Predictive Analysis of Yi-Gai-San's Multifaceted Mechanisms for Tremor-dominant Parkinson's Disease via Network Pharmacology and Molecular Docking Validation


Cite item

Full Text

Abstract

Introduction:Yi-Gan-San, Parkinson's disease, tremor-dominant, network pharmacology, molecular docking, Uncaria rhynchophylla.

Methods:We identified 75 active compounds within YGS. From these, we predicted 110 gene targets, which exhibited a direct association with PD-DT. PPI network results highlighted core target proteins, including TP53, SLC6A3, GAPDH, MAOB, AKT, BAX, IL6, BCL2, PKA, and CASP3. These proteins potentially alleviate PD-DT by targeting inflammation, modulating neuronal cell apoptosis, and regulating the dopamine system. Furthermore, GO and KEGG enrichment analyses emphasized that YGS might influence various mechanisms, such as the apoptotic process, mitochondrial autophagy, Age-Rage signaling, and dopaminergic and serotonergic synapses. The core proteins from the PPI analysis were selected for the docking experiment.

Results:The docking results demonstrated that the most stable ligand-receptor conformations were kaempferol with CASP3 (-9.5 kcal/mol), stigmasterol with SLC6A3 (-10.5 kcal/mol), shinpterocarpin with BCL2L1 (-9.6 kcal/mol), hirsutine with MAOB (-9.7 kcal/mol), hederagenin with PRKACA (-9.8 kcal/mol), and yatein with GAPDH (-9.8 kcal/mol). These results provide us with research objectives for future endeavors in extracting single compounds for drug manufacturing or in-depth studies on drug mechanisms.

Conclusion:From these computational findings, we suggested that YGS might mitigate PD-DT via "multi-compounds, multi-targets, and multi-pathways."

