staphylococcus aureus alpha-toxin is conserved among diverse hospital respiratory isolates collected from a global surveillance study and is neutralized by monoclonal antibody MEDI4893. Antimicrob. Agents Chemother., 2016, 60(9), 5312-5321. doi: 10.1128/AAC.00357-16 PMID: 27324766
  143. François, B.; Jafri, H.S.; Chastre, J.; Sánchez-García, M.; Eggimann, P.; Dequin, P.F.; Huberlant, V.; Viña Soria, L.; Boulain, T.; Bretonnière, C.; Pugin, J.; Trenado, J.; Hernandez Padilla, A.C.; Ali, O.; Shoemaker, K.; Ren, P.; Coenjaerts, F.E.; Ruzin, A.; Barraud, O.; Timbermont, L.; Lammens, C.; Pierre, V.; Wu, Y.; Vignaud, J.; Colbert, S.; Bellamy, T.; Esser, M.T.; Dubovsky, F.; Bonten, M.J.; Goossens, H.; Laterre, P.F.; Chochrad, D.; Dive, A.; Foret, F.; Simon, M.; Spapen, H.; Creteur, J.; Bouckaert, Y.; Biston, P.; Bourgeois, M.; Novacek, M.; Vymazal, T.; Svoboda, P.; Pachl, J.; Sramek, V.; Hanauer, M.; Hruby, T.; Balik, M.; Suchy, T.; Lepape, A.; Argaud, L.; Dailler, F.; Desachy, A.; Guitton, C.; Mercat, A.; Meziani, F.; Navellou, J-C.; Robert, R.; Souweine, B.; Tadie, J-M.; Maamar, A.; Annane, D.; Tamion, F.; Gros, A.; Nseir, S.; Schwebel, C.; Francony, G.; Lefrant, J-Y.; Schneider, F.; Gründling, M.; Motsch, J.; Reill, L.; Rolfes, C.; Welte, T.; Cornely, O.; Bloos, F.; Deja, M.; Schmidt, K.; Wappler, F.; Meier-Hellmann, A.; Komnos, A.; Bekos, V.; Koulouras, V.; Soultati, I.; Baltopoulos, G.; Filntisis, G.; Zakynthinos, E.; Zakynthinos, S.; Pnevmatikos, I.; Krémer, I.; Szentkereszty, Z.; Sarkany, A.; Marjanek, Z.; Moura, P.; Pintado Delgado, M.C.; Montejo González, J.C.; Ramirez, P.; Torres Marti, A.; Valia, J.C.; Lorente, J.; Loza Vazquez, A.; De Pablo Sanchez, R.; Escudero, D.; Ferrer Roca, R.; Pagani, J-L.; Maggiorini, M. Efficacy and safety of suvratoxumab for prevention of Staphylococcus aureus ventilator-associated pneumonia (SAATELLITE): A multicentre, randomised, double-blind, placebo-controlled, parallel-group, phase 2 pilot trial. Lancet Infect. Dis., 2021, 21(9), 1313-1323. doi: 10.1016/S1473-3099(20)30995-6 PMID: 33894131
  144. Jacobs, M.R.; Appelbaum, P.C. Nadifloxacin: A quinolone for topical treatment of skin infections and potential for systemic use of its active isomer, WCK 771. Expert Opin. Pharmacother., 2006, 7(14), 1957-1966. doi: 10.1517/14656566.7.14.1957 PMID: 17020421
  145. Lautre, C.; Sharma, S.; Sahu, J.K. Chemistry, biological properties and analytical methods of Levonadifloxacin:A review. Crit. Rev. Anal. Chem., 2020, 50, 1-9. PMID: 33307757
  146. Baliga, S.; Mamtora, D.K.; Gupta, V.; Shanmugam, P.; Biswas, S.; Mukherjee, D.N.; Shenoy, S. Assessment of antibacterial activity of levonadifloxacin against contemporary gram-positive clinical isolates collected from various Indian hospitals using disk-diffusion assay. Indian J. Med. Microbiol., 2020, 38(3-4), 307-312. doi: 10.4103/ijmm.IJMM_20_307 PMID: 33154240
  147. Veeraraghavan, B.; Bakthavatchalam, Y.D.; Manesh, A.; Lal, B.; Swaminathan, S.; Ansari, A.; Subbareddy, K.; Rangappa, P.; Choudhuri, A.H.; Nagvekar, V.; Mehta, Y.; Appalaraju, B.; Baveja, S.; Baliga, S.; Shenoy, S.; Bhardwaj, R.; Kongre, V.; Dattatraya, G.S.; Verma, B.; Mukherjee, D.N.; Gupta, S.; Shanmugam, P.; Iravane, J.; Mishra, S.R.; Barman, P.; Chopra, S.; Hariharan, M.; Surpam, R.; Pratap, R.; Turbadkar, D.; Taklikar, S. India-discovered levonadifloxacin & alalevonadifloxacin: A review on susceptibility testing methods, CLSI quality control and breakpoints along with a brief account of their emerging therapeutic profile as a novel standard-of-care. Indian J. Med. Microbiol., 2023, 41(3), 71-80. doi: 10.1016/j.ijmmb.2022.11.005 PMID: 36509611
  148. Rodvold, K.A.; Gotfried, M.H.; Chugh, R.; Gupta, M.; Yeole, R.; Patel, A.; Bhatia, A. Intrapulmonary pharmacokinetics of Levonadifloxacin following oral administration of Alalevonadifloxacin to healthy adult subjects. Antimicrob. Agents Chemother., 2018, 62(3), e02297-17. doi: 10.1128/AAC.02297-17 PMID: 29263070
  149. Jones, T.; Johnson, S.; DiMondi, V.P.; Wilson, D.T. Focus on JNJ-Q2, a novel fluoroquinolone, for the management of community-acquired bacterial pneumonia and acute bacterial skin and skin structure infections. Infect. Drug Resist., 2016, 9, 119-128. doi: 10.2147/IDR.S105620 PMID: 27354817
  150. Covington, P.; Davenport, J.M.; Andrae, D.; O’Riordan, W.; Liverman, L.; McIntyre, G.; Almenoff, J. Randomized, double-blind, phase II, multicenter study evaluating the safety/tolerability and efficacy of JNJ-Q2, a novel fluoroquinolone, compared with linezolid for treatment of acute bacterial skin and skin structure infection. Antimicrob. Agents Chemother., 2011, 55(12), 5790-5797. doi: 10.1128/AAC.05044-11 PMID: 21947389
  151. Chang, L-W.; Hsu, M-C.; Zhang, Y-Y. Nemonoxacin (Taigexyn®): A new non-fluorinated Quinolone. Staphylococcus and Streptococcus, 1st ed.; Elsevier: Amsterdam, 2019, pp. 1-95.
