Aducanumab in Alzheimer’s Disease: A Critical Update


Cite item

Full Text

Abstract

:Alzheimer's disease (AD) is a complex neurological disorder that results in cognitive decline. The incidence rates of AD have been increasing, particularly among individuals 60 years of age or older. In June 2021, the US FDA approved aducanumab, the first humanized monoclonal antibody, as a potential therapeutic option for AD. Clinical trials have shown this drug to effectively target the accumulation of Aβ (beta-amyloid) plaques in the brain, and its effectiveness is dependent on the dosage and duration of treatment. Additionally, aducanumab has been associated with improvements in cognitive function. Biogen, the pharmaceutical company responsible for developing and marketing aducanumab, has positioned it as a potential breakthrough for treating cerebral damage in AD. However, the drug has raised concerns due to its high cost, limitations, and potential side effects. AD is a progressive neurological condition that affects memory, cognitive function, and behaviour. It significantly impacts the quality of life of patients and caregivers and strains healthcare systems. Ongoing research focuses on developing disease-modifying therapies that can halt or slow down AD progression. The pathogenesis of AD involves various molecular cascades and signaling pathways. However, the formation of extracellular amyloid plaques is considered a critical mechanism driving the development and progression of the disease. Aducanumab, as a monoclonal antibody, has shown promising results in inhibiting amyloid plaque formation, which is the primary pathological feature of AD. This review explores the signaling pathways and molecular mechanisms through which aducanumab effectively prevents disease pathogenesis in AD.

About the authors

Sumel Ashique

Department of Pharmaceutical Science, School of Pharmacy, Bharat Institute of Technology (BIT)

Email: info@benthamscience.net

Ekta Sirohi

Department of Pharmaceutical Science, School of Pharmacy, Bharat Institute of Technology (BIT)

Email: info@benthamscience.net

Shubneesh Kumar

Department of Pharmaceutical Science, School of Pharmacy, Bharat Institute of Technology (BIT)

Email: info@benthamscience.net

Mohd Rihan

Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER)

Email: info@benthamscience.net

Neeraj Mishra

Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University

Email: info@benthamscience.net

Shvetank Bhatt

Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University

Email: info@benthamscience.net

Rupesh Gautam

MM School of Pharmacy, Maharishi Markandeshwar University

Email: info@benthamscience.net

Sachin Singh

School of Pharmaceutical Sciences, Lovely Professional University

Email: info@benthamscience.net

Gaurav Gupta

School of Pharmacy, Suresh Gyan Vihar University

Author for correspondence.
Email: info@benthamscience.net

Dinesh Chellappan

Department of Life Sciences, School of Pharmacy, International Medical University (IMU)

Email: info@benthamscience.net

Kamal Dua

Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney

Author for correspondence.
Email: info@benthamscience.net

References

  1. Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P.H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; O’Gorman, J.; Qian, F.; Arastu, M.; Li, M.; Chollate, S.; Brennan, M.S.; Quintero-Monzon, O.; Scannevin, R.H.; Arnold, H.M.; Engber, T.; Rhodes, K.; Ferrero, J.; Hang, Y.; Mikulskis, A.; Grimm, J.; Hock, C.; Nitsch, R.M.; Sandrock, A. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature, 2016, 537(7618), 50-56. doi: 10.1038/nature19323 PMID: 27582220
  2. Brown, M.R.; Radford, S.E.; Hewitt, E.W. Modulation of β-amyloid fibril formation in Alzheimer’s disease by microglia and infection. Front. Mol. Neurosci., 2020, 13, 609073. doi: 10.3389/fnmol.2020.609073 PMID: 33324164
  3. Arndt, J.W.; Qian, F.; Smith, B.A.; Quan, C.; Kilambi, K.P.; Bush, M.W.; Walz, T.; Pepinsky, R.B.; Bussière, T.; Hamann, S.; Cameron, T.O.; Weinreb, P.H. Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β. Sci. Rep., 2018, 8(1), 6412. doi: 10.1038/s41598-018-24501-0 PMID: 29686315
  4. Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P.H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; O’Gorman, J.; Qian, F.; Arastu, M.; Li, M.; Chollate, S.; Brennan, M.S.; Quintero-Monzon, O.; Scannevin, R.H.; Arnold, H.M.; Engber, T.; Rhodes, K.; Ferrero, J.; Hang, Y.; Mikulskis, A.; Grimm, J.; Hock, C.; Nitsch, R.M.; Sandrock, A. Addendum: The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature, 2017, 546(7659), 564. doi: 10.1038/nature22809 PMID: 28640269
  5. Finke, J.M.; Banks, W.A. Modulators of IgG penetration through the blood-brain barrier: Implications for Alzheimer’s disease immunotherapy. Hum. Antibodies, 2017, 25(3-4), 131-146. doi: 10.3233/HAB-160306 PMID: 28035915
  6. Zhao, J.; Nussinov, R.; Ma, B. Mechanisms of recognition of amyloid-β (Aβ) monomer, oligomer, and fibril by homologous antibodies. J. Biol. Chem., 2017, 292(44), 18325-18343. doi: 10.1074/jbc.M117.801514 PMID: 28924036
  7. Bard, F.; Cannon, C.; Barbour, R.; Burke, R.L.; Games, D.; Grajeda, H.; Guido, T.; Hu, K.; Huang, J.; Johnson- Wood, K.; Khan, K.; Kholodenko, D.; Lee, M.; Lieberburg, I.; Motter, R.; Nguyen, M.; Soriano, F.; Vasquez, N.; Weiss, K.; Welch, B.; Seubert, P.; Schenk, D.; Yednock, T. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med., 2000, 6(8), 916-919. doi: 10.1038/78682 PMID: 10932230
  8. Alexander, G.C.; Emerson, S.; Kesselheim, A.S. Evaluation of aducanumab for Alzheimer disease: Scientific evidence and regulatory review involving efficacy, safety, and futility. JAMA, 2021, 325(17), 1717-1718. doi: 10.1001/jama.2021.3854 PMID: 33783469
  9. Sabbagh, M.N.; Cummings, J. Open Peer Commentary to "Failure to demonstrate efficacy of aducanumab: An analysis of the EMERGE and ENGAGE trials as reported by Biogen December 2019". Alzheimers Dement., 2021, 17(4), 702-703. doi: 10.1002/alz.12235 PMID: 33135288
  10. Watson, J.; Saunders, S.; Muniz Terrera, G.; Ritchie, C.; Evans, A.; Luz, S.; Clarke, C. What matters to people with memory problems, healthy volunteers and health and social care professionals in the context of developing treatment to prevent Alzheimer’s dementia? A qualitative study. Health Expect., 2019, 22(3), 504-517. doi: 10.1111/hex.12876 PMID: 30809895
  11. Haeberlein, S.B.; von Hehn, C.; Tian, Y.; Chalkias, S.; Muralidharan, K.K.; Chen, T.; Wu, S.; Skordos, L.; Nisenbaum, L.; Rajagovindan, R.; Dent, G.; Harrison, K.; Nestorov, I.; Zhu, Y.; Mallinckrodt, C.; Sandrock, A. Emerge and Engage topline results: Phase 3 studies of aducanumab in early Alzheimer’s disease. Alzheimers Dement., 2020, 16(S9), e047259. doi: 10.1002/alz.047259
  12. Jack, C.R., Jr; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; Liu, E.; Molinuevo, J.L.; Montine, T.; Phelps, C.; Rankin, K.P.; Rowe, C.C.; Scheltens, P.; Siemers, E.; Snyder, H.M.; Sperling, R.; Elliott, C.; Masliah, E.; Ryan, L.; Silverberg, N. NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement., 2018, 14(4), 535-562. doi: 10.1016/j.jalz.2018.02.018 PMID: 29653606
  13. The battle over an Alzheimer’s treatment; Biogen’s promising drug is caught in the FDA’s political and bureaucratic limbo. 2021. Available From: https://www.wsj.com/articles/the-battle-over-an-alzheimers-treatment-11618873596
  14. Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science, 1992, 256(5054), 184-185. doi: 10.1126/science.1566067 PMID: 1566067
  15. Budd Haeberlein, S.; O’Gorman, J.; Chiao, P.; Bussière, T.; von Rosenstiel, P.; Tian, Y.; Zhu, Y.; von Hehn, C.; Gheuens, S.; Skordos, L.; Chen, T.; Sandrock, A. Clinical development of aducanumab, an Anti-Aβ human monoclonal antibody being investigated for the treatment of early Alzheimer’s disease. J. Prev. Alzheimers Dis., 2017, 4(4), 255-263. PMID: 29181491
  16. Frost, C.V.; Zacharias, M. From monomer to fibril: Abeta-amyloid binding to Aducanumab antibody studied by molecular dynamics simulation. Proteins, 2020, 88(12), 1592-1606. doi: 10.1002/prot.25978 PMID: 32666627
  17. Ferrero, J.; Williams, L.; Stella, H.; Leitermann, K.; Mikulskis, A.; O’Gorman, J.; Sevigny, J. First-in-human, double-blind, placebo-controlled, single-dose escalation study of aducanumab (BIIB037) in mild-to-moderate Alzheimer’s disease. Alzheimers Dement., 2016, 2(3), 169-176. doi: 10.1016/j.trci.2016.06.002 PMID: 29067304
  18. Ryman, J.T.; Meibohm, B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst. Pharmacol., 2017, 6(9), 576-588. doi: 10.1002/psp4.12224 PMID: 28653357
  19. Salloway, S.; Chalkias, S.; Barkhof, F.; Burkett, P.; Barakos, J.; Purcell, D.; Suhy, J.; Forrestal, F.; Tian, Y.; Umans, K.; Wang, G.; Singhal, P.; Budd Haeberlein, S.; Smirnakis, K. Amyloid-related imaging abnormalities in 2 phase 3 studies evaluating aducanumab in patients with early Alzheimer disease. JAMA Neurol., 2022, 79(1), 13-21. doi: 10.1001/jamaneurol.2021.4161 PMID: 34807243
  20. Birks, JS; Harvey, RJ Donepezil for dementia due to Alzheimer's disease. Cochrane Database Syst. Rev., 2018, 6(6), CD001190. doi: 10.1002/14651858.CD001190.pub3
  21. Li, D.D.; Zhang, Y.H.; Zhang, W.; Zhao, P. Meta-analysis of randomized controlled trials on the efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease. Front. Neurosci., 2019, 13, 472. doi: 10.3389/fnins.2019.00472 PMID: 31156366
  22. Klyubin, I.; Walsh, D.M.; Lemere, C.A.; Cullen, W.K.; Shankar, G.M.; Betts, V.; Spooner, E.T.; Jiang, L.; Anwyl, R.; Selkoe, D.J.; Rowan, M.J. Amyloid β protein immunotherapy neutralizes Aβ oligomers that disrupt synaptic plasticity in vivo. Nat. Med., 2005, 11(5), 556-561. doi: 10.1038/nm1234 PMID: 15834427
  23. Courtney, C.; Farrell, D.; Gray, R.; Hills, R.; Lynch, L.; Sellwood, E.; Edwards, S.; Hardyman, W.; Raftery, J.; Crome, P.; Lendon, C.; Shaw, H.; Bentham, P. Long-term donepezil treatment in 565 patients with Alzheimer’s disease (AD2000): Randomised double-blind trial. Lancet, 2004, 363(9427), 2105-2115. doi: 10.1016/S0140-6736(04)16499-4 PMID: 15220031
  24. Howard, R.; McShane, R.; Lindesay, J.; Ritchie, C.; Baldwin, A.; Barber, R.; Burns, A.; Dening, T.; Findlay, D.; Holmes, C.; Jones, R.; Jones, R.; McKeith, I.; Macharouthu, A.; O’Brien, J.; Sheehan, B.; Juszczak, E.; Katona, C.; Hills, R.; Knapp, M.; Ballard, C.; Brown, R.G.; Banerjee, S.; Adams, J.; Johnson, T.; Bentham, P.; Phillips, P.P.J. Nursing home placement in the Donepezil and Memantine in Moderate to Severe Alzheimer’s Disease (DOMINO-AD) trial: Secondary and post-hoc analyses. Lancet Neurol., 2015, 14(12), 1171-1181. doi: 10.1016/S1474-4422(15)00258-6 PMID: 26515660
  25. McShane, R.; Westby, M.J.; Roberts, E.; Minakaran, N.; Schneider, L.; Farrimond, L.E.; Maayan, N.; Ware, J.; Debarros, J. Memantine for dementia. Cochrane Database Syst Rev., 2019, 3(3), CD003154. doi: 10.1002/14651858.CD003154.pub6
  26. Cummings, J.; Aisen, P.; Apostolova, L.G.; Atri, A.; Salloway, S.; Weiner, M. Aducanumab: Appropriate use recommendations. J. Prev. Alzheimers Dis., 2021, 8(4), 398-410. PMID: 34585212
  27. Nicoll, J.A.R.; Wilkinson, D.; Holmes, C.; Steart, P.; Markham, H.; Weller, R.O. Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: A case report. Nat. Med., 2003, 9(4), 448-452. doi: 10.1038/nm840 PMID: 12640446
  28. B. Inc. Single and multiple ascending dose study of aducanumab (BIIB037) in Japanese participants with AD. 2020. Available From: https://clinicaltrials.gov/ct2/show/results/
  29. L. Biogen Inc and E. Co. A study to assess absolute bioavailability of aducanumab in healthy volunteers. 2021. Available From: https:// clinicaltrials.gov/ct2/show/NCT04924140
  30. B. Inc. A study of aducanumab in participants with mild cognitive impairment due to AD or with mild AD dementia to evaluate the safety of continued dosing in participants with asymptomatic amyloid-related imaging abnormalities. 2020. Available From: https://clinicaltrials.gov/ct2/ show/NCT03639987
  31. B. Inc. 221AD302 phase 3 study of aducanumab BIIB037 in early AD. Available From: https://clinicaltrials.gov/ct2/ show/NCT02484547
  32. B. Inc. A study to evaluate safety and tolerability of aducanumab in participants with AD who had previously participated in the aducanumab studies 221AD103, 221AD301, 221AD302 and 221AD205 2021. Available From: https:// clinicaltrials.gov/ct2/show/NCT04241068
  33. Mintun, M.A.; Lo, A.C.; Duggan Evans, C.; Wessels, A.M.; Ardayfio, P.A.; Andersen, S.W.; Shcherbinin, S.; Sparks, J.; Sims, J.R.; Brys, M.; Apostolova, L.G.; Salloway, S.P.; Skovronsky, D.M. Donanemab in early Alzheimer’s disease. N. Engl. J. Med., 2021, 384(18), 1691-1704. doi: 10.1056/NEJMoa2100708 PMID: 33720637
  34. Novak, P.; Kovacech, B.; Katina, S.; Schmidt, R.; Scheltens, P.; Kontsekova, E.; Ropele, S.; Fialova, L.; Kramberger, M.; Paulenka-Ivanovova, N.; Smisek, M.; Hanes, J.; Stevens, E.; Kovac, A.; Sutovsky, S.; Parrak, V.; Koson, P.; Prcina, M.; Galba, J.; Cente, M.; Hromadka, T.; Filipcik, P.; Piestansky, J.; Samcova, M.; Prenn-Gologranc, C.; Sivak, R.; Froelich, L.; Fresser, M.; Rakusa, M.; Harrison, J.; Hort, J.; Otto, M.; Tosun, D.; Ondrus, M.; Winblad, B.; Novak, M.; Zilka, N. ADAMANT: A placebo-controlled randomized phase 2 study of AADvac1, an active immunotherapy against pathological tau in Alzheimer’s disease. Nature Aging, 2021, 1(6), 521-534. doi: 10.1038/s43587-021-00070-2 PMID: 37117834
  35. Biogen. EMERGE and ENGAGE topline results: Two phase 3 studies to evaluate aducanumab in patients with early Alzheimer’s disease. ClinicalTrials on Alzheimer’s Disease (CTAD). San Diego 2019. Available From: https://investors.biogen.com/static-files/ddd45672-9c7e-4c99-8a06-3b557697c06f
  36. Tampi, R.R.; Forester, B.P.; Agronin, M. Aducanumab: Evidence from clinical trial data and controversies. Drugs Context, 2021, 10, 1-9. doi: 10.7573/dic.2021-7-3 PMID: 34650610
  37. Dunn, B.; Stein, P.; Cavazzoni, P. Approval of aducanumab for Alzheimer disease-the FDA’s perspective. JAMA Intern. Med., 2021, 181(10), 1276-1278. doi: 10.1001/jamainternmed.2021.4607 PMID: 34254984
  38. Mahase, E. Three FDA advisory panel members resign over approval of Alzheimer’s drug. BMJ, 2021, 373, n1503. doi: 10.1136/bmj.n1503
  39. Talan, J. FDA panel votes ‘No’ to approving aducanumab for Alzheimer’s, citing inconsistent data. Neurol. Today, 2020, 20(23), 1,36-38. doi: 10.1097/01.NT.0000725248.82870.33
  40. Mullane, K.; Williams, M. Alzheimer’s disease beyond amyloid: Can the repetitive failures of amyloid-targeted therapeutics inform future approaches to dementia drug discovery? Biochem. Pharmacol., 2020, 177, 113945. doi: 10.1016/j.bcp.2020.113945 PMID: 32247851
  41. Liu, K.Y.; Schneider, L.S.; Howard, R. The need to show minimum clinically important differences in Alzheimer’s disease trials. Lancet Psychiatry, 2021, 8(11), 1013-1016. doi: 10.1016/S2215-0366(21)00197-8 PMID: 34087114
  42. Luo, M.; Lee, L.K.C.; Peng, B.; Choi, C.H.J.; Tong, W.Y.; Voelcker, N.H. Delivering the promise of gene therapy with nanomedicines in treating central nervous system diseases. Adv. Sci., 2022, 9(26), 2201740. doi: 10.1002/advs.202201740 PMID: 35851766
  43. Mullard, A. Landmark Alzheimer’s drug approval confounds research community. Nature, 2021, 594(7863), 309-310. doi: 10.1038/d41586-021-01546-2 PMID: 34103732
  44. Loureiro, J.C.; Pais, M.V.; Stella, F.; Radanovic, M.; Teixeira, A.L.; Forlenza, O.V.; de Souza, L.C. Passive antiamyloid immunotherapy for Alzheimerʼs disease. Curr. Opin. Psychiatry, 2020, 33(3), 284-291. doi: 10.1097/YCO.0000000000000587 PMID: 32040044
  45. Moreth, J.; Mavoungou, C.; Schindowski, K. Passive anti-amyloid immunotherapy in Alzheimer’s disease: What are the most promising targets? Immun. Ageing, 2013, 10(1), 18. doi: 10.1186/1742-4933-10-18 PMID: 23663286
  46. Gleason, A.; Ayton, S.; Bush, A.I. Unblinded by the light: Amyloid-related imaging abnormalities in Alzheimer’s clinical trials. Eur. J. Neurol., 2021, 28(1), e1. doi: 10.1111/ene.14484 PMID: 32808453
  47. Beshir, S.A.; Aadithsoorya, A.M.; Parveen, A.; Goh, S.S.L.; Hussain, N.; Menon, V.B. Aducanumab therapy to Treat Alzheimer’s disease: A narrative review. Int. J. Alzheimers Dis., 2022, 2022, 1-10. doi: 10.1155/2022/9343514 PMID: 35308835
  48. Piazza, F.; Winblad, B. Amyloid-Related Imaging Abnormalities (ARIA) in immunotherapy trials for Alzheimer’s disease: Need for prognostic biomarkers? J. Alzheimers Dis., 2016, 52(2), 417-420. doi: 10.3233/JAD-160122 PMID: 27031492
  49. Lin, P.J.; Cohen, J.T.; Neumann, P.J. Preparing the health-care system to pay for new Alzheimer’s drugs. Alzheimers Dement., 2020, 16(11), 1568-1570. doi: 10.1002/alz.12155 PMID: 32808733
  50. Hameed, S.; Fuh, J.L.; Senanarong, V.; Ebenezer, E.G.M.; Looi, I.; Dominguez, J.C.; Park, K.W.; Karanam, A.K.; Simon, O. Role of fluid biomarkers and PET imaging in early diagnosis and its clinical implication in the management of Alzheimer’s disease. J. Alzheimers Dis. Rep., 2020, 4(1), 21-37. doi: 10.3233/ADR-190143 PMID: 32206755
  51. Nakamura, A.; Kaneko, N.; Villemagne, V.L.; Kato, T.; Doecke, J.; Doré, V.; Fowler, C.; Li, Q.X.; Martins, R.; Rowe, C.; Tomita, T.; Matsuzaki, K.; Ishii, K.; Ishii, K.; Arahata, Y.; Iwamoto, S.; Ito, K.; Tanaka, K.; Masters, C.L.; Yanagisawa, K. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature, 2018, 554(7691), 249-254. doi: 10.1038/nature25456 PMID: 29420472
  52. Liu, K.Y.; Howard, R. Can we learn lessons from the FDA’s approval of aducanumab? Nat. Rev. Neurol., 2021, 17(11), 715-722. doi: 10.1038/s41582-021-00557-x PMID: 34535787
  53. Ferreira, S.T.; Lourenco, M.V.; Oliveira, M.M.; De Felice, F.G. Soluble amyloid-β oligomers as synaptotoxins leading to cognitive impairment in Alzheimer's disease. Front. Cell. Neurosci., 2015, 9, 191. doi: 10.3389/fncel.2015.00191 PMID: 26074767
  54. Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med., 2016, 8(6), 595-608. doi: 10.15252/emmm.201606210 PMID: 27025652
  55. Rajasekhar, K.; Govindaraju, T. Current progress, challenges and future prospects of diagnostic and therapeutic interventions in Alzheimer’s disease. RSC Advances, 2018, 8(42), 23780-23804. doi: 10.1039/C8RA03620A PMID: 35540246
  56. Dunstan, R.; Bussiere, T.; Fahrer, D.; Quigley, C.; Zhang, X.; Themeles, M.; Engber, T.; Rhodes, K.; Arastu, M.; Li, M. P4-005: Quantitation of beta-amyloid in transgenic mice using whole slide digital imaging and image analysis software. Alzheimers Dement., 2011, 7(4S_Part_20), S700. doi: 10.1016/j.jalz.2011.05.2024
  57. Reiss, A.B.; Arain, H.A.; Stecker, M.M.; Siegart, N.M.; Kasselman, L.J. Amyloid toxicity in Alzheimer’s disease. Rev. Neurosci., 2018, 29(6), 613-627. doi: 10.1515/revneuro-2017-0063 PMID: 29447116
  58. Salazar, S.V.; Strittmatter, S.M. Cellular prion protein as a receptor for amyloid-β oligomers in Alzheimer’s disease. Biochem. Biophys. Res. Commun., 2017, 483(4), 1143-1147. doi: 10.1016/j.bbrc.2016.09.062 PMID: 27639648
  59. Tian Hui Kwan, A.; Arfaie, S.; Therriault, J.; Rosa-Neto, P.; Gauthier, S. Lessons learnt from the second generation of anti-amyloid monoclonal antibodies clinical trials. Dement. Geriatr. Cogn. Disord., 2020, 49(4), 334-348. doi: 10.1159/000511506 PMID: 33321511
  60. Hefti, F.; Goure, W.F.; Jerecic, J.; Iverson, K.S.; Walicke, P.A.; Krafft, G.A. The case for soluble Aβ oligomers as a drug target in Alzheimer’s disease. Trends Pharmacol. Sci., 2013, 34(5), 261-266. doi: 10.1016/j.tips.2013.03.002 PMID: 23582316
  61. Cohen, S.I.A.; Linse, S.; Luheshi, L.M.; Hellstrand, E.; White, D.A.; Rajah, L.; Otzen, D.E.; Vendruscolo, M.; Dobson, C.M.; Knowles, T.P.J. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl. Acad. Sci. USA, 2013, 110(24), 9758-9763. doi: 10.1073/pnas.1218402110 PMID: 23703910
  62. Linse, S.; Scheidt, T.; Bernfur, K.; Vendruscolo, M.; Dobson, C.M.; Cohen, S.I.A.; Sileikis, E.; Lundqvist, M.; Qian, F.; O’Malley, T.; Bussiere, T.; Weinreb, P.H.; Xu, C.K.; Meisl, G.; Devenish, S.R.A.; Knowles, T.P.J.; Hansson, O. Kinetic fingerprints differentiate the mechanisms of action of anti-Aβ antibodies. Nat. Struct. Mol. Biol., 2020, 27(12), 1125-1133. doi: 10.1038/s41594-020-0505-6 PMID: 32989305
  63. Dear, A.J.; Meisl, G.; Michaels, T.C.T.; Zimmermann, M.R.; Linse, S.; Knowles, T.P.J. The catalytic nature of protein aggregation. J. Chem. Phys., 2020, 152(4), 045101. doi: 10.1063/1.5133635 PMID: 32007046
  64. Arosio, P.; Knowles, T.P.J.; Linse, S. On the lag phase in amyloid fibril formation. Phys. Chem. Chem. Phys., 2015, 17(12), 7606-7618. doi: 10.1039/C4CP05563B PMID: 25719972
  65. Avgerinos, K.I.; Ferrucci, L.; Kapogiannis, D. Effects of monoclonal antibodies against amyloid-β on clinical and biomarker outcomes and adverse event risks: A systematic review and meta-analysis of phase III RCTs in Alzheimer’s disease. Ageing Res. Rev., 2021, 68, 101339. doi: 10.1016/j.arr.2021.101339 PMID: 33831607
  66. Cummings, J.; Aisen, P.; Lemere, C.; Atri, A.; Sabbagh, M.; Salloway, S. Aducanumab produced a clinically meaningful benefit in association with amyloid lowering. Alzheimers Res. Ther., 2021, 13(1), 98. doi: 10.1186/s13195-021-00838-z PMID: 33971962
  67. Howard, R.; Liu, K.Y. Questions EMERGE as Biogen claims aducanumab turnaround. Nat. Rev. Neurol., 2020, 16(2), 63-64. doi: 10.1038/s41582-019-0295-9 PMID: 31784690
  68. Mo, J.J.; Li, J.; Yang, Z.; Liu, Z.; Feng, J.S. Efficacy and safety of anti-amyloid-β immunotherapy for Alzheimer’s disease: A systematic review and network meta-analysis. Ann. Clin. Transl. Neurol., 2017, 4(12), 931-942. doi: 10.1002/acn3.469 PMID: 29296624
  69. Gamage, K.K.; Kumar, S. Aducanumab therapy ameliorates calcium overload in a mouse model of Alzheimer’s disease. J. Neurosci., 2017, 37(17), 4430-4432. doi: 10.1523/JNEUROSCI.0420-17.2017 PMID: 28446659
  70. Kastanenka, K.V.; Bussiere, T.; Shakerdge, N.; Qian, F.; Weinreb, P.H.; Rhodes, K.; Bacskai, B.J. Immunotherapy with aducanumab restores calcium homeostasis in Tg2576 mice. J. Neurosci., 2016, 36(50), 12549-12558. doi: 10.1523/JNEUROSCI.2080-16.2016 PMID: 27810931
  71. Kuller, L.H.; Lopez, O.L. ENGAGE and EMERGE: Truth and consequences? Alzheimers Dement., 2021, 17(4), 692-695. doi: 10.1002/alz.12286 PMID: 33656288
  72. Study, the first real-world observational phase 4 study in Alzheimer’s disease at AAIC 2021. 2021. Available From: https://www.neurologylive.com/view/aducanumab-phase-4-real-world-observational-study-announced
  73. Padda, I.S.; Parmar, M. Aducanumab; StatPearls Publishing.: Florida, 2022.
  74. Knopman, D.S.; Jones, D.T.; Greicius, M.D. Failure to demonstrate efficacy of aducanumab: An analysis of the EMERGE and ENGAGE trials as reported by Biogen, December 2019. Alzheimers Dement., 2021, 17(4), 696-701. doi: 10.1002/alz.12213 PMID: 33135381

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers