Predictive Analysis of Yi-Gai-San's Multifaceted Mechanisms for Tremor-dominant Parkinson's Disease via Network Pharmacology and Molecular Docking Validation
- Authors: Lin C.1, Wu L.2, Tsai F.1
-
Affiliations:
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University,
- Issue: Vol 31, No 36 (2024)
- Pages: 5989-6012
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjmseer.com/0929-8673/article/view/645253
- DOI: https://doi.org/10.2174/0109298673291838240311075415
- ID: 645253
Cite item
Full Text
Abstract
Introduction:Yi-Gan-San, Parkinson's disease, tremor-dominant, network pharmacology, molecular docking, Uncaria rhynchophylla.
Methods:We identified 75 active compounds within YGS. From these, we predicted 110 gene targets, which exhibited a direct association with PD-DT. PPI network results highlighted core target proteins, including TP53, SLC6A3, GAPDH, MAOB, AKT, BAX, IL6, BCL2, PKA, and CASP3. These proteins potentially alleviate PD-DT by targeting inflammation, modulating neuronal cell apoptosis, and regulating the dopamine system. Furthermore, GO and KEGG enrichment analyses emphasized that YGS might influence various mechanisms, such as the apoptotic process, mitochondrial autophagy, Age-Rage signaling, and dopaminergic and serotonergic synapses. The core proteins from the PPI analysis were selected for the docking experiment.
Results:The docking results demonstrated that the most stable ligand-receptor conformations were kaempferol with CASP3 (-9.5 kcal/mol), stigmasterol with SLC6A3 (-10.5 kcal/mol), shinpterocarpin with BCL2L1 (-9.6 kcal/mol), hirsutine with MAOB (-9.7 kcal/mol), hederagenin with PRKACA (-9.8 kcal/mol), and yatein with GAPDH (-9.8 kcal/mol). These results provide us with research objectives for future endeavors in extracting single compounds for drug manufacturing or in-depth studies on drug mechanisms.
Conclusion:From these computational findings, we suggested that YGS might mitigate PD-DT via "multi-compounds, multi-targets, and multi-pathways."
About the authors
Chih-Ting Lin
The School of Chinese Medicine for Post-Baccalaureate, I-Shou University
Email: info@benthamscience.net
Lung-Yuan Wu
The School of Chinese Medicine for Post-Baccalaureate, I-Shou University,
Email: info@benthamscience.net
Fan-Shiu Tsai
The School of Chinese Medicine for Post-Baccalaureate, I-Shou University
Author for correspondence.
Email: info@benthamscience.net
References
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinsons disease. Lancet, 2021, 397(10291), 2284-2303. doi: 10.1016/S0140-6736(21)00218-X PMID: 33848468
- Hallett, M. Parkinsons disease tremor: Pathophysiology. Parkinsonism Relat. Disord., 2012, 18(S2), S85-S86. doi: 10.1016/S1353-8020(11)70027-X PMID: 22166464
- Thenganatt, M.A.; Jankovic, J. Parkinson disease subtypes. JAMA Neurol., 2014, 71(4), 499-504. doi: 10.1001/jamaneurol.2013.6233 PMID: 24514863
- Xiong, W.; Li, L.F.; Huang, L.; Liu, Y.; Xia, Z.C.; Zhou, X.X.; Tang, B.S.; Guo, J.F.; Lei, L.F. Different iron deposition patterns in akinetic/rigid-dominant and tremor-dominant Parkinsons disease. Clin. Neurol. Neurosurg., 2020, 198, 106181. doi: 10.1016/j.clineuro.2020.106181 PMID: 33022525
- Jankovic, J. Parkinsons disease tremors and serotonin. Brain, 2018, 141(3), 624-626. doi: 10.1093/brain/awx361 PMID: 30063797
- Bandres-Ciga, S.; Diez-Fairen, M.; Kim, J.J.; Singleton, A.B. Genetics of Parkinsons disease: An introspection of its journey towards precision medicine. Neurobiol. Dis., 2020, 137, 104782. doi: 10.1016/j.nbd.2020.104782 PMID: 31991247
- Langston, R.G.; Beilina, A.; Reed, X.; Kaganovich, A.; Singleton, A.B.; Blauwendraat, C.; Gibbs, J.R.; Cookson, M.R. Association of a common genetic variant with Parkinsons disease is mediated by microglia. Sci. Transl. Med., 2022, 14(655), eabp8869. doi: 10.1126/scitranslmed.abp8869 PMID: 35895835
- Armstrong, M.J.; Okun, M.S. Diagnosis and treatment of parkinson disease. JAMA, 2020, 323(6), 548-560. doi: 10.1001/jama.2019.22360 PMID: 32044947
- Stibe, C.M.H.; Kempster, P.A.; Lees, A.J.; Stern, G.M. Subcutaneous apomorphine in parkinsonian on-off oscillations. Lancet, 1988, 331(8582), 403-406. doi: 10.1016/S0140-6736(88)91193-2 PMID: 2893200
- Borovac, J.A. Side effects of a dopamine agonist therapy for Parkinsons disease: A mini-review of clinical pharmacology. Yale J. Biol. Med., 2016, 89(1), 37-47. PMID: 27505015
- Li, X.; Zhang, Y.; Wang, Y.; Xu, J.; Xin, P.; Meng, Y.; Wang, Q.; Kuang, H. The mechanisms of traditional Chinese medicine underlying the prevention and treatment of Parkinsons disease. Front. Pharmacol., 2017, 8, 634. doi: 10.3389/fphar.2017.00634 PMID: 28970800
- Zhang, G.; Xiong, N.; Zhang, Z.; Liu, L.; Huang, J.; Yang, J.; Wu, J.; Lin, Z.; Wang, T. Effectiveness of traditional Chinese medicine as an adjunct therapy for Parkinsons disease: A systematic review and meta-analysis. PLoS One, 2015, 10(3), e0118498. doi: 10.1371/journal.pone.0118498 PMID: 25756963
- Zhang, J.; Ma, Y.; Shen, X. Evaluation on the efficacy and safety of chinese herbal medication xifeng dingchan pill in treating Parkinsons disease: Study protocol of a multicenter, open-label, randomized active-controlled trial. J. Integr. Med., 2013, 11(4), 285-290. doi: 10.3736/jintegrmed2013035 PMID: 23867247
- Taiwan Herbal Pharmacopeia, 4th ed; Taiwan Ministry of Health and Welfare, 2022.
- Shinno, H.; Utani, E.; Okazaki, S.; Kawamukai, T.; Yasuda, H.; Inagaki, T.; Inami, Y.; Horiguchi, J. Successful treatment with Yi-Gan San for psychosis and sleep disturbance in a patient with dementia with Lewy bodies. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2007, 31(7), 1543-1545. doi: 10.1016/j.pnpbp.2007.07.002 PMID: 17688986
- Miyaoka, T.; Furuya, M.; Yasuda, H.; Hayashida, M.; Nishida, A.; Inagaki, T.; Horiguchi, J. Yi-gan san for the treatment of neuroleptic-induced tardive dyskinesia: An open-label study. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2008, 32(3), 761-764. doi: 10.1016/j.pnpbp.2007.12.003 PMID: 18201810
- Hu, S.; Mak, S.; Zuo, X.; Li, H.; Wang, Y.; Han, Y. Neuroprotection against MPP+-induced cytotoxicity through the activation of PI3-K/Akt/GSK3β/MEF2D signaling pathway by rhynchophylline, the major tetracyclic oxindole alkaloid isolated from Uncaria rhynchophylla. Front. Pharmacol., 2018, 9, 768. doi: 10.3389/fphar.2018.00768 PMID: 30072894
- Zheng, M.; Chen, M.; Liu, C.; Fan, Y.; Shi, D. Alkaloids extracted from Uncaria rhynchophylla demonstrate neuroprotective effects in MPTP-induced experimental parkinsonism by regulating the PI3K/Akt/mTOR signaling pathway. J. Ethnopharmacol., 2021, 266, 113451. doi: 10.1016/j.jep.2020.113451 PMID: 33049346
- Hatano, T. An exploratory study of the efficacy and safety of yokukansan for neuropsychiatric symptoms in patients with Parkinsons disease. J. Neural. Transm, 2014, 121(3), 275-281. doi: 10.1007/s00702-013-1105-y
- Jin, C.; Cho, K.H.; Kwon, S.; Lee, H.G.; Kim, T.H.; Jung, W.S.; Moon, S.K.; Cho, S.Y.; Kang, B.K.; Park, J.M.; Park, H.J.; Ko, C.N. Effectiveness and safety of herbal medicine Ukgansan for clinical symptoms in Parkinsons disease: A pilot, randomized, assessor-blinded clinical trial. Front. Neurol., 2022, 13, 1025269. doi: 10.3389/fneur.2022.1025269 PMID: 36438946
- Miyaoka, T.; Furuya, M.; Horiguchi, J.; Wake, R.; Hashioka, S.; Tohyama, M.; Mori, N.; Minabe, Y.; Iyo, M.; Ueno, S.; Ezoe, S.; Murotani, K.; Hoshino, S.; Seno, H. Efficacy and safety of yokukansan in treatment-resistant schizophrenia: A randomized, double-blind, placebo-controlled trial (a positive and negative syndrome scale, five-factor analysis). Psychopharmacology, 2015, 232(1), 155-164. doi: 10.1007/s00213-014-3645-8 PMID: 24923986
- Chi, Z.; Guo, R-J.; Ren, F-F. Network pharmacological analysis on the active ingredients of Yigan Powder in treating Alzheimers disease with depressive disorder. Hainan Yixueyuan Xuebao, 2022, 28(2), 124-134.
- Yang, H.; Zhang, W.; Huang, C.; Zhou, W.; Yao, Y.; Wang, Z.; Li, Y.; Xiao, W.; Wang, Y. A novel systems pharmacology model for herbal medicine injection: A case using reduning injection. BMC Complement. Altern. Med., 2014, 14(1), 430. doi: 10.1186/1472-6882-14-430 PMID: 25366653
- Zhang, Y.; Yuan, T.; Li, Y.; Wu, N.; Dai, X. Network pharmacology analysis of the mechanisms of compound herba sarcandrae (Fufang Zhongjiefeng) aerosol in chronic pharyngitis treatment. Drug Des. Devel. Ther., 2021, 15, 2783-2803. doi: 10.2147/DDDT.S304708 PMID: 34234411
- Zhang, R.; Zhu, X.; Bai, H.; Ning, K. Network pharmacology databases for traditional Chinese medicine: Review and assessment. Front Pharmacol, 2019, 10, 123. doi: 10.3389/fphar.2019.00123
- Green, O.; Bader, D.A. Faster betweenness centrality based on data structure experimentation. Procedia Comput. Sci., 2013, 18, 399-408. doi: 10.1016/j.procs.2013.05.203
- Alighiarloo, S.N.; Taghizadeh, M.; Tavirani, R.M.; Goliaei, B.; Peyvandi, A.A. Protein-protein interaction networks (PPI) and complex diseases. Gastroenterol. Hepatol. Bed Bench, 2014, 7(1), 17-31. PMID: 25436094
- von Mering, C. STRING: Known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res., 2005, 33, D433-D437. doi: 10.1093/nar/gki005
- Harris, M. A.; J Clark; Ireland, A; Lomax, J.; Ashburner, M.; Foulger, R.; Eilbeck, K.; Lewis, S.; Marshall, B.; Mungall, C.; Richter, J.; Rubin, G.M.; Blake, J.A.; Bult, C.; Dolan, M.; Drabkin, H.; Eppig, J.T.; Hill, D.P.; Ni, L.; Ringwald, M.; Balakrishnan, R. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res., 2004, 32, D258-D261. doi: 10.1093/nar/gkh036
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461. doi: 10.1002/jcc.21334 PMID: 19499576
- Kleywegt, G.J.; Jones, A.T. Model building and refinement practice. In: Methods in Enzymology; Elsevier, 1997; 277, pp. 208-230. doi: 10.1016/S0076-6879(97)77013-7
- Read, R.J. A new generation of crystallographic validation tools for the protein data bank. Structure, 2011, 19(10), 1395-1412.
- Kushida, H.; Matsumoto, T.; Ikarashi, Y. Properties, pharmacology, and pharmacokinetics of active indole and oxindole alkaloids in Uncaria hook. Front. Pharmacol., 2021, 12, 688670. doi: 10.3389/fphar.2021.688670 PMID: 34335255
- Alvira, D.; Tajes, M.; Verdaguer, E.; Castroviejo, A.D.; Folch, J.; Camins, A.; Pallas, M. Inhibition of the cdk5/p25 fragment formation may explain the antiapoptotic effects of melatonin in an experimental model of Parkinsons disease. J. Pineal Res., 2006, 40(3), 251-258. doi: 10.1111/j.1600-079X.2005.00308.x PMID: 16499562
- Haque, M.N.; Hannan, M.A.; Dash, R.; Choi, S.M.; Moon, I.S. The potential LXRβ agonist stigmasterol protects against hypoxia/reoxygenation injury by modulating mitophagy in primary hippocampal neurons. Phytomedicine, 2021, 81, 153415. doi: 10.1016/j.phymed.2020.153415 PMID: 33285471
- Mongkolpobsin, K.; Sillapachaiyaporn, C.; Nilkhet, S.; Tencomnao, T.; Baek, S.J. Stigmasterol isolated from Azadirachta indica flowers attenuated glutamate-induced neurotoxicity via downregulation of the Cdk5/p35/p25 signaling pathway in the HT-22 cells. Phytomedicine, 2023, 113, 154728. doi: 10.1016/j.phymed.2023.154728 PMID: 36898255
- Pan, X.; Liu, X.; Zhao, H.; Wu, B.; Liu, G. Antioxidant, anti-inflammatory and neuroprotective effect of kaempferol on rotenone-induced Parkinsons disease model of rats and SH-S5Y5 cells by preventing loss of tyrosine hydroxylase. J. Funct. Foods, 2020, 74, 104140. doi: 10.1016/j.jff.2020.104140
- Abdullah, A.; Ravanan, P. Kaempferol mitigates endoplasmic reticulum stress induced cell death by targeting caspase 3/7. Sci. Rep., 2018, 8(1), 2189. doi: 10.1038/s41598-018-20499-7 PMID: 29391535
- Filomeni, G.; Graziani, I.; De Zio, D.; Dini, L.; Centonze, D.; Rotilio, G.; Ciriolo, M.R. Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: Possible implications for Parkinsons disease. Neurobiol. Aging, 2012, 33(4), 767-785. doi: 10.1016/j.neurobiolaging.2010.05.021 PMID: 20594614
- Wu, A.G.; Zeng, W.; Wong, V.K.W.; Zhu, Y.Z.; Lo, A.C.Y.; Liu, L.; Law, B.Y.K. Hederagenin and α-hederin promote degradation of proteins in neurodegenerative diseases and improve motor deficits in MPTP-mice. Pharmacol. Res., 2017, 115, 25-44. doi: 10.1016/j.phrs.2016.11.002 PMID: 27838509
- Karthikkeyan, G.; Pervaje, R.; Pervaje, S.K.; Prasad, T.S.K.; Modi, P.K. Prevention of MEK-ERK-1/2 hyper-activation underlines the neuroprotective effect of Glycyrrhiza glabra L. (Yashtimadhu) against rotenone-induced cellular and molecular aberrations. J. Ethnopharmacol., 2021, 274, 114025. doi: 10.1016/j.jep.2021.114025 PMID: 33775804
- Muchandi, A.A.; Dhawale, S.C. Protective effects of ethanolic extract of Piper cubeba L. on D-galactose induced neuronal lipofuscinogenesis in albino rats. Sci. Eng. Health Stud., 2018, 12(1), 11-17. doi: 10.14456/sehs.2018.8
- Sanguanphun, T.; Promtang, S.; Sornkaew, N.; Niamnont, N.; Sobhon, P.; Meemon, K. Anti-parkinson effects of Holothuria leucospilota-derived palmitic acid in Caenorhabditis elegans model of Parkinsons disease. Mar. Drugs, 2023, 21(3), 141. doi: 10.3390/md21030141 PMID: 36976190
- Tian, Q.; Wang, L.; Sun, X.; Zeng, F.; Pan, Q.; Xue, M. Scopoletin exerts anticancer effects on human cervical cancer cell lines by triggering apoptosis, cell cycle arrest, inhibition of cell invasion and PI3K/AKT signalling pathway. J. BUON Off. J. Balk. Union Oncol., 2019, 24(3), 997-1002. PMID: 31424653
- Zhu, S.; Jiao, W.; Xu, Y.; Hou, L.; Li, H.; Shao, J.; Zhang, X.; Wang, R.; Kong, D. Palmitic acid inhibits prostate cancer cell proliferation and metastasis by suppressing the PI3K/Akt pathway. Life Sci., 2021, 286, 120046. doi: 10.1016/j.lfs.2021.120046 PMID: 34653428
- Jung, H.Y.; Nam, K.N.; Woo, B.C.; Kim, K.P.; Kim, S.O.; Lee, E.H. Hirsutine, an indole alkaloid of Uncaria rhynchophylla, inhibits inflammation-mediated neurotoxicity and microglial activation. Mol. Med. Rep., 2013, 7(1), 154-158. doi: 10.3892/mmr.2012.1135 PMID: 23117160
- Zheng, M.; Chen, M.; Wang, W.; Zhou, M.; Liu, C.; Fan, Y.; Shi, D. Protection by rhynchophylline against MPTP/MPP+-induced neurotoxicity via regulating PI3K/Akt pathway. J. Ethnopharmacol., 2021, 268, 113568. doi: 10.1016/j.jep.2020.113568 PMID: 33188898
- Terada, K.; Matsushima, Y.; Matsunaga, K.; Takata, J.; Karube, Y.; Ishige, A.; Chiba, K. The Kampo medicine Yokukansan (YKS) enhances nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. Bosn. J. Basic Med. Sci., 2017, 18(3), 224-233. doi: 10.17305/bjbms.2017.2248 PMID: 28961087
- Chen, L.; Huang, Y.; Yu, X.; Lu, J.; Jia, W.; Song, J.; Liu, L.; Wang, Y.; Huang, Y.; Xie, J.; Li, M. Corynoxine protects dopaminergic neurons through inducing autophagy and diminishing neuroinflammation in rotenone-induced animal models of Parkinsons disease. Front. Pharmacol., 2021, 12, 642900. doi: 10.3389/fphar.2021.642900 PMID: 33927622
- Doo, A.R.; Kim, S.N.; Park, J.Y.; Cho, K.H.; Hong, J.; Eun-Kyung, K.; Moon, S.K.; Jung, W.S.; Lee, H.; Jung, J.H.; Park, H.J. Neuroprotective effects of an herbal medicine, Yi-Gan San on MPP+/MPTP-induced cytotoxicity in vitro and in vivo. J. Ethnopharmacol., 2010, 131(2), 433-442. doi: 10.1016/j.jep.2010.07.008 PMID: 20633628
- Xian, Y.F.; Lin, Z.X.; Mao, Q.Q.; Ip, S.P.; Su, Z.R.; Lai, X.P. Protective effect of isorhynchophylline against β-amyloid-induced neurotoxicity in PC12 cells. Cell. Mol. Neurobiol., 2012, 32(3), 353-360. doi: 10.1007/s10571-011-9763-5 PMID: 22042506
- Zhao, Y.R.; Qu, W.; Liu, W.Y.; Hong, H.; Feng, F.; Chen, H.; Xie, N. YGS40, an active fraction of Yi-Gan San, reduces hydrogen peroxide-induced apoptosis in PC12 cells. Chin. J. Nat. Med., 2015, 13(6), 438-444. doi: 10.1016/S1875-5364(15)30037-6 PMID: 26073340
- Beg, T.; Jyoti, S.; Naz, F.; Rahul; Ali, F.; Ali, S.K.; Reyad, A.M.; Siddique, Y.H. Protective effect of kaempferol on the transgenic drosophila model of Alzheimers disease. CNS Neurol. Disord. Drug Targets, 2018, 17(6), 421-429. doi: 10.2174/1871527317666180508123050 PMID: 29745345
- Sekar, S.; Taghibiglou, C. Nuclear accumulation of GAPDH, GluA2 and p53 in post-mortem substantia nigral region of patients with Parkinsons disease. Neurosci. Lett., 2020, 716, 134641. doi: 10.1016/j.neulet.2019.134641 PMID: 31759082
- Tatton, N.A. Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinsons disease. Exp. Neurol., 2000, 166(1), 29-43. doi: 10.1006/exnr.2000.7489 PMID: 11031081
- Yamaguchi, K.; Yamazaki, S.; Kumakura, S.; Someya, A.; Iseki, M.; Inada, E.; Nagaoka, I. Yokukansan, a Japanese herbal medicine, suppresses substance P-induced production of interleukin-6 and interleukin-8 by human U373 MG glioblastoma astrocytoma cells. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(7), 1073-1080. doi: 10.2174/1871530320666200131103733 PMID: 32003704
- Ebisawa, S.; Andoh, T.; Shimada, Y.; Kuraishi, Y. Yokukansan improves mechanical allodynia through the regulation of interleukin-6 expression in the spinal cord in mice with neuropathic pain. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-8. doi: 10.1155/2015/870687 PMID: 25866544
- Lian, T.H.; Guo, P.; Zuo, L.J.; Hu, Y.; Yu, S.Y.; Yu, Q.J.; Jin, Z.; Wang, R.D.; Li, L.X.; Zhang, W. Tremor-dominant in parkinson disease: The relevance to iron metabolism and inflammation. Front. Neurosci., 2019, 13, 255. doi: 10.3389/fnins.2019.00255 PMID: 30971879
- Derk, J.; MacLean, M.; Juranek, J.; Schmidt, A.M. The receptor for advanced glycation endproducts (RAGE) and mediation of inflammatory neurodegeneration. J. Alzheimers Dis. Parkinsonism, 2018, 8(1), 421. doi: 10.4172/2161-0460.1000421 PMID: 30560011
- Tang, X.; Lu, J.; Chen, H.; Zhai, L.; Zhang, Y.; Lou, H.; Wang, Y.; Sun, L.; Song, B. Underlying mechanism and active ingredients of tianma gouteng acting on cerebral infarction as determined via network pharmacology analysis combined with experimental validation. Front. Pharmacol., 2021, 12, 760503. doi: 10.3389/fphar.2021.760503 PMID: 34867377
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263. doi: 10.1093/nar/gky318 PMID: 29718510
- Bickerton, G.R.; Paolini, G.V.; Besnard, J.; Muresan, S.; Hopkins, A.L. Quantifying the chemical beauty of drugs. Nat. Chem., 2012, 4(2), 90-98. doi: 10.1038/nchem.1243 PMID: 22270643
- Hou, W.C.; Lin, R.D.; Chen, C.T.; Lee, M.H. Monoamine oxidase B (MAO-B) inhibition by active principles from Uncaria rhynchophylla. J. Ethnopharmacol., 2005, 100(1-2), 216-220. doi: 10.1016/j.jep.2005.03.017 PMID: 15890481
- Ishida, Y.; Ebihara, K.; Tabuchi, M.; Imamura, S.; Sekiguchi, K.; Mizoguchi, K.; Kase, Y.; Koganemaru, G.; Abe, H.; Ikarashi, Y. Yokukansan, a traditional japanese medicine, enhances the L-DOPA-induced rotational response in 6-hydroxydopamine-lesioned rats: Possible inhibition of COMT. Biol. Pharm. Bull., 2016, 39(1), 104-113. doi: 10.1248/bpb.b15-00691 PMID: 26725433
- Xu, Y.; Wang, R.; Hou, T.; Li, H.; Han, Y.; Li, Y.; Xu, L.; Lu, S.; Liu, L.; Cheng, J.; Wang, J.; Xu, Q.; Liu, Y.; Liang, X. Uncariphyllin A-J, indole alkaloids from Uncaria rhynchophylla as antagonists of dopamine D2 and Mu opioid receptors. Bioorg. Chem., 2023, 130, 106257. doi: 10.1016/j.bioorg.2022.106257 PMID: 36375349
- Zhong, Y.; Liu, H.; Liu, G.; Zhao, L.; Dai, C.; Liang, Y.; Du, J.; Zhou, X.; Mo, L.; Tan, C.; Tan, X.; Deng, F.; Liu, X.; Chen, L. A review on pathology, mechanism, and therapy for cerebellum and tremor in Parkinsons disease. NPJ Parkinsons Dis., 2022, 8(1), 82. doi: 10.1038/s41531-022-00347-2 PMID: 35750692
- Ahsas Goyal, W.; Chisti, W.; Verma, A.; Agrawal, N.; Bansal, K. The role of the serotonergic system of the brain in the pathogenesis of Parkinsons disease. Neurochem. J., 2023, 17(1), 30-41. doi: 10.1134/S181971242301004X
- Dirkx, M.F.; Bologna, M. The pathophysiology of Parkinsons disease tremor. J. Neurol. Sci., 2022, 435, 120196. doi: 10.1016/j.jns.2022.120196 PMID: 35240491
- Luo, T.; Lu, Y.; Yan, S.; Xiao, X.; Rong, X.; Guo, J. Network pharmacology in research of Chinese medicine formula: Methodology, application and prospective. Chin. J. Integr. Med., 2020, 26(1), 72-80. doi: 10.1007/s11655-019-3064-0 PMID: 30941682
- Wang, X.; Wang, Z.Y.; Zheng, J.H.; Li, S. TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches. Chin. J. Nat. Med., 2021, 19(1), 1-11. doi: 10.1016/S1875-5364(21)60001-8 PMID: 33516447
Supplementary files