  152. Kocsis, B.; Domokos, J.; Szabo, D. Chemical structure and pharmacokinetics of novel quinolone agents represented by avarofloxacin, delafloxacin, finafloxacin, zabofloxacin and nemonoxacin. Ann. Clin. Microbiol. Antimicrob., 2016, 15(1), 34-42. doi: 10.1186/s12941-016-0150-4 PMID: 27215369
  153. Cheng, S.L.; Wu, R.G.; Chuang, Y.C.; Perng, W.C.; Tsao, S.M.; Chang, Y.T.; Chang, L.W.; Hsu, M.C. Integrated safety summary of phase II and III studies comparing oral nemonoxacin and levofloxacin in community-acquired pneumonia. J. Microbiol. Immunol. Infect., 2019, 52(5), 743-751. doi: 10.1016/j.jmii.2018.11.006 PMID: 30616912
  154. Lai, C.C.; Lee, K.Y.; Lin, S.W.; Chen, Y.H.; Kuo, H.Y.; Hung, C.C.; Hsueh, P.R. Nemonoxacin (TG-873870) for treatment of community-acquired pneumonia. Expert Rev. Anti Infect. Ther., 2014, 12(4), 401-417. doi: 10.1586/14787210.2014.894881 PMID: 24579813
  155. Adam, H.J.; Laing, N.M.; King, C.R.; Lulashnyk, B.; Hoban, D.J.; Zhanel, G.G. In vitro activity of nemonoxacin, a novel non fluorinated quinolone, against 2,440 clinical isolates. Antimicrob. Agents Chemother., 2009, 53(11), 4915-4920. doi: 10.1128/AAC.00078-09 PMID: 19738018
  156. Liu, Y.; Zhang, Y.; Wu, J.; Zhu, D.; Sun, S.; Zhao, L.; Wang, X.; Liu, H.; Ren, Z.; Wang, C.; Xiu, Q.; Xiao, Z.; Cao, Z.; Cui, S.; Yang, H.; Liang, Y.; Chen, P.; Lv, Y.; Hu, C.; Lv, X.; Liu, S.; Kuang, J.; Li, J.; Wang, D.; Chang, L. A randomized, double-blind, multicenter Phase II study comparing the efficacy and safety of oral nemonoxacin with oral levofloxacin in the treatment of community-acquired pneumonia. J. Microbiol. Immunol. Infect., 2017, 50(6), 811-820. doi: 10.1016/j.jmii.2015.09.005 PMID: 26748734
  157. Aoki, H.; Ke, L.; Poppe, S.M.; Poel, T.J.; Weaver, E.A.; Gadwood, R.C.; Thomas, R.C.; Shinabarger, D.L.; Ganoza, M.C. Oxazolidinone antibiotics target the P site on Escherichia coli ribosomes. Antimicrob. Agents Chemother., 2002, 46(4), 1080-1085. doi: 10.1128/AAC.46.4.1080-1085.2002 PMID: 11897593
  158. Cho, Y.S.; Lim, H.S.; Cho, Y.L.; Nam, H.S.; Bae, K.S. Multiple-dose safety, tolerability, pharmacokinetics, and pharmacodynamics of oral LCB01-0371 in healthy male volunteers. Clin. Ther., 2018, 40(12), 2050-2064. doi: 10.1016/j.clinthera.2018.10.007 PMID: 30420289
  159. Egorova, A.; Jackson, M.; Gavrilyuk, V.; Makarov, V. Pipeline of anti Mycobacterium abscessus small molecules: Repurposable drugs and promising novel chemical entities. Med. Res. Rev., 2021, 41(4), 2350-2387. doi: 10.1002/med.21798 PMID: 33645845
  160. Shetye, G.S.; Franzblau, S.G.; Cho, S. New tuberculosis drug targets, their inhibitors, and potential therapeutic impact. Transl. Res., 2020, 220(4), 68-97. doi: 10.1016/j.trsl.2020.03.007 PMID: 32275897
  161. Cho, Y.S.; Lim, H.S.; Han, S.; Yoon, S.K.; Kim, H.; Cho, Y.L.; Nam, H.S.; Bae, K.S. Single-dose intravenous safety, tolerability, and pharmacokinetics and absolute bioavailability of LCB01-0371. Clin. Ther., 2019, 41(1), 92-106. doi: 10.1016/j.clinthera.2018.11.009 PMID: 30559004
  162. Cho, Y.L.; Jang, J. Development of delpazolid for the treatment of tuberculosis. Appl. Sci. (Basel), 2020, 10(7), 2211. doi: 10.3390/app10072211
  163. Gao, X.; Zhao, W.; Huo, F.; Jiang, G.; Dong, L.; Zhao, L.; Wang, F.; Yu, X.; Huang, H. In vitro efficacy comparison of Linezolid, Tedizolid, Sutezolid and Delpazolid against rapid growing Mycobacteria isolated in Beijing, China. BioRxiv, 2020.
  164. Kaku, N.; Morinaga, Y.; Takeda, K.; Kosai, K.; Uno, N.; Hasegawa, H.; Miyazaki, T.; Izumikawa, K.; Mukae, H.; Yanagihara, K. Efficacy and pharmacokinetics of ME1100, a novel optimized formulation of arbekacin for inhalation, compared with amikacin in a murine model of ventilator-associated pneumonia caused by Pseudomonas aeruginosa. J. Antimicrob. Chemother., 2017, 72(4), 1123-1128. PMID: 27999047
  165. Bhagwat, S.S.; Nandanwar, M.; Kansagara, A.; Patel, A.; Takalkar, S.; Chavan, R.; Hariharan, P.; Yeole, R.; Deshpande, P.; Bhavsar, S.; Bhatia, A.; Ahdal, J.; Jain, R.; Patel, M. Levonadifloxacin, a novel broad-spectrum anti-MRSA benzoquinolizine quinolone agent: Review of current evidence. Drug Des. Devel. Ther., 2019, 13, 4351-4365. doi: 10.2147/DDDT.S229882 PMID: 31920285
  166. Wu, X.; Zhang, J.; Guo, B.; Zhang, Y.; Yu, J.; Cao, G.; Chen, Y.; Zhu, D.; Ye, X.; Wu, J.; Shi, Y.; Chang, L.; Chang, Y.; Tsai, C. Pharmacokinetics and pharmacodynamics of multiple-dose intravenous nemonoxacin in healthy Chinese volunteers. Antimicrob. Agents Chemother., 2015, 59(3), 1446-1454. doi: 10.1128/AAC.04039-14 PMID: 25534726
  167. Negash, K.; Andonian, C.; Felgate, C.; Chen, C.; Goljer, I.; Squillaci, B.; Nguyen, D.; Pirhalla, J.; Lev, M.; Schubert, E.; Tiffany, C.; Hossain, M.; Ho, M. The metabolism and disposition of GSK2140944 in healthy human subjects. Xenobiotica, 2016, 46(8), 683-702. doi: 10.3109/00498254.2015.1112933 PMID: 26586303
  168. Choi, Y.; Lee, S.W.; Kim, A.; Jang, K.; Nam, H.; Cho, Y.L.; Yu, K.S.; Jang, I.J.; Chung, J.Y. Safety, tolerability and pharmacokinetics of 21 day multiple oral administration of a new oxazolidinone antibiotic, LCB01-0371, in healthy male subjects. J. Antimicrob. Chemother., 2018, 73(1), 183-190. doi: 10.1093/jac/dkx367 PMID: 29069400
  169. Eckburg, P.B.; Ge, Y.; Hafkin, B. Single-and multiple-dose study to determine the safety, tolerability, pharmacokinetics, and food effect of oral MRX-I versus Linezolid in healthy adult subjects. Antimicrob. Agents Chemother., 2017, 61(4), e02181-16. doi: 10.1128/AAC.02181-16 PMID: 28167545
  170. Yang, D.; Chen, L.; Lai, L.; Ren, M.; Zhang, G.; Pan, Z.; Fang, B. Research on pharmacokinetics and bioavailability of pleuromutilin derivative BC-7013 in chickens. Zhongguo Nongye Daxue Xuebao, 2015, 36(4), 26-31.
  171. Zeitlinger, M.; Schwameis, R.; Burian, A.; Burian, B.; Matzneller, P.; Müller, M.; Wicha, W.W.; Strickmann, D.B.; Prince, W. Simultaneous assessment of the pharmacokinetics of a pleuromutilin, lefamulin, in plasma, soft tissues and pulmonary epithelial lining fluid. J. Antimicrob. Chemother., 2016, 71(4), 1022-1026. doi: 10.1093/jac/dkv442 PMID: 26747098
  172. Schmitt-Hoffmann, A.; Roos, B.; Schleimer, M.; Sauer, J.; Man, A.; Nashed, N.; Brown, T.; Perez, A.; Weidekamm, E.; Kovács, P. Single-dose pharmacokinetics and safety of a novel broad-spectrum cephalosporin (BAL5788) in healthy volunteers. Antimicrob. Agents Chemother., 2004, 48(7), 2570-2575. doi: 10.1128/AAC.48.7.2570-2575.2004 PMID: 15215110
  173. Stryjewski, M.E.; Potgieter, P.D.; Li, Y.P.; Barriere, S.L.; Churukian, A.; Kingsley, J.; Corey, G.R. TD-1792 versus vancomycin for treatment of complicated skin and skin structure infections. Antimicrob. Agents Chemother., 2012, 56(11), 5476-5483. doi: 10.1128/AAC.00712-12 PMID: 22869571
  174. Kaplan, N.; Hafkin, B. 2014. Preclinical pharmacokinetics and efficacy of Debio 1450 (Previously AFN-1720), a prodrug of the Staphylococcocal-specific Antibiotic Debio 1452 (Previously AFN-1252). In: 24th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID). 2014.
  175. Morgan, A.; Cofer, C.; Stevens, D.L. Iclaprim: A novel dihydrofolate reductase inhibitor for skin and soft tissue infections. Future Microbiol., 2009, 4(2), 131-144. doi: 10.2217/17460913.4.2.131 PMID: 19257839
  176. Weiss, W.; Pulse, M.; Nguyen, P.; Ma, Z. In vivo efficacy of dual-action molecule TNP-2092 in mouse H. pylori infection model as compared to triple therapies and distribution within the gastric mucosal layer. In: American Society of Microbiology General Meeting, Poster. 2016, pp. 460
  177. Zhou, C.; Lehar, S.; Gutierrez, J.; Rosenberger, C.M.; Ljumanovic, N.; Dinoso, J.; Koppada, N.; Hong, K.; Baruch, A.; Carrasco-Triguero, M.; Saad, O.; Mariathasan, S.; Kamath, A.V. Pharmacokinetics and pharmacodynamics of DSTA4637A: A novel THIOMAB™ antibody antibiotic conjugate against Staphylococcus aureus in mice. MAbs, 2016, 8(8), 1612-1619. doi: 10.1080/19420862.2016.1229722 PMID: 27653831
  178. Still, J.G.; Clark, K.; Degenhardt, T.P.; Scott, D.; Fernandes, P.; Gutierrez, M.J. Pharmacokinetics and safety of single, multiple, and loading doses of fusidic acid in healthy subjects. Clin. Infect. Dis., 2011, 52(7)(Suppl. 7), S504-S512. doi: 10.1093/cid/cir174 PMID: 21546627
  179. Pankuch, G.A.; Hoellman, D.; Bryskier, A.; Lowther, J.; Appelbaum, P.C. Effects of various media on the activity of NXL103 (formerly XRP 2868), a new oral streptogramin, against Haemophilus influenzae. Antimicrob. Agents Chemother., 2006, 50(11), 3914-3916. doi: 10.1128/AAC.00587-06 PMID: 17065630
  180. Andes, D.; Craig, W.A. Pharmacodynamics of a new streptogramin, XRP 2868, in murine thigh and lung infection models. Antimicrob. Agents Chemother., 2006, 50(1), 243-249. doi: 10.1128/AAC.50.1.243-249.2006 PMID: 16377693
  181. Naderer, O.J.; Jones, L.S.; Zhu, J.; Kurtinecz, M.; Dumont, E. Safety, tolerability, and pharmacokinetics of oral and intravenous administration of GSK1322322, a peptide deformylase inhibitor. J. Clin. Pharmacol., 2013, 53(11), 1168-1176. doi: 10.1002/jcph.150 PMID: 23907665
  182. Cassino, C.; Murphy, M.; Boyle, J.; Rotolo, J.; Wittekind, M. Results of the first in human study of lysin CF-301 evaluating the safety, tolerability and pharmacokinetic profile in healthy volunteers proceedings of the 26th European congress of clinical microbiology and infectious diseases, Amsterdam, The Netherlands, 2016. doi: 10.26226/morressier.56ebbf52d462b80296c97eca
  183. Jun, S.Y.; Jang, I.J.; Yoon, S.; Jang, K.; Yu, K.S.; Cho, J.Y.; Seong, M.W.; Jung, G.M.; Yoon, S.J.; Kang, S.H. Pharmacokinetics and tolerance of the phage endolysin-based candidate drug SAL200 after a single intravenous administration among healthy volunteers. Antimicrob. Agents Chemother., 2017, 61(6), e02629-16. doi: 10.1128/AAC.02629-16 PMID: 28348152
  184. Hariharan, S.; Keelara, S.; Paul, V.D.; Sriram, B.; Vipra, A.A.; Balganesh, T. Phage therapy—bacteriophage and phage-derived products as anti-infective drugs. Drug discovery targeting drug-resistant bacteria, 1st ed.; Elsevier: Amsterdam, 2020, pp. 301-359.
  185. Rupp, M.E.; Stecher, M.; Mckinnon, J.; Jung, N.; Huynh, T. Pharmacokinetics of a novel monoclonal antibody targeting Staphylococcal Protein A in patients hospitalized with S. aureus bacteremia. Open Forum Infect. Dis., 2016, 3(1)(Suppl. 1), 1985. doi: 10.1093/ofid/ofw172.1533
  186. François, B.; Mercier, E.; Gonzalez, C.; Asehnoune, K.; Nseir, S.; Fiancette, M.; Desachy, A.; Plantefève, G.; Meziani, F.; de Lame, P.A.; Laterre, P.F. Safety and tolerability of a single administration of AR-301, a human monoclonal antibody, in ICU patients with severe pneumonia caused by Staphylococcus aureus: First-in-human trial. Intensive Care Med., 2018, 44(11), 1787-1796. doi: 10.1007/s00134-018-5229-2 PMID: 30343314
  187. Yu, X-Q.; Robbie, G.J.; Wu, Y.; Esser, M.T.; Jensen, K.; Schwartz, H.I.; Bellamy, T.; Hernandez-Illas, M.; Jafri, H.S. Safety, tolerability, and pharmacokinetics of MEDI4893, an investigational, extended-half-life, anti-Staphylococcus aureus alpha-toxin human monoclonal antibody, in healthy adults. Antimicrob. Agents Chemother., 2016, 61(1), 1020-1036. PMID: 27795368
  188. Reddy, D.S.; Sinha, A.; Kumar, A.; Saini, V.K. Drug re-engineering and repurposing: A significant and rapid approach to tuberculosis drug discovery. Arch. Pharm. (Weinheim), 2022, 355(11), 2200214. doi: 10.1002/ardp.202200214 PMID: 35841594
  189. Bae, I.G.; Tonthat, G.T.; Stryjewski, M.E.; Rude, T.H.; Reilly, L.F.; Barriere, S.L.; Genter, F.C.; Corey, G.R.; Fowler, V.G., Jr Presence of genes encoding the panton-valentine leukocidin exotoxin is not the primary determinant of outcome in patients with complicated skin and skin structure infections due to methicillin-resistant Staphylococcus aureus: Results of a multinational trial. J. Clin. Microbiol., 2009, 47(12), 3952-3957. doi: 10.1128/JCM.01643-09 PMID: 19846653
  190. Wang, W.; Voss, K.M.; Liu, J.; Gordeev, M.F. Nonclinical evaluation of antibacterial oxazolidinones Contezolid and Contezolid Acefosamil with low serotonergic neurotoxicity. Chem. Res. Toxicol., 2021, 34(5), 1348-1354. doi: 10.1021/acs.chemrestox.0c00524 PMID: 33913699
  191. Wu, J.; Cao, G.; Wu, H.; Chen, Y.; Guo, B.; Wu, X.; Yu, J.; Ni, K.; Qian, J.; Wang, L.; Wu, J.; Wang, Y.; Yuan, H.; Zhang, J.; Xi, Y. Evaluation of the effect of Contezolid (MRX-I) on the corrected QT interval in a randomized, double-blind, placebo-and positive-controlled crossover study in healthy Chinese volunteers. Antimicrob. Agents Chemother., 2020, 64(6), e02158-19. doi: 10.1128/AAC.02158-19 PMID: 32229495
  192. Michalska, K.; Gruba, E.; Bocian, W.; Cielecka-Piontek, J. Enantioselective recognition of radezolid by cyclodextrin modified capillary electrokinetic chromatography and electronic circular dichroism. J. Pharm. Biomed. Anal., 2017, 139, 98-108. doi: 10.1016/j.jpba.2017.01.041 PMID: 28279932
  193. Kaur, M.; Rai, J.; Randhawa, G.K. Recent advances in antibacterial drugs. Int. J. Appl. Basic Med. Res., 2013, 3(1), 3-10. doi: 10.4103/2229-516X.112229 PMID: 23776832
  194. Silverberg, N.; Block, S. Uncomplicated skin and skin structure infections in children: Diagnosis and current treatment options in the United States. Clin. Pediatr. (Phila.), 2008, 47(3), 211-219. doi: 10.1177/0009922807307186 PMID: 18354031
  195. Eyal, Z.; Matzov, D.; Krupkin, M.; Paukner, S.; Riedl, R.; Rozenberg, H.; Zimmerman, E.; Bashan, A.; Yonath, A. A novel pleuromutilin antibacterial compound, its binding mode and selectivity mechanism. Sci. Rep., 2016, 6(1), 39004. doi: 10.1038/srep39004 PMID: 27958389
  196. Goethe, O.; Heuer, A.; Ma, X.; Wang, Z.; Herzon, S.B. Antibacterial properties and clinical potential of pleuromutilins. Nat. Prod. Rep., 2019, 36(1), 220-247. doi: 10.1039/C8NP00042E PMID: 29979463
  197. Yi, Y.; Fu, Y.; Dong, P.; Qin, W.; Liu, Y.; Liang, J.; Shang, R. Synthesis and biological activity evaluation of novel heterocyclic pleuromutilin derivatives. Molecules, 2017, 22(6), 996. doi: 10.3390/molecules22060996 PMID: 28617344
  198. Li, Y.G.; Wang, J.X.; Zhang, G.N.; Zhu, M.; You, X.F.; Wang, Y.C.; Zhang, F. Design, synthesis, and biological activity evaluation of a series of pleuromutilin derivatives with novel C14 side chains. Bioorg. Med. Chem. Lett., 2020, 30(7), 126969. doi: 10.1016/j.bmcl.2020.126969 PMID: 32014384
  199. Veve, M.P.; Wagner, J.L. Lefamulin: Review of a promising novel pleuromutilin antibiotic. Pharmacotherapy, 2018, 38(9), 935-946. doi: 10.1002/phar.2166 PMID: 30019769
  200. Mercuro, N.J.; Veve, M.P. Clinical utility of Lefamulin: If not now, when? Curr. Infect. Dis. Rep., 2020, 22(9), 25. doi: 10.1007/s11908-020-00732-z PMID: 32834786
  201. Zhanel, G.G.; Deng, C.; Zelenitsky, S.; Lawrence, C.K.; Adam, H.J.; Golden, A.; Berry, L.; Schweizer, F.; Zhanel, M.A.; Irfan, N.; Bay, D.; Lagacé-Wiens, P.; Walkty, A.; Mandell, L.; Lynch, J.P., III; Karlowsky, J.A. Lefamulin: A novel oral and intravenous pleuromutilin for the treatment of community-acquired bacterial pneumonia. Drugs, 2021, 81(2), 233-256. doi: 10.1007/s40265-020-01443-4 PMID: 33247830
  202. Koulenti, D.; Xu, E.; Yin Sum Mok, I.; Song, A.; Karageorgopoulos, D.E.; Armaganidis, A.; Lipman, J.; Tsiodras, S. Novel antibiotics for multidrug-resistant gram-positive microorganisms. Microorganisms, 2019, 7(10), 386-390. doi: 10.3390/microorganisms7100386 PMID: 31554342
  203. Anderson, S.D.; Gums, J.G. Ceftobiprole: An extended-spectrum anti-methicillin-resistant Staphylococcus aureus cephalosporin. Ann. Pharmacother., 2008, 42(6), 806-816. doi: 10.1345/aph.1L016 PMID: 18477729
  204. Zhanel, G.G.; Lam, A.; Schweizer, F.; Thomson, K.; Walkty, A.; Rubinstein, E.; Gin, A.S.; Hoban, D.J.; Noreddin, A.M.; Karlowsky, J.A. Ceftobiprole. A review of a broad spectrum and anti-MRSA cephalosporin. Am. J. Clin. Dermatol., 2008, 9(4), 245-254. doi: 10.2165/00128071-200809040-00004 PMID: 18572975
  205. Noel, G.J.; Strauss, R.S.; Amsler, K.; Heep, M.; Pypstra, R.; Solomkin, J.S. Treatment of complicated skin and skin structure infections caused by gram-positive bacteria with Ceftobiprole: Results of a double-blind, randomized trial. Antimicrob. Agents Chemother., 2007, 52, 37-44. doi: 10.1128/AAC.00551-07 PMID: 17954698
  206. Noel, G.J.; Bush, K.; Bagchi, P.; Ianus, J.; Strauss, R.S. A randomized, double-blind trial comparing ceftobiprole medocaril with vancomycin plus ceftazidime for the treatment of patients with complicated skin and skin-structure infections. Clin. Infect. Dis., 2008, 46(5), 647-655. doi: 10.1086/526527 PMID: 18225981
  207. Bhavnani, S.M.; Hammel, J.P.; Lakota, E.A.; Safir, M.C.; VanScoy, B.D.; Nagira, Y.; Rubino, C.M.; Sato, N.; Koresawa, T.; Kondo, K.; Ambrose, P.G. Pharmacokinetic-pharmacodynamic target attainment analyses to support dose selection for ME1100, an Arbekacin inhalation solution. Antimicrob. Agents Chemother., 2020, 64(10), e02367-19. doi: 10.1128/AAC.02367-19 PMID: 32661000
  208. Chavan, R.; Zope, V.; Chavan, N.; Shaikh, J.; Patil, K.; Yeole, R.; Bhagwat, S.; Patel, M. Assessment of in vitro inhibitory effects of novel anti MRSA benzoquinolizine fluoroquinolone WCK 771 (levonadifloxacin) and its metabolite on human liver cytochrome P450 enzymes. Xenobiotica, 2020, 50(10), 1149-1157. doi: 10.1080/00498254.2020.1756007 PMID: 32283993
  209. Mason, J.W.; Chugh, R.; Patel, A.; Gutte, R.; Bhatia, A. Electrocardiographic effects of a supratherapeutic dose of WCK 2349, a benzoquinolizine fluoroquinolone. Clin. Transl. Sci., 2019, 12(1), 47-52. doi: 10.1111/cts.12594 PMID: 30369076
  210. Yuan, J.; Mo, B.; Ma, Z.; Lv, Y.; Cheng, S.L.; Yang, Y.; Tong, Z.; Wu, R.; Sun, S.; Cao, Z.; Wu, J.; Zhu, D.; Chang, L.; Zhang, Y.; Zhao, L.; Wang, X.; Wang, X.; Wang, D.; Li, X.; Peng, Y.; Liang, Y.; Liu, H.; Xiao, Z.; Lv, X.; Wu, S.; Dai, Y.; Huang, Y.; Hu, Z.; Qiu, C.; Li, X.; Zhang, S.; Li, W.; Liu, S.; Shi, Y.; Xiong, C.; Kuang, J.; Xiu, Q.; Cui, S.; Li, J.; Lin, Q.; Huang, W.; Wan, Y.; Qimanguli; Shen, C.; Xiao, Y.; Wu, X.; Chuang, Y.C.; Perng, W.C.; Tsao, S-M.; Hsu, J-Y.; Wang, C-C.; Wang, J-H.; Yeh, P-F.; Lin, H-H.; Kuo, P.H.; Lin, M-S.; Su, W-J. Safety and efficacy of oral nemonoxacin versus levofloxacin in treatment of community-acquired pneumonia: A phase 3, multicenter, randomized, double-blind, double-dummy, active-controlled, non-inferiority trial. J. Microbiol. Immunol. Infect., 2019, 52(1), 35-44. doi: 10.1016/j.jmii.2017.07.011 PMID: 30181096
  211. Wu, J.; Wu, H.; Wang, Y.; Chen, Y.; Guo, B.; Cao, G.; Wu, X.; Yu, J.; Wu, J.; Zhu, D.; Guo, Y.; Yuan, H.; Hu, F.; Zhang, J. Tolerability and pharmacokinetics of Contezolid at therapeutic and supratherapeutic doses in healthy Chinese subjects, and assessment of Contezolid dosing regimens based on pharmacokinetic/pharmacodynamic analysis. Clin. Ther., 2019, 41(6), 1164-1174.e4. doi: 10.1016/j.clinthera.2019.04.025 PMID: 31126694
  212. Bassetti, M.; Righi, E. Safety profiles of old and new antimicrobials for the treatment of MRSA infections. Expert Opin. Drug Saf., 2016, 15(4), 467-481. doi: 10.1517/14740338.2016.1142528 PMID: 26764972
  213. Goldberg, L.; Das, A. Efficacy and safety of iv-to-oral lefamulin, a pleuromutilin antibiotic, for treatment of communityacquired bacterial pneumonia: The phase 3 LEAP 1 Trial. Clin. Infect. Dis., 2019, 69, 1856-1867. doi: 10.1093/cid/ciz090 PMID: 30722059
  214. Overcash, J.S.; Kim, C.; Keech, R.; Gumenchuk, I.; Ninov, B.; Gonzalez-Rojas, Y.; Waters, M.; Simeonov, S.; Engelhardt, M.; Saulay, M.; Ionescu, D.; Smart, J.I.; Jones, M.E.; Hamed, K.A. Ceftobiprole compared with Vancomycin plus Aztreonam in the treatment of acute bacterial skin and skin structure infections: Results of a Phase 3, randomized, double-blind trial (TARGET). Clin. Infect. Dis., 2021, 73(7), e1507-e1517. doi: 10.1093/cid/ciaa974 PMID: 32897367
  215. Schiebel, J.; Chang, A.; Shah, S.; Lu, Y.; Liu, L.; Pan, P.; Hirschbeck, M.W.; Tareilus, M.; Eltschkner, S.; Yu, W.; Cummings, J.E.; Knudson, S.E.; Bommineni, G.R.; Walker, S.G.; Slayden, R.A.; Sotriffer, C.A.; Tonge, P.J.; Kisker, C. Rational design of broad spectrum antibacterial activity based on a clinically relevant enoyl-acyl carrier protein (ACP) reductase inhibitor. J. Biol. Chem., 2014, 289(23), 15987-16005. doi: 10.1074/jbc.M113.532804 PMID: 24739388
  216. Wittke, F.; Vincent, C.; Chen, J.; Heller, B.; Kabler, H.; Overcash, J.S.; Leylavergne, F.; Dieppois, G. Afabicin, a first-in-class anti-staphylococcal antibiotic, in the treatment of acute bacterial skin and skin structure infections: Clinical non-inferiority to vancomycin/linezolid. Antimicrob. Agents Chemother., 2020, 64(10), e00250-20. doi: 10.1128/AAC.00250-20 PMID: 32747361
  217. Yendewa, G.A.; Griffiss, J.M.; Jacobs, M.R.; Fulton, S.A.; O’Riordan, M.A.; Gray, W.A.; Proskin, H.M.; Winkle, P.; Salata, R.A. A two-part phase 1 study to establish and compare the safety and local tolerability of two nasal formulations of XF-73 for decolonisation of Staphylococcus aureus: A previously investigated 0.5 mg/g viscosified gel formulation versus a modified formulation. J. Glob. Antimicrob. Resist., 2020, 21, 171-180. doi: 10.1016/j.jgar.2019.09.017 PMID: 31600598
  218. Krievins, D.; Brandt, R.; Hawser, S.; Hadvary, P.; Islam, K. Multicenter, randomized study of the efficacy and safety of intravenous iclaprim in complicated skin and skin structure infections. Antimicrob. Agents Chemother., 2009, 53(7), 2834-2840. doi: 10.1128/AAC.01383-08 PMID: 19414572
  219. TAXIS. Our Pipeline. 2022. Available From: https://www.taxispharma.com/research development/our-pipeline/
  220. Huynh, T.; Stecher, M.; Mckinnon, J.; Jung, N.; Rupp, M.E. Safety and tolerability of 514G3, a true human anti-protein a monoclonal antibody for the treatment of S. aureus bacteremia. Open Forum Infect. Dis., 2016, 3(1)(Suppl. 1), 1354. doi: 10.1093/ofid/ofw172.1057
  221. Schneider, T.; Müller, A.; Miess, H.; Gross, H. Cyclic lipopeptides as antibacterial agents – Potent antibiotic activity mediated by intriguing mode of actions. Int. J. Med. Microbiol., 2014, 304(1), 37-43. doi: 10.1016/j.ijmm.2013.08.009 PMID: 24119568
  222. Chen, X.; Li, S.; Yu, L.; Miller, A.; Du, L. Systematic optimization for production of the anti- MRSA antibiotics WAP -8294A in an engineered strain of Lysobacter enzymogenes. Microb. Biotechnol., 2019, 12(6), 1430-1440. doi: 10.1111/1751-7915.13484 PMID: 31520522
  223. Butler, M.S.; Cooper, M.A. Antibiotics in the clinical pipeline in 2011. J. Antibiot. (Tokyo), 2011, 64(6), 413-425. doi: 10.1038/ja.2011.44 PMID: 21587262
  224. Moir, D.T.; Opperman, T.J.; Butler, M.M.; Bowlin, T.L. New classes of antibiotics. Curr. Opin. Pharmacol., 2012, 12(5), 535-544. doi: 10.1016/j.coph.2012.07.004 PMID: 22841284
  225. Farrell, D.J.; Robbins, M.; Rhys-Williams, W.; Love, W.G. In vitro activity of XF-73, a novel antibacterial agent, against antibiotic-sensitive and -resistant gram-positive and gram-negative bacterial species. Int. J. Antimicrob. Agents, 2010, 35(6), 531-536. doi: 10.1016/j.ijantimicag.2010.02.008 PMID: 20346634
  226. Sakr, A.; Brégeon, F.; Rolain, J.M.; Blin, O. Staphylococcus aureus nasal decolonization strategies: A review. Expert Rev. Anti Infect. Ther., 2019, 17(5), 327-340. doi: 10.1080/14787210.2019.1604220 PMID: 31012332
  227. Laue, H.; Weiss, L.; Bernardi, A.; Hawser, S.; Lociuro, S.; Islam, K. In vitro activity of the novel diaminopyrimidine, iclaprim, in combination with folate inhibitors and other antimicrobials with different mechanisms of action. J. Antimicrob. Chemother., 2007, 60(6), 1391-1394. doi: 10.1093/jac/dkm409 PMID: 17962215
  228. Kohlhoff, S.A.; Sharma, R. Iclaprim. Expert Opin. Investig. Drugs, 2007, 16(9), 1441-1448. doi: 10.1517/13543784.16.9.1441 PMID: 17714029
  229. Sincak, C.A.; Schmidt, J.M. Iclaprim, a novel diaminopyrimidine for the treatment of resistant gram-positive infections. Ann. Pharmacother., 2009, 43(6), 1107-1114. doi: 10.1345/aph.1L167 PMID: 19435963
  230. Ma, Z.; Lynch, A.S. Development of a dual-acting antibacterial agent (TNP-2092) for the treatment of persistent bacterial infections. J. Med. Chem., 2016, 59(14), 6645-6657. doi: 10.1021/acs.jmedchem.6b00485 PMID: 27336583
  231. Nazli, A.; He, D.; Xu, H.; Wang, Z-P.; He, Y. A comparative insight on the newly emerging rifamycins: Rifametane, Rifalazil, TNP-2092 and TNP-2198. Curr. Med. Chem., 2021, 28, 1-30. PMID: 34365945
  232. Park, H.S.; Yoon, Y.M.; Jung, S.J.; Kim, C.M.; Kim, J.M.; Kwak, J.H. Antistaphylococcal activities of CG400549, a new bacterial enoyl-acyl carrier protein reductase (FabI) inhibitor. J. Antimicrob. Chemother., 2007, 60(3), 568-574. doi: 10.1093/jac/dkm236 PMID: 17606482
  233. You, I.; Kariyama, R.; Zervos, M.J.; Kumon, H.; Chow, J.W. In-vitro activity of arbekacin alone and in combination with vancomycin against gentamicin- and methicillin-resistant Staphylococcus aureus. Diagn. Microbiol. Infect. Dis., 2000, 36(1), 37-41. doi: 10.1016/S0732-8893(99)00104-2 PMID: 10744365
  234. Patel, M.V.; De Souza, N.J.; Gupte, S.V.; Jafri, M.A.; Bhagwat, S.S.; Chugh, Y.; Khorakiwala, H.F.; Jacobs, M.R.; Appelbaum, P.C. Antistaphylococcal activity of WCK 771, a tricyclic fluoroquinolone, in animal infection models. Antimicrob. Agents Chemother., 2004, 48(12), 4754-4761. doi: 10.1128/AAC.48.12.4754-4761.2004 PMID: 15561853
  235. Farrell, D.J.; Liverman, L.C.; Biedenbach, D.J.; Jones, R.N. JNJ-Q2, a new fluoroquinolone with potent In vitro activity against Staphylococcus aureus, including methicillin- and fluoroquinolone-resistant strains. Antimicrob. Agents Chemother., 2011, 55(7), 3631-3634. doi: 10.1128/AAC.00162-11 PMID: 21555765
  236. Farrell, D.J.; Robbins, M.; Rhys-Williams, W.; Love, W.G. Investigation of the potential for mutational resistance to XF-73, retapamulin, mupirocin, fusidic acid, daptomycin, and vancomycin in methicillin-resistant Staphylococcus aureus isolates during a 55-passage study. Antimicrob. Agents Chemother., 2011, 55(3), 1177-1181. doi: 10.1128/AAC.01285-10 PMID: 21149626
  237. Remy, J.M.; Tow-Keogh, C.A.; McConnell, T.S.; Dalton, J.M.; DeVito, J.A. Activity of delafloxacin against methicillin-resistant Staphylococcus aureus: Resistance selection and characterization. J. Antimicrob. Chemother., 2012, 67(12), 2814-2820. doi: 10.1093/jac/dks307 PMID: 22875850
  238. Noviello, S.; Huang, D.B.; Corey, G.R. Iclaprim: A differentiated option for the treatment of skin and skin structure infections. Expert Rev. Anti Infect. Ther., 2018, 16(11), 793-803. doi: 10.1080/14787210.2018.1536545 PMID: 30317894
  239. Li, Z.; Liu, Y.; Wang, R.; Li, A. Antibacterial activities of nemonoxacin against clinical isolates of Staphylococcus aureus: An in vitro comparison with three fluoroquinolones. World J. Microbiol. Biotechnol., 2014, 30(11), 2927-2932. doi: 10.1007/s11274-014-1720-2 PMID: 25129332
  240. Flamm, R.K.; Farrell, D.J.; Rhomberg, P.R.; Scangarella-Oman, N.E.; Sader, H.S. Gepotidacin (GSK2140944) In vitro activity against gram-positive and gram-negative bacteria. Antimicrob. Agents Chemother., 2017, 61(7), e00468-17. doi: 10.1128/AAC.00468-17 PMID: 28483959
  241. McGhee, P.; Clark, C.; Credito, K.; Beachel, L.; Pankuch, G.A.; Appelbaum, P.C.; Kosowska-Shick, K. In vitro activity of fusidic acid (CEM-102, sodium fusidate) against Staphylococcus aureus isolates from cystic fibrosis patients and its effect on the activities of tobramycin and amikacin against Pseudomonas aeruginosa and Burkholderia cepacia. Antimicrob. Agents Chemother., 2011, 55(5), 2417-2419. doi: 10.1128/AAC.01672-10 PMID: 21343445
  242. Sader, H.; Rhomberg, P.; Duncan, L.; Flamm, R. In vitro activity and potency of the novel oxazolidinone MRX-I tested against contemporary clinical isolates of Gram-positive bacteria. American Society for Microbiology (ASM Microbe), 2017.
  243. Lawrence, L.; Danese, P.; DeVito, J.; Franceschi, F.; Sutcliffe, J. In vitro activities of the Rx-01 oxazolidinones against hospital and community pathogens. Antimicrob. Agents Chemother., 2008, 52(5), 1653-1662. doi: 10.1128/AAC.01383-07 PMID: 18316525
  244. O’Dwyer, K.; Hackel, M.; Hightower, S.; Hoban, D.; Bouchillon, S.; Qin, D.; Aubart, K.; Zalacain, M.; Butler, D. Comparative analysis of the antibacterial activity of a novel peptide deformylase inhibitor, GSK1322322. Antimicrob. Agents Chemother., 2013, 57(5), 2333-2342. doi: 10.1128/AAC.02566-12 PMID: 23478958
  245. Heidtmann, C.V.; Voukia, F.; Hansen, L.N.; Sørensen, S.H.; Urlund, B.; Nielsen, S.; Pedersen, M.; Kelawi, N.; Andersen, B.N.; Pedersen, M.; Reinholdt, P.; Kongsted, J.; Nielsen, C.U.; Klitgaard, J.K.; Nielsen, P. Discovery of a potent adenine–benzyltriazolo–pleuromutilin conjugate with pronounced antibacterial activity against MRSA. J. Med. Chem., 2020, 63(24), 15693-15708. doi: 10.1021/acs.jmedchem.0c01328 PMID: 33325700
  246. Sader, H.S.; Biedenbach, D.J.; Paukner, S.; Ivezic-Schoenfeld, Z.; Jones, R.N. Antimicrobial activity of the investigational pleuromutilin compound BC-3781 tested against Gram-positive organisms commonly associated with acute bacterial skin and skin structure infections. Antimicrob. Agents Chemother., 2012, 56(3), 1619-1623. doi: 10.1128/AAC.05789-11 PMID: 22232289
  247. Nair, S.; Desai, S.; Poonacha, N.; Vipra, A.; Sharma, U. Antibiofilm activity and synergistic inhibition of Staphylococcus aureus biofilms by bactericidal protein P128 in combination with antibiotics. Antimicrob. Agents Chemother., 2016, 60(12), 7280-7289. doi: 10.1128/AAC.01118-16 PMID: 27671070
  248. Iqbal, Z.; Seleem, M.N.; Hussain, H.I.; Huang, L.; Hao, H.; Yuan, Z. Comparative virulence studies and transcriptome analysis of Staphylococcus aureus strains isolated from animals. Sci. Rep., 2016, 6(1), 35442. doi: 10.1038/srep35442 PMID: 27739497
  249. Giacobbe, D.R.; Labate, L.; Vena, A.; Bassetti, M. Potential role of new-generation antibiotics in acute bacterial skin and skin structure infections. Curr. Opin. Infect. Dis., 2021, 34(2), 109-117. doi: 10.1097/QCO.0000000000000708 PMID: 33395093
  250. Temme, J.S.; Butler, D.L.; Gildersleeve, J.C. Anti-glycan antibodies: Roles in human disease. Biochem. J., 2021, 478(8), 1485-1509. doi: 10.1042/BCJ20200610 PMID: 33881487
  251. Lehar, S.M.; Pillow, T.; Xu, M.; Staben, L.; Kajihara, K.K.; Vandlen, R.; DePalatis, L.; Raab, H.; Hazenbos, W.L.; Hiroshi Morisaki, J.; Kim, J.; Park, S.; Darwish, M.; Lee, B.C.; Hernandez, H.; Loyet, K.M.; Lupardus, P.; Fong, R.; Yan, D.; Chalouni, C.; Luis, E.; Khalfin, Y.; Plise, E.; Cheong, J.; Lyssikatos, J.P.; Strandh, M.; Koefoed, K.; Andersen, P.S.; Flygare, J.A.; Wah Tan, M.; Brown, E.J.; Mariathasan, S. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature, 2015, 527(7578), 323-328. doi: 10.1038/nature16057 PMID: 26536114
  252. Staben, L.R.; Koenig, S.G.; Lehar, S.M.; Vandlen, R.; Zhang, D.; Chuh, J.; Yu, S.F.; Ng, C.; Guo, J.; Liu, Y.; Fourie-O’Donohue, A.; Go, M.; Linghu, X.; Segraves, N.L.; Wang, T.; Chen, J.; Wei, B.; Phillips, G.D.L.; Xu, K.; Kozak, K.R.; Mariathasan, S.; Flygare, J.A.; Pillow, T.H. Targeted drug delivery through the traceless release of tertiary and heteroaryl amines from antibody–drug conjugates. Nat. Chem., 2016, 8(12), 1112-1119. doi: 10.1038/nchem.2635 PMID: 27874860
  253. Panchal, G.; Pandit, R.; Trailokya, A.; Sharma, A. Arbekacin-a novel antibiotic for critical infections. J. Assoc. Physicians India, 2019, 67(7), 93-97. PMID: 31559785
  254. Singh, S.B.; Kaelin, D.E.; Wu, J.; Miesel, L.; Tan, C.M.; Meinke, P.T.; Olsen, D.B.; Lagrutta, A.; Wei, C.; Liao, Y.; Peng, X.; Wang, X.; Fukuda, H.; Kishii, R.; Takei, M.; Yajima, M.; Shibue, T.; Shibata, T.; Ohata, K.; Nishimura, A.; Fukuda, Y. Structure activity relationship of pyridoxazinone substituted RHS analogs of oxabicyclooctane-linked 1,5-naphthyridinyl novel bacterial topoisomerase inhibitors as broad-spectrum antibacterial agents (Part-6). Bioorg. Med. Chem. Lett., 2015, 25(17), 3636-3643. doi: 10.1016/j.bmcl.2015.06.057 PMID: 26141771
  255. Shang, R.; Liu, Y.; Xin, Z.; Guo, W.; Guo, Z.; Hao, B.; Jianping, L. Synthesis and antibacterial evaluation of novel pleuromutilin derivatives. Eur. J. Med. Chem., 2013, 63, 231-238. doi: 10.1016/j.ejmech.2013.01.048 PMID: 23501109
  256. Scheeren, T.W.L. Ceftobiprole medocaril in the treatment of hospital-acquired pneumonia. Future Microbiol., 2015, 10(12), 1913-1928. doi: 10.2217/fmb.15.115 PMID: 26573022
  257. Yum, J.H.; Kim, C.K.; Yong, D.; Lee, K.; Chong, Y.; Kim, C.M.; Kim, J.M.; Ro, S.; Cho, J.M. In vitro activities of CG400549, a novel FabI inhibitor, against recently isolated clinical staphylococcal strains in Korea. Antimicrob. Agents Chemother., 2007, 51(7), 2591-2593. doi: 10.1128/AAC.01562-06 PMID: 17420210
  258. Rautio, J.; Kärkkäinen, J.; Sloan, K.B. Prodrugs – Recent approvals and a glimpse of the pipeline. Eur. J. Pharm. Sci., 2017, 109, 146-161. doi: 10.1016/j.ejps.2017.08.002 PMID: 28782609
  259. Ross, J.E.; Flamm, R.K.; Jones, R.N. Initial broth microdilution quality control guidelines for Debio 1452, a FabI inhibitor antimicrobial agent. Antimicrob. Agents Chemother., 2015, 59(11), 7151-7152. doi: 10.1128/AAC.01690-15 PMID: 26324261
  260. Schneider, P.; Hawser, S.; Islam, K. Iclaprim, a novel diaminopyrimidine with potent activity on trimethoprim sensitive and resistant bacteria. Bioorg. Med. Chem. Lett., 2003, 13(23), 4217-4221. doi: 10.1016/j.bmcl.2003.07.023 PMID: 14623005
  261. Surur, A.S.; Sun, D. Macrocycle-antibiotic hybrids: A path to clinical candidates. Front Chem., 2021, 9, 659845. doi: 10.3389/fchem.2021.659845 PMID: 33996753
  262. De Rosa, M.; Verdino, A.; Soriente, A.; Marabotti, A. The odd couple (s): An overview of beta-lactam antibiotics bearing more than one pharmacophoric group. Int. J. Mol. Sci., 2021, 22(2), 617-638. doi: 10.3390/ijms22020617 PMID: 33435500
  263. Lemaire, S.; Van Bambeke, F.; Tulkens, P.M. Contrasting effect of acidic pH on the batericidal activities of CEM-102 (fusidic acid) vs. linezolid and clindamycin towards Staphylococcus aureus, 49th Interscience conference on antimicrobial agents and chemotherapy (ICAAC), San Francisco, California, Sep 12-15, 2009.
  264. Marinelli, F.; Genilloud, O. Antimicrobials: New and old molecules in the fight against multi-resistant bacteria, 1st ed; Springer Science & Business Media: Berlin, 2013.
  265. Kaur, G.; Pavadai, E.; Wittlin, S.; Chibale, K. 3D-QSAR modeling and synthesis of new fusidic acid derivatives as antiplasmodial agents. J. Chem. Inf. Model., 2018, 58(8), 1553-1560. doi: 10.1021/acs.jcim.8b00105 PMID: 30040885
  266. Clinicaltrials.gov. Oral sodium fusidate (CEM-102) versus oral linezolid for the treatment of acute bacterial skin and skin structure infections. 2019. Available From: https://clinicaltrials.gov/ct2/show/NCT02570490
  267. Clinicaltrials.gov. Comparative study of NXL103 versus Linezolid in Adults with Acute Bacterial Skin and Skin Structure Infections (ABSSSI). 2018. Available From: https://clinicaltrials.gov/ct2/show/NCT00949130
  268. Cai, L.; Seiple, I.B.; Li, Q. Modular chemical synthesis of streptogramin and lankacidin antibiotics. Acc. Chem. Res., 2021, 54(8), 1891-1908. doi: 10.1021/acs.accounts.0c00894 PMID: 33792282
  269. Tracxn. Biocidium. 2016. Available From: https://tracxn.com/d/companies/biocidium/__A1AwtbyuPpFosPFzBrVDoWk6tH1IzPhIJlK_Tt94OiE
  270. Vander Elst, N.; Linden, S.B.; Lavigne, R.; Meyer, E.; Briers, Y.; Nelson, D.C. Characterization of the bacteriophage-derived endolysins PlySs2 and PlySs9 with in vitro lytic activity against bovine mastitis Streptococcus uberis. Antibiotics (Basel), 2020, 9(9), 621-635. doi: 10.3390/antibiotics9090621 PMID: 32961696
  271. Swift, S.M.; Sauve, K.; Cassino, C.; Schuch, R. Exebacase is active in vitro in pulmonary surfactant and is efficacious alone and synergistic with Daptomycin in a mouse model of lethal Staphylococcus aureus lung infection. Antimicrob. Agents Chemother., 2021, 65(9), e02723-20. doi: 10.1128/AAC.02723-20 PMID: 34228536
  272. Bamberger, D.M. Bacteremia and endocarditis due to methicillin-resistant Staphylococcus aureus: The potential role of daptomycin. Ther. Clin. Risk Manag., 2007, 3(4), 675-684. PMID: 18472990
  273. Rasmussen, R.V.; Fowler, V.G., Jr; Skov, R.; Bruun, N.E. Future challenges and treatment of Staphylococcus aureus bacteremia with emphasis on MRSA. Future Microbiol., 2011, 6(1), 43-56. doi: 10.2217/fmb.10.155 PMID: 21162635
  274. Fowler, V.; Das, A.; Lipka, J.; Schuch, R.; Cassino, C. Exebacase (lysin CF-301) improved clinical responder rates in methicillin-resistant Staphylococcus aureus bacteremia and endocarditis compared to standard of care antibiotics alone in a first-in-patient phase 2 study. In European congress of clinical microbiology and infectious diseases, Amsterdam, Netherland, 2019.
  275. Clinicaltrials.gov. Safety, efficacy and pharmacokinetics of CF-301 vs. placebo in addition to antibacterial therapy for treatment of S. Aureus Bacteremia. 2021. Available From: https://clinicaltrials.gov/ct2/show/NCT03163446
  276. Clinicaltrials.gov. Expanded access study of exebacase in COVID-19 patients with persistent MRSA bacteremia. 2022. Available From: https://clinicaltrials.gov/ct2/show/NCT04597242
  277. Rello, J.; Parisella, F.R.; Perez, A. Alternatives to antibiotics in an era of difficult-to-treat resistance: New insights. Expert Rev. Clin. Pharmacol., 2019, 12(7), 635-642. doi: 10.1080/17512433.2019.1619454 PMID: 31092053
  278. Huang, D.B.; Sader, H.S.; Rhomberg, P.R.; Gaukel, E.; Borroto-Esoda, K. Anti-staphylococcal lysin, LSVT-1701, activity: In vitro susceptibility of Staphylococcus aureus and coagulase-negative staphylococci (CoNS) clinical isolates from around the world collected from 2002 to 2019. Diagn. Microbiol. Infect. Dis., 2021, 101(3), 115471-115477. doi: 10.1016/j.diagmicrobio.2021.115471 PMID: 34280671
  279. François, B.; Barraud, O.; Jafri, H.S. Antibody-based therapy to combat Staphylococcus aureus infections. Clin. Microbiol. Infect., 2017, 23(4), 219-221. doi: 10.1016/j.cmi.2017.02.035 PMID: 28274770
  280. GlobeNewswire. XBiotech announces top-line results for 514G3 antibody therapy in serious Staphylococcus aureus infections. 2017. Available From: https://www.globenewswire.com/news-release/2017/04/03/953500/0/en/XBiotech-Announces-Top-Line-Results-for-514G3-Antibody-Therapy-in-Serious-Staphylococcus-aureus-Infections.html
  281. Clinicaltrials.gov. A study of the safety and efficacy of 514g3 in subjects hospitalized with bacteremia due to Staphylococcus aureus. 2017. Available From: https://clinicaltrials.gov/ct2/show/NCT02357966
  282. Hageman, J.C.; Uyeki, T.M.; Francis, J.S.; Jernigan, D.B.; Wheeler, J.G.; Bridges, C.B.; Barenkamp, S.J.; Sievert, D.M.; Srinivasan, A.; Doherty, M.C.; McDougal, L.K.; Killgore, G.E.; Lopatin, U.A.; Coffman, R.; MacDonald, J.K.; McAllister, S.K.; Fosheim, G.E.; Patel, J.B.; McDonald, L.C. Severe community-acquired pneumonia due to Staphylococcus aureus, 2003-04 influenza season. Emerg. Infect. Dis., 2006, 12(6), 894-899. doi: 10.3201/eid1206.051141 PMID: 16707043
  283. Mayor, A.; Chesnay, A.; Desoubeaux, G.; Ternant, D.; Heuzé-Vourc’h, N.; Sécher, T. Therapeutic antibodies for the treatment of respiratory tract infections—current overview and perspectives. Vaccines (Basel), 2021, 9(2), 151-172. doi: 10.3390/vaccines9020151 PMID: 33668613
  284. Vanamala, K.; Tatiparti, K.; Bhise, K.; Sau, S.; Scheetz, M.H.; Rybak, M.J.; Andes, D.; Iyer, A.K. Novel approaches for the treatment of methicillin-resistant Staphylococcus aureus: Using nanoparticles to overcome multidrug resistance. Drug Discov. Today, 2021, 26(1), 31-43. doi: 10.1016/j.drudis.2020.10.011 PMID: 33091564
  285. Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol., 2004, 2(2), 95-108. doi: 10.1038/nrmicro821 PMID: 15040259
  286. Salem, A.H.; Elkhatib, W.F.; Noreddin, A.M. Pharmacodynamic assessment of vancomycin–rifampicin combination against methicillin resistant Staphylococcus Aureus biofilm: A parametric response surface analysis. J. Pharm. Pharmacol., 2010, 63(1), 73-79. doi: 10.1111/j.2042-7158.2010.01183.x PMID: 21155818
  287. Dube, D.; Agrawal, G.P.; Vyas, S.P. Tuberculosis: From molecular pathogenesis to effective drug carrier design. Drug Discov. Today, 2012, 17(13-14), 760-773. doi: 10.1016/j.drudis.2012.03.012 PMID: 22480870
  288. Li, J.; Zhang, K.; Ruan, L.; Chin, S.F.; Wickramasinghe, N.; Liu, H.; Ravikumar, V.; Ren, J.; Duan, H.; Yang, L.; Chan-Park, M.B. Block copolymer nanoparticles remove biofilms of drug-resistant gram-positive bacteria by nanoscale bacterial debridement. Nano Lett., 2018, 18(7), 4180-4187. doi: 10.1021/acs.nanolett.8b01000 PMID: 29902011
  289. Mikkaichi, T.; Yeaman, M.R.; Hoffmann, A.; Group, M.S.I. Identifying determinants of persistent MRSA bacteremia using mathematical modeling. PLOS Comput. Biol., 2019, 15(7), e1007087. doi: 10.1371/journal.pcbi.1007087 PMID: 31295255
  290. Grassi, L.; Di Luca, M.; Maisetta, G.; Rinaldi, A.C.; Esin, S.; Trampuz, A.; Batoni, G. Generation of persister cells of Pseudomonas aeruginosa and Staphylococcus aureus by chemical treatment and evaluation of their susceptibility to membrane-targeting agents. Front. Microbiol., 2017, 8, 1917-1929. doi: 10.3389/fmicb.2017.01917 PMID: 29046671
  291. Kim, W.; Hendricks, G.L.; Tori, K.; Fuchs, B.B.; Mylonakis, E. Strategies against methicillin-resistant Staphylococcus aureus persisters. Future Med. Chem., 2018, 10(7), 779-794. doi: 10.4155/fmc-2017-0199 PMID: 29569952
  292. Pacios, O.; Blasco, L.; Bleriot, I.; Fernandez-Garcia, L.; González Bardanca, M.; Ambroa, A.; López, M.; Bou, G.; Tomás, M. Strategies to combat multidrug-resistant and persistent infectious diseases. Antibiotics (Basel), 2020, 9(2), 65-68. doi: 10.3390/antibiotics9020065 PMID: 32041137
  293. Hageman, J.C.; Liedtke, L.A.; Sunenshine, R.H.; Strausbaugh, L.J.; McDonald, L.C.; Tenover, F.C. Management of persistent bacteremia caused by methicillin-resistant Staphylococcus aureus: A survey of infectious diseases consultants. Clin. Infect. Dis., 2006, 43(5), e42-e45. doi: 10.1086/506568 PMID: 16886141
  294. Moellering, R.C., Jr MRSA: The first half century. J. Antimicrob. Chemother., 2012, 67(1), 4-11. doi: 10.1093/jac/dkr437 PMID: 22010206
  295. Butler, M.S.; Blaskovich, M.A.; Cooper, M.A. Antibiotics in the clinical pipeline in 2013. J. Antibiot. (Tokyo), 2013, 66(10), 571-591. doi: 10.1038/ja.2013.86 PMID: 24002361
  296. Livermore, D.M. Introduction: The challenge of multiresistance. Int. J. Antimicrob. Agents, 2007, 29(Suppl. 3), S1-S7. doi: 10.1016/S0924-8579(07)00158-6 PMID: 17659208
  297. Barrett, J.F. MRSA – what is it, and how do we deal with the problem? Expert Opin. Ther. Targets, 2005, 9(2), 253-265. doi: 10.1517/14728222.9.2.253 PMID: 15934914

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers