Анализ мутаций типа G:C>T:A, G:C>A:T и G:C>C:G в гене TP53 у облученных женщин с раком молочной железы и без в отдаленные сроки после хронического радиационного воздействия

Обложка

Цитировать

Полный текст

Аннотация

Работа представляет результаты анализа мутаций типа G:C>T:A, G:C>A:T и G:C>C:G в гене TP53 в клетках периферической крови у 24 женщин с раком молочной железы и у 17 женщин без такового, подвергшихся хроническому облучению. Было обнаружено 17 различных вариантов, представляющих собой однонуклеотидные замены. Различия частот носителей обнаруженных вариантов между группой сравнения и основной не достигали статистически значимого уровня. Все обнаруженные варианты присутствовали в базе данных IARC TP53 и не имели клинического значения как «патогенные». Несмотря на отсутствие статистически значимых различий, вопрос о влиянии хронического низкоинтенсивного радиационного воздействия на частоту мутаций в гене TP53 остается открытым и требует дальнейших исследований с привлечением большего объема данных.

Об авторах

В. С. Никифоров

Федеральное государственное бюджетное учреждение науки “Уральский научно-практический центр радиационной медицины” ФМБА России; Федеральное государственное бюджетное учреждение высшего образования “Челябинский государственный университет”

Автор, ответственный за переписку.
Email: nikiforovx@mail.ru

лаборатория молекулярно-клеточной радиобиологии, кафедра радиационной биологии

Россия, ул. Воровского, д. 68, корп. А, Челябинск, 454141; ул. Братьев Кашириных, д. 129, Челябинск, 454001

А. В. Кореченкова

Федеральное государственное бюджетное учреждение науки “Уральский научно-практический центр радиационной медицины” ФМБА России

Email: nikiforovx@mail.ru

лаборатория молекулярно-клеточной радиобиологии

Россия, ул. Воровского, д. 68, корп. А, Челябинск, 454141

А. В. Аклеев

Федеральное государственное бюджетное учреждение науки “Уральский научно-практический центр радиационной медицины” ФМБА России; Федеральное государственное бюджетное учреждение высшего образования “Челябинский государственный университет”

Email: nikiforovx@mail.ru

лаборатория молекулярно-клеточной радиобиологии, кафедра радиационной биологии

Россия, ул. Воровского, д. 68, корп. А, Челябинск, 454141; ул. Братьев Кашириных, д. 129, Челябинск, 454001

Список литературы

  1. Дегтева М. О., Напье Б. А., Толстых Е. И., Шишкина Е. А., Бугров Н. Г., Крестинина Л. Д., Аклеев А. В. Распределение индивидуальных доз в когорте людей, облученных в результате радиоактивного загрязнения реки Течи // Медицинская радиология и радиационная безопасность. 2019. Т. 64. № 3. C. 46–53. doi: 10.12737/article_5cf2364cb49523.98590475.
  2. Кулигина Е. Ш. Эпидемиологические и молекулярные аспекты рака молочной железы // Практическая онкология. 2010. Т. 11. № 4. С. 203–216.
  3. Anoushirvani A. A., Aghabozorgi R., Ahmadi A. Arjomandzadegan M., Sahraei M., Khalili S., Fereydouni T., Khademi Z. Association of rs1042522 SNP with Clinicopathologic Factors of Breast Cancer Patients in the Markazi Province of Iran // Open Access Maced J Med Sci. 2018. Vol. 6. № 12. P. 2277–2282. doi: 10.3889/oamjms.2018.486.
  4. Aoubala M., Murray-Zmijewski F., Khoury M. P. Fernandes K., Perrier S., Bernard H., Prats A. C., Lane D. P., Bourdon J. C. p53 directly transactivatesΔ133p53α, regulating cell fate outcome in response to DNA damage // Cell Death Differ. 2011. Vol. 18, №2. P. 248–258. doi: 10.1038/cdd.2010.91.
  5. Apsalikov B., Manambaeva Z., Ospanov E., Massabayeva M., Zhabagin K., Zhagiparova Z., Maximov V., Voropaeva E., Apsalikov K., Belikhina T., Abdrahmanov R., Cherepkova E., Tanatarov S., Massadykov A., Urazalina N. BRCA1 and TP53 Gene-Mutations: Family Predisposition and Radioecological Risk of Developing Breast Cancer // Asian Pac J Cancer Prev. 2016. Vol. 17. № 8. P. 4059–4062. PMID: 27644661.
  6. Assad S. L., Javadirad S. M., Parsafar S. Tabatabaeian H., Ghaedi K., Azadeh M. TP53 rs1625895 is Related to Breast Cancer Incidence and Early Death in Iranian Population // Indian J Clin Biochem. 2019. Vol. 34. № 4. P. 485–489. doi: 10.1007/s12291-018-0774-6.
  7. Bilous N. I., Abramenko I. V., Chumak A. A. Dyagil I. S., Martina Z. V. The distribution of TP53 gene polymorphisms in chronic lymphocytic leukemia patients, sufferers of Chornobyl nuclear power plant accident // Experimental Oncology. 2016. Vol. 38. № 4. P.252–256. PMID: 28230820.
  8. Bouaoun L., Sonkin D., Ardin M. TP53 Variations in Human Cancers: New Lessons from the IARC TP53 Database and Genomics Data // Hum. Mutat. 2016. Vol. 37. №9. P.865–876. doi: 10.1002/humu.23035.
  9. Cargnin S., Barizzone N., Basagni C., Pisani C., Ferrara E., Masini L., D’Alfonso S., Krengli M., Terrazzino S. Targeted Next-Generation Sequencing for the Identification of Genetic Predictors of Radiation-Induced Late Skin Toxicity in Breast Cancer Patients: A Preliminary Study // J Pers Med. 2021. Vol. 11. № 10. P. 967. doi: 10.3390/jpm11100967.
  10. Dumaz N., Drougard C., Sarasin A., Daya-Grosjean L. Specific UV-induced mutation spectrum in the p53 gene of skin tumors from DNA-repair-deficient xeroderma pigmentosum patients // Proc Natl Acad Sci USA. 1999. Vol. 90. 3 22. P. 10529–10533. doi: 10.1073/pnas.90.22.10529.
  11. Eiholzer R. A., Mehta S., Kazantseva M., Drummond C. J., McKinney C., Young K., Slater D., Morten B. C., Avery-Kiejda K.A., Lasham A., Fleming N., Morrin H. R., Reader K., Royds J. A., Landmann M., Petrich S., Reddel R., Huschtscha L., Taha A., Hung N. A., Slatter T. L. Intronic TP53 Polymorphisms Are Associated with Increased Δ133TP53 Transcript, Immune Infiltration and Cancer Risk // Cancers. 2020. Vol. 12. № 9. P. 2472. doi: 10.3390/cancers12092472.
  12. Fujita K., Mondal A. M., Horikawa I. Nguyen G. H.., Kumamoto K, Sohn J. J., Bowman E. D., Mathe E. A., Schetter A. J., Pine S. R., Ji H., Vojtesek B., Bourdon J. C., Lane D. P., Harris C. C. p53 isoforms Delta133p53 and p53beta are endogenous regulators of replicative cellular senescence // Nature Cell Biology. 2009. Vol. 11. № 9. P. 1135–1142. doi: 10.1038/ncb1928.
  13. Jafrin S., Aziz M. A., Anonna S. N., Akter T., Naznin N. E., Reza S., Islam M. S. Association of TP53 Codon 72 Arg>Pro Polymorphism with Breast and Lung Cancer Risk in the South Asian Population: A Meta-Analysis // Asian Pac J Cancer Prev. 2020. Vol. 21. № 6. P. 1511–1519. doi: 10.31557/APJCP.2020.21.6.1511.
  14. Johnson N., Fletcher O., Palles C., Rudd M., Webb E., Sellick G., dos Santos Silva I., McCormack V., Gibson L., Fraser A., Leonard A., Gilham C., Tavtigian S. V., Ashworth A., Houlston R., Peto J. Counting potentially functional variants in BRCA1, BRCA2 and ATM predicts breast cancer susceptibility // Human Molecular Genetics. 2007. Vol. 16. № 9. P. 1051–1057. doi: 10.1093/hmg/ddm050.
  15. Hainaut P., Pfeifer G. P. Somatic TP53 Mutations in the Era of Genome Sequencing // Cold Spring Harb Perspect Med. 2016. Vol. 6. № 11. P. a026179. doi: 10.1101/cshperspect.a026179.
  16. Kino K., Hirao-Suzuki M., Morikawa M., Sakaga A., Miyazawa H. Generation, repair and replication of guanine oxidation products // Genes Environ. 2017. Vol 1. № 39. P. 21. doi: 10.1186/s41021-017-0081-0.
  17. Kleibl Z., Kristensen V. N. Women at high risk of breast cancer: Molecular characteristics, clinical presentation and management // Breast. 2016. Vol. 28. P. 136–144. doi: 10.1016/j.breast.2016.05.006.
  18. Li Y., Gordon M. W., Xu-Monette Z.Y., Visco C., Tzankov A., Zou D., Qiu L., Montes-Moreno S., Dybkaer K., Orazi A., Zu Y., Bhagat G., Richards K. L., Hsi E. D., Choi W. W., van Krieken J. H., Huang Q., Ai W., Ponzoni M., Ferreri A. J., Winter J. N., Go R. S., Piris M. A., Møller M. B., Wu L., Wang M., Ramos K. S., Medeiros L. J., Young K. H. Single nucleotide variation in the TP53 3’ untranslated region in diffuse large B-cell lymphoma treated with rituximab-CHOP: a report from the International DLBCL Rituximab-CHOP Consortium Program // Blood. 2013. Vol. 121. № 22. P. 4529–4540. doi: 10.1182/blood-2012-12-471722.
  19. Lichtenstein P., Holm N. V., Verkasalo P. K., Iliadou A., Kaprio J., Koskenvuo M., Pukkala E., Skytthe A., Hemminki K. Environmental and heritable factors in the causation of cancer – analyses of cohorts of twins from Sweden, Denmark, and Finland // N Engl J Med. 2000. Vol. 343. № 2. P. 78–85. doi: 10.1056/NEJM200007133430201.
  20. Ming X., Matter B., Song M., Veliath E., Shanley R., Jones R., Tretyakova N. Mapping structurally defined guanine oxidation products along DNA duplexes: influence of local sequence context and endogenous cytosine methylation // J Am Chem Soc. 2014. Vol. 136. № 11. P. 4223–4235. doi: 10.1021/ja411636j.
  21. Moriyama H., Daino K., Ishikawa A., Imaoka T., Nishimura M., Nishimura Y., Takabatake M., Morioka T., Inoue K., Fukushi M., Shimada Y., Kakinuma S. Exome of Radiation-induced Rat Mammary Carcinoma Shows Copy-number Losses and Mutations in Human-relevant Cancer Genes // Anticancer Res. 2021. Vol. 41. № 1. P. 55–70. doi: 10.21873/anticanres.14751.
  22. Mucaki E. J., Caminsky N. G., Perri A. M., Lu R., Laederach A., Halvorsen M., Knoll J. H.., Rogan P. K. A unified analytic framework for prioritization of non-coding variants of uncertain significance in heritable breast and ovarian cancer // BMC Medical Genomics. 2016. Vol. 9. P. 19. doi: 10.1186/s12920-016-0178-5.
  23. Perriaud L., Marcel V., Sagne C., Favaudon V., Guédin A., De Rache A., Guetta C., Hamon F., Teulade-Fichou M.P., Hainaut P., Mergny J. L., Hall J. Impact of G-quadruplex structures and intronic polymorphisms rs17878362 and rs1642785 on basal and ionizing radiation-induced expression of alternative p53 transcripts // Carcinogenesis. 2014. Vol. 35. № 12. P. 2706–2715. doi: 10.1093/carcin/bgu206.
  24. Preston D. L., Ron E., Tokuoka S., Funamoto S., Nishi N., Soda M., Mabuchi K., Kodama K. Solid cancer incidence in atomic bomb survivors: 1958–1998 // Radiat Res. 2007. Vol. 168. № 1. P. 1–64. doi: 10.1667/RR0763.1.
  25. Preston D. L., Kitahara C. M., Freedman D. M., Sigurdson A. J., Simon S. L., Little M. P., Cahoon E. K., Rajaraman P., Miller J. S., Alexander B. H., Doody M. M., Linet M. S. Breast cancer risk and protracted low-to-moderate dose occupational radiation exposure in the US Radiologic Technologists Cohort, 1983–2008 // Br J Cancer. 2016. Vol. 115. № 9. P. 1105–1112. doi: 10.1038/bjc.2016.292.
  26. Ripperger T., Gadzicki D., Meindl A., Schlegelberger B. Breast cancer susceptibility: current knowledge and implications for genetic counselling // Eur J Hum Genet. 2009. Vol. 17. № 6. P. 722–731. doi: 10.1038/ejhg.2008.212.
  27. Rodin S. N., Rodin A. S. On the excess of G --> T transversions in the p53 gene in lung cancer cell lines. Reply to Pfeifer and Hainaut // Mutat Res. 2004. Vol. 545. № 1–2. P. 141–144. doi: 10.1016/j.mrfmmm.2003.09.008.
  28. Steenken S., Jovanovic S. V. How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution // J Am Chem Soc. 1997. Vol. 119. P. 617–618. doi: 10.1021/ja962255b.
  29. Szpechcinski A., Szolkowska M., Winiarski S., Lechowicz U., Wisniewski P., Knetki-Wroblewska M. Targeted Next-Generation Sequencing of Thymic Epithelial Tumours Revealed Pathogenic Variants in KIT, ERBB2, KRAS, and TP53 in 30% of Thymic Carcinomas // Cancers. 2022. Vol. 14. № 14. P. 3388. doi: 10.3390/cancers14143388.
  30. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Effects of Ionizing Radiation. UNSCEAR2006 Report to the General Assembly, with scientific annexes United Nations: New York.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024