About the authors

Chih-Ting Lin

The School of Chinese Medicine for Post-Baccalaureate, I-Shou University

Email: info@benthamscience.net

Lung-Yuan Wu

The School of Chinese Medicine for Post-Baccalaureate, I-Shou University,

Email: info@benthamscience.net

Fan-Shiu Tsai

The School of Chinese Medicine for Post-Baccalaureate, I-Shou University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. Lancet, 2021, 397(10291), 2284-2303. doi: 10.1016/S0140-6736(21)00218-X PMID: 33848468
  2. Hallett, M. Parkinson’s disease tremor: Pathophysiology. Parkinsonism Relat. Disord., 2012, 18(S2), S85-S86. doi: 10.1016/S1353-8020(11)70027-X PMID: 22166464
  3. Thenganatt, M.A.; Jankovic, J. Parkinson disease subtypes. JAMA Neurol., 2014, 71(4), 499-504. doi: 10.1001/jamaneurol.2013.6233 PMID: 24514863
  4. Xiong, W.; Li, L.F.; Huang, L.; Liu, Y.; Xia, Z.C.; Zhou, X.X.; Tang, B.S.; Guo, J.F.; Lei, L.F. Different iron deposition patterns in akinetic/rigid-dominant and tremor-dominant Parkinson’s disease. Clin. Neurol. Neurosurg., 2020, 198, 106181. doi: 10.1016/j.clineuro.2020.106181 PMID: 33022525
  5. Jankovic, J. Parkinson’s disease tremors and serotonin. Brain, 2018, 141(3), 624-626. doi: 10.1093/brain/awx361 PMID: 30063797
  6. Bandres-Ciga, S.; Diez-Fairen, M.; Kim, J.J.; Singleton, A.B. Genetics of Parkinson’s disease: An introspection of its journey towards precision medicine. Neurobiol. Dis., 2020, 137, 104782. doi: 10.1016/j.nbd.2020.104782 PMID: 31991247
  7. Langston, R.G.; Beilina, A.; Reed, X.; Kaganovich, A.; Singleton, A.B.; Blauwendraat, C.; Gibbs, J.R.; Cookson, M.R. Association of a common genetic variant with Parkinson’s disease is mediated by microglia. Sci. Transl. Med., 2022, 14(655), eabp8869. doi: 10.1126/scitranslmed.abp8869 PMID: 35895835
  8. Armstrong, M.J.; Okun, M.S. Diagnosis and treatment of parkinson disease. JAMA, 2020, 323(6), 548-560. doi: 10.1001/jama.2019.22360 PMID: 32044947
  9. Stibe, C.M.H.; Kempster, P.A.; Lees, A.J.; Stern, G.M. Subcutaneous apomorphine in parkinsonian on-off oscillations. Lancet, 1988, 331(8582), 403-406. doi: 10.1016/S0140-6736(88)91193-2 PMID: 2893200
  10. Borovac, J.A. Side effects of a dopamine agonist therapy for Parkinson’s disease: A mini-review of clinical pharmacology. Yale J. Biol. Med., 2016, 89(1), 37-47. PMID: 27505015
  11. Li, X.; Zhang, Y.; Wang, Y.; Xu, J.; Xin, P.; Meng, Y.; Wang, Q.; Kuang, H. The mechanisms of traditional Chinese medicine underlying the prevention and treatment of Parkinson’s disease. Front. Pharmacol., 2017, 8, 634. doi: 10.3389/fphar.2017.00634 PMID: 28970800
  12. Zhang, G.; Xiong, N.; Zhang, Z.; Liu, L.; Huang, J.; Yang, J.; Wu, J.; Lin, Z.; Wang, T. Effectiveness of traditional Chinese medicine as an adjunct therapy for Parkinson’s disease: A systematic review and meta-analysis. PLoS One, 2015, 10(3), e0118498. doi: 10.1371/journal.pone.0118498 PMID: 25756963
  13. Zhang, J.; Ma, Y.; Shen, X. Evaluation on the efficacy and safety of chinese herbal medication xifeng dingchan pill in treating Parkinson’s disease: Study protocol of a multicenter, open-label, randomized active-controlled trial. J. Integr. Med., 2013, 11(4), 285-290. doi: 10.3736/jintegrmed2013035 PMID: 23867247
  14. Taiwan Herbal Pharmacopeia, 4th ed; Taiwan Ministry of Health and Welfare, 2022.
  15. Shinno, H.; Utani, E.; Okazaki, S.; Kawamukai, T.; Yasuda, H.; Inagaki, T.; Inami, Y.; Horiguchi, J. Successful treatment with Yi-Gan San for psychosis and sleep disturbance in a patient with dementia with Lewy bodies. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2007, 31(7), 1543-1545. doi: 10.1016/j.pnpbp.2007.07.002 PMID: 17688986
  16. Miyaoka, T.; Furuya, M.; Yasuda, H.; Hayashida, M.; Nishida, A.; Inagaki, T.; Horiguchi, J. Yi-gan san for the treatment of neuroleptic-induced tardive dyskinesia: An open-label study. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2008, 32(3), 761-764. doi: 10.1016/j.pnpbp.2007.12.003 PMID: 18201810
  17. Hu, S.; Mak, S.; Zuo, X.; Li, H.; Wang, Y.; Han, Y. Neuroprotection against MPP+-induced cytotoxicity through the activation of PI3-K/Akt/GSK3β/MEF2D signaling pathway by rhynchophylline, the major tetracyclic oxindole alkaloid isolated from Uncaria rhynchophylla. Front. Pharmacol., 2018, 9, 768. doi: 10.3389/fphar.2018.00768 PMID: 30072894
  18. Zheng, M.; Chen, M.; Liu, C.; Fan, Y.; Shi, D. Alkaloids extracted from Uncaria rhynchophylla demonstrate neuroprotective effects in MPTP-induced experimental parkinsonism by regulating the PI3K/Akt/mTOR signaling pathway. J. Ethnopharmacol., 2021, 266, 113451. doi: 10.1016/j.jep.2020.113451 PMID: 33049346
  19. Hatano, T. An exploratory study of the efficacy and safety of yokukansan for neuropsychiatric symptoms in patients with Parkinson’s disease. J. Neural. Transm, 2014, 121(3), 275-281. doi: 10.1007/s00702-013-1105-y
  20. Jin, C.; Cho, K.H.; Kwon, S.; Lee, H.G.; Kim, T.H.; Jung, W.S.; Moon, S.K.; Cho, S.Y.; Kang, B.K.; Park, J.M.; Park, H.J.; Ko, C.N. Effectiveness and safety of herbal medicine Ukgansan for clinical symptoms in Parkinson’s disease: A pilot, randomized, assessor-blinded clinical trial. Front. Neurol., 2022, 13, 1025269. doi: 10.3389/fneur.2022.1025269 PMID: 36438946
  21. Miyaoka, T.; Furuya, M.; Horiguchi, J.; Wake, R.; Hashioka, S.; Tohyama, M.; Mori, N.; Minabe, Y.; Iyo, M.; Ueno, S.; Ezoe, S.; Murotani, K.; Hoshino, S.; Seno, H. Efficacy and safety of yokukansan in treatment-resistant schizophrenia: A randomized, double-blind, placebo-controlled trial (a positive and negative syndrome scale, five-factor analysis). Psychopharmacology, 2015, 232(1), 155-164. doi: 10.1007/s00213-014-3645-8 PMID: 24923986
  22. Chi, Z.; Guo, R-J.; Ren, F-F. Network pharmacological analysis on the active ingredients of Yigan Powder in treating Alzheimer’s disease with depressive disorder. Hainan Yixueyuan Xuebao, 2022, 28(2), 124-134.
  23. Yang, H.; Zhang, W.; Huang, C.; Zhou, W.; Yao, Y.; Wang, Z.; Li, Y.; Xiao, W.; Wang, Y. A novel systems pharmacology model for herbal medicine injection: A case using reduning injection. BMC Complement. Altern. Med., 2014, 14(1), 430. doi: 10.1186/1472-6882-14-430 PMID: 25366653
  24. Zhang, Y.; Yuan, T.; Li, Y.; Wu, N.; Dai, X. Network pharmacology analysis of the mechanisms of compound herba sarcandrae (Fufang Zhongjiefeng) aerosol in chronic pharyngitis treatment. Drug Des. Devel. Ther., 2021, 15, 2783-2803. doi: 10.2147/DDDT.S304708 PMID: 34234411
  25. Zhang, R.; Zhu, X.; Bai, H.; Ning, K. Network pharmacology databases for traditional Chinese medicine: Review and assessment. Front Pharmacol, 2019, 10, 123. doi: 10.3389/fphar.2019.00123
  26. Green, O.; Bader, D.A. Faster betweenness centrality based on data structure experimentation. Procedia Comput. Sci., 2013, 18, 399-408. doi: 10.1016/j.procs.2013.05.203
  27. Alighiarloo, S.N.; Taghizadeh, M.; Tavirani, R.M.; Goliaei, B.; Peyvandi, A.A. Protein-protein interaction networks (PPI) and complex diseases. Gastroenterol. Hepatol. Bed Bench, 2014, 7(1), 17-31. PMID: 25436094
  28. von Mering, C. STRING: Known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res., 2005, 33, D433-D437. doi: 10.1093/nar/gki005
  29. Harris, M. A.; J Clark; Ireland, A; Lomax, J.; Ashburner, M.; Foulger, R.; Eilbeck, K.; Lewis, S.; Marshall, B.; Mungall, C.; Richter, J.; Rubin, G.M.; Blake, J.A.; Bult, C.; Dolan, M.; Drabkin, H.; Eppig, J.T.; Hill, D.P.; Ni, L.; Ringwald, M.; Balakrishnan, R. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res., 2004, 32, D258-D261. doi: 10.1093/nar/gkh036
  30. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461. doi: 10.1002/jcc.21334 PMID: 19499576
  31. Kleywegt, G.J.; Jones, A.T. Model building and refinement practice. In: Methods in Enzymology; Elsevier, 1997; 277, pp. 208-230. doi: 10.1016/S0076-6879(97)77013-7
  32. Read, R.J. A new generation of crystallographic validation tools for the protein data bank. Structure, 2011, 19(10), 1395-1412.
  33. Kushida, H.; Matsumoto, T.; Ikarashi, Y. Properties, pharmacology, and pharmacokinetics of active indole and oxindole alkaloids in Uncaria hook. Front. Pharmacol., 2021, 12, 688670. doi: 10.3389/fphar.2021.688670 PMID: 34335255
  34. Alvira, D.; Tajes, M.; Verdaguer, E.; Castroviejo, A.D.; Folch, J.; Camins, A.; Pallas, M. Inhibition of the cdk5/p25 fragment formation may explain the antiapoptotic effects of melatonin in an experimental model of Parkinson’s disease. J. Pineal Res., 2006, 40(3), 251-258. doi: 10.1111/j.1600-079X.2005.00308.x PMID: 16499562
  35. Haque, M.N.; Hannan, M.A.; Dash, R.; Choi, S.M.; Moon, I.S. The potential LXRβ agonist stigmasterol protects against hypoxia/reoxygenation injury by modulating mitophagy in primary hippocampal neurons. Phytomedicine, 2021, 81, 153415. doi: 10.1016/j.phymed.2020.153415 PMID: 33285471
  36. Mongkolpobsin, K.; Sillapachaiyaporn, C.; Nilkhet, S.; Tencomnao, T.; Baek, S.J. Stigmasterol isolated from Azadirachta indica flowers attenuated glutamate-induced neurotoxicity via downregulation of the Cdk5/p35/p25 signaling pathway in the HT-22 cells. Phytomedicine, 2023, 113, 154728. doi: 10.1016/j.phymed.2023.154728 PMID: 36898255
  37. Pan, X.; Liu, X.; Zhao, H.; Wu, B.; Liu, G. Antioxidant, anti-inflammatory and neuroprotective effect of kaempferol on rotenone-induced Parkinson’s disease model of rats and SH-S5Y5 cells by preventing loss of tyrosine hydroxylase. J. Funct. Foods, 2020, 74, 104140. doi: 10.1016/j.jff.2020.104140
  38. Abdullah, A.; Ravanan, P. Kaempferol mitigates endoplasmic reticulum stress induced cell death by targeting caspase 3/7. Sci. Rep., 2018, 8(1), 2189. doi: 10.1038/s41598-018-20499-7 PMID: 29391535
  39. Filomeni, G.; Graziani, I.; De Zio, D.; Dini, L.; Centonze, D.; Rotilio, G.; Ciriolo, M.R. Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: Possible implications for Parkinson’s disease. Neurobiol. Aging, 2012, 33(4), 767-785. doi: 10.1016/j.neurobiolaging.2010.05.021 PMID: 20594614
  40. Wu, A.G.; Zeng, W.; Wong, V.K.W.; Zhu, Y.Z.; Lo, A.C.Y.; Liu, L.; Law, B.Y.K. Hederagenin and α-hederin promote degradation of proteins in neurodegenerative diseases and improve motor deficits in MPTP-mice. Pharmacol. Res., 2017, 115, 25-44. doi: 10.1016/j.phrs.2016.11.002 PMID: 27838509
  41. Karthikkeyan, G.; Pervaje, R.; Pervaje, S.K.; Prasad, T.S.K.; Modi, P.K. Prevention of MEK-ERK-1/2 hyper-activation underlines the neuroprotective effect of Glycyrrhiza glabra L. (Yashtimadhu) against rotenone-induced cellular and molecular aberrations. J. Ethnopharmacol., 2021, 274, 114025. doi: 10.1016/j.jep.2021.114025 PMID: 33775804
  42. Muchandi, A.A.; Dhawale, S.C. Protective effects of ethanolic extract of Piper cubeba L. on D-galactose induced neuronal lipofuscinogenesis in albino rats. Sci. Eng. Health Stud., 2018, 12(1), 11-17. doi: 10.14456/sehs.2018.8
  43. Sanguanphun, T.; Promtang, S.; Sornkaew, N.; Niamnont, N.; Sobhon, P.; Meemon, K. Anti-parkinson effects of Holothuria leucospilota-derived palmitic acid in Caenorhabditis elegans model of Parkinson’s disease. Mar. Drugs, 2023, 21(3), 141. doi: 10.3390/md21030141 PMID: 36976190
  44. Tian, Q.; Wang, L.; Sun, X.; Zeng, F.; Pan, Q.; Xue, M. Scopoletin exerts anticancer effects on human cervical cancer cell lines by triggering apoptosis, cell cycle arrest, inhibition of cell invasion and PI3K/AKT signalling pathway. J. BUON Off. J. Balk. Union Oncol., 2019, 24(3), 997-1002. PMID: 31424653
  45. Zhu, S.; Jiao, W.; Xu, Y.; Hou, L.; Li, H.; Shao, J.; Zhang, X.; Wang, R.; Kong, D. Palmitic acid inhibits prostate cancer cell proliferation and metastasis by suppressing the PI3K/Akt pathway. Life Sci., 2021, 286, 120046. doi: 10.1016/j.lfs.2021.120046 PMID: 34653428
  46. Jung, H.Y.; Nam, K.N.; Woo, B.C.; Kim, K.P.; Kim, S.O.; Lee, E.H. Hirsutine, an indole alkaloid of Uncaria rhynchophylla, inhibits inflammation-mediated neurotoxicity and microglial activation. Mol. Med. Rep., 2013, 7(1), 154-158. doi: 10.3892/mmr.2012.1135 PMID: 23117160
  47. Zheng, M.; Chen, M.; Wang, W.; Zhou, M.; Liu, C.; Fan, Y.; Shi, D. Protection by rhynchophylline against MPTP/MPP+-induced neurotoxicity via regulating PI3K/Akt pathway. J. Ethnopharmacol., 2021, 268, 113568. doi: 10.1016/j.jep.2020.113568 PMID: 33188898
  48. Terada, K.; Matsushima, Y.; Matsunaga, K.; Takata, J.; Karube, Y.; Ishige, A.; Chiba, K. The Kampo medicine Yokukansan (YKS) enhances nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. Bosn. J. Basic Med. Sci., 2017, 18(3), 224-233. doi: 10.17305/bjbms.2017.2248 PMID: 28961087
  49. Chen, L.; Huang, Y.; Yu, X.; Lu, J.; Jia, W.; Song, J.; Liu, L.; Wang, Y.; Huang, Y.; Xie, J.; Li, M. Corynoxine protects dopaminergic neurons through inducing autophagy and diminishing neuroinflammation in rotenone-induced animal models of Parkinson’s disease. Front. Pharmacol., 2021, 12, 642900. doi: 10.3389/fphar.2021.642900 PMID: 33927622
  50. Doo, A.R.; Kim, S.N.; Park, J.Y.; Cho, K.H.; Hong, J.; Eun-Kyung, K.; Moon, S.K.; Jung, W.S.; Lee, H.; Jung, J.H.; Park, H.J. Neuroprotective effects of an herbal medicine, Yi-Gan San on MPP+/MPTP-induced cytotoxicity in vitro and in vivo. J. Ethnopharmacol., 2010, 131(2), 433-442. doi: 10.1016/j.jep.2010.07.008 PMID: 20633628
  51. Xian, Y.F.; Lin, Z.X.; Mao, Q.Q.; Ip, S.P.; Su, Z.R.; Lai, X.P. Protective effect of isorhynchophylline against β-amyloid-induced neurotoxicity in PC12 cells. Cell. Mol. Neurobiol., 2012, 32(3), 353-360. doi: 10.1007/s10571-011-9763-5 PMID: 22042506
  52. Zhao, Y.R.; Qu, W.; Liu, W.Y.; Hong, H.; Feng, F.; Chen, H.; Xie, N. YGS40, an active fraction of Yi-Gan San, reduces hydrogen peroxide-induced apoptosis in PC12 cells. Chin. J. Nat. Med., 2015, 13(6), 438-444. doi: 10.1016/S1875-5364(15)30037-6 PMID: 26073340
  53. Beg, T.; Jyoti, S.; Naz, F.; Rahul; Ali, F.; Ali, S.K.; Reyad, A.M.; Siddique, Y.H. Protective effect of kaempferol on the transgenic drosophila model of Alzheimer’s disease. CNS Neurol. Disord. Drug Targets, 2018, 17(6), 421-429. doi: 10.2174/1871527317666180508123050 PMID: 29745345
  54. Sekar, S.; Taghibiglou, C. Nuclear accumulation of GAPDH, GluA2 and p53 in post-mortem substantia nigral region of patients with Parkinson’s disease. Neurosci. Lett., 2020, 716, 134641. doi: 10.1016/j.neulet.2019.134641 PMID: 31759082
  55. Tatton, N.A. Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp. Neurol., 2000, 166(1), 29-43. doi: 10.1006/exnr.2000.7489 PMID: 11031081
  56. Yamaguchi, K.; Yamazaki, S.; Kumakura, S.; Someya, A.; Iseki, M.; Inada, E.; Nagaoka, I. Yokukansan, a Japanese herbal medicine, suppresses substance P-induced production of interleukin-6 and interleukin-8 by human U373 MG glioblastoma astrocytoma cells. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(7), 1073-1080. doi: 10.2174/1871530320666200131103733 PMID: 32003704
  57. Ebisawa, S.; Andoh, T.; Shimada, Y.; Kuraishi, Y. Yokukansan improves mechanical allodynia through the regulation of interleukin-6 expression in the spinal cord in mice with neuropathic pain. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-8. doi: 10.1155/2015/870687 PMID: 25866544
  58. Lian, T.H.; Guo, P.; Zuo, L.J.; Hu, Y.; Yu, S.Y.; Yu, Q.J.; Jin, Z.; Wang, R.D.; Li, L.X.; Zhang, W. Tremor-dominant in parkinson disease: The relevance to iron metabolism and inflammation. Front. Neurosci., 2019, 13, 255. doi: 10.3389/fnins.2019.00255 PMID: 30971879
  59. Derk, J.; MacLean, M.; Juranek, J.; Schmidt, A.M. The receptor for advanced glycation endproducts (RAGE) and mediation of inflammatory neurodegeneration. J. Alzheimers Dis. Parkinsonism, 2018, 8(1), 421. doi: 10.4172/2161-0460.1000421 PMID: 30560011
  60. Tang, X.; Lu, J.; Chen, H.; Zhai, L.; Zhang, Y.; Lou, H.; Wang, Y.; Sun, L.; Song, B. Underlying mechanism and active ingredients of tianma gouteng acting on cerebral infarction as determined via network pharmacology analysis combined with experimental validation. Front. Pharmacol., 2021, 12, 760503. doi: 10.3389/fphar.2021.760503 PMID: 34867377
  61. Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263. doi: 10.1093/nar/gky318 PMID: 29718510
  62. Bickerton, G.R.; Paolini, G.V.; Besnard, J.; Muresan, S.; Hopkins, A.L. Quantifying the chemical beauty of drugs. Nat. Chem., 2012, 4(2), 90-98. doi: 10.1038/nchem.1243 PMID: 22270643
  63. Hou, W.C.; Lin, R.D.; Chen, C.T.; Lee, M.H. Monoamine oxidase B (MAO-B) inhibition by active principles from Uncaria rhynchophylla. J. Ethnopharmacol., 2005, 100(1-2), 216-220. doi: 10.1016/j.jep.2005.03.017 PMID: 15890481
  64. Ishida, Y.; Ebihara, K.; Tabuchi, M.; Imamura, S.; Sekiguchi, K.; Mizoguchi, K.; Kase, Y.; Koganemaru, G.; Abe, H.; Ikarashi, Y. Yokukansan, a traditional japanese medicine, enhances the L-DOPA-induced rotational response in 6-hydroxydopamine-lesioned rats: Possible inhibition of COMT. Biol. Pharm. Bull., 2016, 39(1), 104-113. doi: 10.1248/bpb.b15-00691 PMID: 26725433
  65. Xu, Y.; Wang, R.; Hou, T.; Li, H.; Han, Y.; Li, Y.; Xu, L.; Lu, S.; Liu, L.; Cheng, J.; Wang, J.; Xu, Q.; Liu, Y.; Liang, X. Uncariphyllin A-J, indole alkaloids from Uncaria rhynchophylla as antagonists of dopamine D2 and Mu opioid receptors. Bioorg. Chem., 2023, 130, 106257. doi: 10.1016/j.bioorg.2022.106257 PMID: 36375349
  66. Zhong, Y.; Liu, H.; Liu, G.; Zhao, L.; Dai, C.; Liang, Y.; Du, J.; Zhou, X.; Mo, L.; Tan, C.; Tan, X.; Deng, F.; Liu, X.; Chen, L. A review on pathology, mechanism, and therapy for cerebellum and tremor in Parkinson’s disease. NPJ Parkinsons Dis., 2022, 8(1), 82. doi: 10.1038/s41531-022-00347-2 PMID: 35750692
  67. Ahsas Goyal, W.; Chisti, W.; Verma, A.; Agrawal, N.; Bansal, K. The role of the serotonergic system of the brain in the pathogenesis of Parkinson’s disease. Neurochem. J., 2023, 17(1), 30-41. doi: 10.1134/S181971242301004X
  68. Dirkx, M.F.; Bologna, M. The pathophysiology of Parkinson’s disease tremor. J. Neurol. Sci., 2022, 435, 120196. doi: 10.1016/j.jns.2022.120196 PMID: 35240491
  69. Luo, T.; Lu, Y.; Yan, S.; Xiao, X.; Rong, X.; Guo, J. Network pharmacology in research of Chinese medicine formula: Methodology, application and prospective. Chin. J. Integr. Med., 2020, 26(1), 72-80. doi: 10.1007/s11655-019-3064-0 PMID: 30941682
  70. Wang, X.; Wang, Z.Y.; Zheng, J.H.; Li, S. TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches. Chin. J. Nat. Med., 2021, 19(1), 1-11. doi: 10.1016/S1875-5364(21)60001-8 PMID: 33516447

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers