Influence of general cooling on the formation of adaptive reactions depending on the background level of lymphocytes with markers of early activation
- Authors: Patrakeeva V.P.1, Kontievskaya E.V.1
-
Affiliations:
- N. Laverov Federal Center
- Issue: No 1 (2025)
- Pages: 58-68
- Section: ФИЗИОЛОГИЯ ЖИВОТНЫХ И ЧЕЛОВЕКА
- URL: https://rjmseer.com/1026-3470/article/view/682150
- DOI: https://doi.org/10.31857/S1026347025010069
- ID: 682150
Cite item
Full Text
Abstract
A study was carried out of the peculiarities of the formation of adaptive reactions in response to short-term general cooling in practically healthy individuals, depending on the background level of lymphocytes with markers of early activation. It has been shown that an increased background level of activated lymphocytes with receptors for IL-2 and transferrin is associated with activation of the hypothalamic-pituitary-adrenal axis, while a lower level is associated with the sympathetic-adrenal-medullary axis. Regardless of the level of lymphocyte activation, the examined patients recorded similar hemodynamic reactions associated with the preservation of thermal homeostasis and activation of thermogenesis mechanisms. A low content of lymphocytes with early activation markers increases the risk of chronic infectious processes in people living in the North due to a higher background level of general inflammation (C-reactive protein, extracellular ATP and LCR), without increasing the phagocytic and secretory activity of neutrophils, as well as increase in tissue hypoxia after cold exposure.
Full Text

About the authors
V. P. Patrakeeva
N. Laverov Federal Center
Author for correspondence.
Email: patrakeewa.veronika@yandex.ru
Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
Russian Federation, Nikolsky Ave., 20, Archangelsk, 163020E. V. Kontievskaya
N. Laverov Federal Center
Email: patrakeewa.veronika@yandex.ru
Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
Russian Federation, Nikolsky Ave., 20, Archangelsk, 163020References
- Bergsland C. H., Jeanmougin M., Moosavi S. H., Svindland A., Bruun J., Nesbakken A., Sveen A., Ragnhild A. Spatial analysis and CD25-expression identify regulatory T cells as predictors of a poor prognosis in colorectal cancer // Lothe Modern Pathology. 2022. V. 35. № 9. P. 1236–1246.
- Bi B. Y., Lefebvre A. M., Dus D., Spik G., Mazurier J. Effect of lactoferrin on proliferation and differentiation of the Jurkat human lymphoblastic T cell line // Archivum Immunologiae et Therapiae Experimentalis. 1997. V. 45. P. 315–320.
- Blankenhaus B., Braza F., Martins R. Ferritin regulates organismal energy balance and thermogenesis // Molecular Metabolism. 2019. V. 24. P. 64–79. doi: 10.1016/j.molmet.2019.03.008
- Chen X., Guo W., Diao Z., Huang H., Liu W. Lymphocyte-to-C reactive protein ratio as novel inflammatory marker for predicting outcomes in hemodialysis patients: a multicenter observational study // Frontiers in Immunology. 2023. Vol. 14. P. 1101222. doi: 10.3389/fimmu.2023.1101222
- Dillmann E., Johnson D. G., Martin J., Mackler B., Finch C. Catecholamine elevation in iron deficiency // American Journal of Physiology. 1979. V. 237. P. R297–R300. doi: 10.1152/ajpregu.1979.237.5.R297
- Dobrodeeva L. K., Samodova A. V., Balashova S. N., Pashinskaya K. O. Intercellular interactions in peripheral venous blood in practically healthy residents of high // BioMed Research International. 2021. V. 2021. 11 p. doi: 10.1155/2021/7086108.
- Duthille I. D., Masson M., Damiens E. Lactoferrin upregulates the expression of CD4-antigen through the stimulation of the mitogen-activated protein kinase in the human lymphoblastic T Jurkat cell line // Journal of cellular biochemistry. 2000. V. 79. № 4. P. 583–593.
- Feng P., Yang Q., Luo L., Sun Y., Lv W., Wan S. The kinase PDK1 regulates regulatory T cell survival via controlling redox homeostasis // Theranostics. 2021. V. 11. № 19. P. 9503–18. doi: 10.7150/thno.63992
- Ferreira R. C., Simons H. Z., Thompson W. S., Rainbow D. B., Yang X., Cutler A. J., Oliveira J., Dopico X. C., Smyth D. J., Savinykh N., Mashar M., Vyse T. J., Dunger D. B., Baxendale H., Chandra A., Wallace C., Todd J.A, Wicker L. S., Pekalski M. L. Cells with Treg-specific FOXP3 demethylation but low CD25 are prevalent in autoimmunity // Journal of Autoimmunity. 2017. V. 84. P. 75–86. https://doi.org/10.1016/j.jaut.2017.07.009.
- He L., Xie X., Xue J., Zhang Z. Sex-specific differences in the effect of lymphocyte-to-C-reactive protein ratio on subclinical myocardial injury in the general population free from cardiovascular disease // Nutrition, metabolism, and cardiovascular diseases: NMCD. 2023. V. 33. № 12. P. 2389–2397. doi: 10.1016/j.numecd.2023.07.035
- Hwang S. A., Kruzel M. L., Actor J. K. Recombinant human lactoferrin modulates human PBMC derived macrophage responses to BCG and LPS // Tuberculosis. 2016. V. 101. P. S53–S62 https://doi.org/10.1016/j.tube.2016.09.011
- Jabara H. H., Boyden S. E., Chou J., Ramesh N., Massaad M. J., Benson H. A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency // Nat Genet. 2016. V. 48. № 1. P. 74–8. doi: 10.1038/ng.3465
- Jang Y. S., Yang S. W., Kim T. G. Lactoferrin-derived chimeric peptide (LFch) strongly boosts TGFβ1-mediated inducible Treg differentiation possibly through downregulating TCR/CD28 signalling // Immunology. 2023. V. 168. № 1. P. 110–119. doi: 10.1111/imm.13566
- Jiang L., Chen H.-Y., He C.-H., Xu H.-B., Zhou Z.-R., Wu M.-S., Fodjo E. K., He Y., Hafez M. E., Qian R.-C., Li D.-W. Dual-Modal Apoptosis Assay Enabling Dynamic Visualization of ATP and Reactive Oxygen Species in Living Cells // Anal Chem. 2023. Vol. 95. № 6. P. 3507–3515. doi: 10.1021/acs.analchem.2c05671
- Kawabata H. Transferrin and transferrin receptors update // Free Radical Biology and Medicine. 2019. Vol. 133. P. 46–54. doi: 10.1016/j.freeradbiomed.2018.06.037
- Knobloch J., Casjens S., Lehnert M., Yanik S. D., Körber S., Lotz A. Exposure to welding fumes suppresses the activity of T-Helper Cells // Environ Res. 2020. V. 189. P. 109913. doi: 10.1016/j.envres.2020.109913
- Kobayashi D., Umemoto E., Miyasaka M. The role of extracellular ATP in homeostatic immune cell migration // Current Opinion in Pharmacology. 2023. V. 68. P. 102331. doi: 10.1016/j.coph.2022.102331
- Korta P., Pocheć E., Mazur-Biały A. Irisin as a multifunctional protein: implications for health and certain diseases // Medicina. 2019. V. 55. № 8. P. 485. doi: 10.3390/medicina55080485
- Kowalczyk P., Kaczyńska K, Kleczkowska P., Bukowska-Ośko I., Kramkowski K., Sulejczak D. The Lactoferrin Phenomenon – A Miracle Molecule // Molecules. 2022. V. 27. № 9. 2941. doi: 10.3390/molecules27092941
- Kunisada Y., Eikawa S., Tomonobu N., Domae S., Uehara T., Hori S., Furusawa Y., Hase K., Sasaki A. Heiichiro udono attenuation of CD4+ CD25+ regulatory T cells in the tumor microenvironment by metformin, a type 2 diabetes drug // EBioMedicine. 2017. V. 25. P. 154–164. https://doi.org/10.1016/j.ebiom.2017.10.009
- Liu S., Cui F., Ning K., Wang Z., Fu P., Wang D., Xu H. Role of irisin in physiology and pathology // Front Endocrinol (Lausanne). 2022. V. 13. № 962968. doi: 10.3389/fendo.2022.962968
- Luo J., Zhou C., Wang S., Tao S., Liao Y., Shi Z., Tang Z., Wu Y., Liu Y., Yang P. Cortisol synergizing with endoplasmic reticulum stress induces regulatory T-cell dysfunction // Immunology. 2023. V. 170. № 3. P. 334–343. doi: 10.1111/imm.13669.
- Marques C. R., Fiuza B. S.D., da Silva T. M., Carneiro T. C.B., Costa R. S., de Assis Silva M. F., Viana W. L.L., Carneiro V. L., Alcantara-Neves N.M., Barreto M. L., Figueiredo C. A. Impact of FOXP3 gene polymorphisms and gene-environment interactions in asthma and atopy in a Brazilian population // Gene. 2022. Vol. 838. № 146706. doi: 10.1016/j.gene.2022.146706
- Mazurier J., Legrand D., Hu W. L., Montreuil J., Spik G. Expression of human lactotransferrin receptors in phytohemagglutinin-stimulated human peripheral bloodlymphocytes. Isolation of the receptors by antiligand-affinity chromatography // European Journal of Biochemistry. 1989. V. 179. P. 481– 487. doi: 10.1111/j.1432-1033.1989.tb14578.x
- McCormick J.A., Markey G. M., Morris T. C., Auld P. W., Alexander H. D. Lactoferrin inducible monocyte cytotoxicity defective in esterase deficient monocytes // British journal of haematology. 1991. V. 77. № 3. P. 287–290. doi: 10.1111/j.1365-2141.1991.tb08572.x
- Mocellin M., de Azeredo Leitão L. A., de Araújo P. D., Jones M. H., Stein R. T., Pitrez P. M., de Souza A. P.D., Pinto L. A. Association between interleukin-10 polymorphisms and CD4+CD25+FOXP3+T cells in asthmatic children // Jornal de Pediatria. 2021. Vol. 97. № 5. P. 546–551. doi: 10.1016/j.jped.2020.11.008
- Moriyama Y., Hiasa M., Sakamoto S., Omote H., Nomura M. Vesicular nucleotide transporter (VNUT): appearance of an actress on the stage of purinergic signaling // Purinergic signalling. 2017. V. 13. № 3. P. 387–404. doi: 10.1007/s11302-017-9568-1
- Nogueira J. S., Gomes T. R., Secco D. A., de Almeida I. S., da Costa A. S.M.F., Cobas R. A., Costa Dos Santos G. Jr., Gomes M. B., Porto L. C. Type 1 Diabetes Brazilian patients exhibit reduced frequency of recent thymic emigrants in regulatory CD4+CD25+Foxp3+T cells // Immunology Letters. 2024. Vol. 267. № 106857. doi: 10.1016/j.imlet.2024.106857
- Nguyen T. K.T., Niaz Z., Kruzel M. L., Actor J. K. Recombinant Human Lactoferrin Reduces Inflammation and Increases Fluoroquinolone Penetration to Primary Granulomas during Mycobacterial Infection of C57Bl/6 // Arch Immunol Ther Exp (Warsz). 2023. V. 70. № 1. 9. doi: 10.1007/s00005-022-00648-7
- Qian F., Zhou W., Liu Y., Ge Z., Lai J., Zhao Z., Feng Y., Lin L., Shen Y., Zhang Z., Zhang W., Fan T., Zhao Y., Chen Z. High C-reactive protein to lymphocyte ratio predicts mortality outcomes of patients with severe fever suffering from thrombocytopenia syndrome: a multi-centre study in China // Journal of Medical Virology. 2023. V. 95. № 2. e28546. doi: 10.1002/jmv.28546
- Sawada K., Echigo N., Juge N., Miyaji T., Otsuka M., Omote H., Yamamoto A., Moriyama Y. Identification of a vesicular nucleotide transporter // Proceedings of the National Academy of Sciences of the United States of America. 2008. V. 105. P. 5683–5686. doi: 10.1073/pnas.0800141105
- Vanoaica L., Richman L., Jaworski M., Darshan D., Luther S. A., Kühn L. C. Conditional deletion of ferritin h in mice reduces B and T lymphocyte populations // PloS One. 2014. V. 9. № 2. P. e89270. doi: 10.1371/journal.pone.0089270
- Vuillaume L. A., Lefebvre F., Benhamed A., Schnee A., Hoffmann M., Falcao F. G., Haber N., Sabah J., Lavoignet C. E., Borgne P. L. Lymphocyte-to-C-Reactive protein (LCR) ratio is not accurate to predict severity and mortality in patients with COVID-19 admitted to the ED // International Journal of Molecular Sciences. 2023. V. 24. № 6. P. 5996. doi: 10.3390/ijms24065996.
Supplementary files
