Polymorphism of the cytochrome b polypeptide of the root vole Alexandromys oeconomus from the North-East Asia and Alaska

封面

如何引用文章

全文:

详细

Amino acid sequence polymorphism of cytochrome b enzyme isoforms in 16 samples of Alexandromys oeconomus from the North-East Asia and one sample from Alaska was studied. Forty-three variants of the polypeptide differing among themselves by 33 amino acid substitutions in 30 sites were detected. The distribution of polypeptide isoforms in the samples was determined. The phylogenetic relationships of haplotypes encoding the most common variants of the enzyme were examined. Molecular diversity indices of synonymous haplotypes were determined. Localisation of amino acid substitutions in the spatial configuration of the enzyme was found. The substitutions (nucleotide – T997C and amino acid – F333L), claiming to be genetic markers of the Beringian haplogroup of A. oeconomus, were discovered.

全文:

受限制的访问

作者简介

V. Pereverzeva

Institute of Biological Problems of the North FEB RAS

编辑信件的主要联系方式.
Email: vvpereverzeva@mail.ru
俄罗斯联邦, Portovaya st. 18, Magadan, 685000

N. Dokuchaev

Institute of Biological Problems of the North FEB RAS

Email: vvpereverzeva@mail.ru
俄罗斯联邦, Portovaya st. 18, Magadan, 685000

A. Primak

Institute of Biological Problems of the North FEB RAS

Email: vvpereverzeva@mail.ru
俄罗斯联邦, Portovaya st. 18, Magadan, 685000

E. Dubinin

Institute of Biological Problems of the North FEB RAS

Email: vvpereverzeva@mail.ru
俄罗斯联邦, Portovaya st. 18, Magadan, 685000

参考

  1. Абрамсон Н. И., Турсунова Л. С., Петрова Т. В., Попов И. Ю., Платонов В. В., Абрамов А. В. История колонизации острова Итуруп красно-серой полевкой Craseomys rufocanus по данным анализа фрагмента гена цитохрома b (cytb) // Генетика. 2023. Т. 59. № 8. С. 946–954. https://doi.org/10.31857/S0016675823080027.
  2. Велижанин А. Г. Время изоляции материковых островов северной части Тихого океана // Доклады АН СССР. 1976. Т. 231. № 1. С. 205–207.
  3. Григорьева О. О., Стахеев В. В., Орлов В. Н. Митохондриальные свидетельства прошлого рефугиального распространения малой лесной мыши Sylvaemus uralensis Pall. (Rodentia, Muridae) на северо-западном Кавказе // Генетика. 2018. Т. 54. № 3. С. 326–334. https://doi.org/10.7868/S0016675818030050.
  4. Доронина М. А., Доронин И. В., Луконина С. А., Мазанаева Л. Ф., Барабанов А. В. Филогеография Lacerta media Lantz et Cyrén, 1920 (Lacertidae: Sauria) по результатам анализа митохондриального гена цитохрома b // Генетика. 2022. Т. 58. № 2. С. 177–187. https://doi.org/10.31857/S0016675822020035.
  5. Малярчук Б. А. Адаптивная внутривидовая дивергенция (на примере гена цитохрома b животных) // Генетика. 2011. T. 47. № 8. С. 1103–1111.
  6. Малярчук Б. А., Деренко М. В., Денисова Г. А., Литвинов А. Н. Топологические конфликты при филогенетическом анализе различных участков митохондриального генома соболя (Martes zibellina L.) // Генетика. 2015а. Т. 51. № 8. С. 1915–923.
  7. Малярчук Б. А., Деренко М. В., Денисова Г. А. Изменчивость митохондриального генома росомахи (Gulo gulo) // Генетика. 2015б. Т. 51. № 11. С. 1291–1296.
  8. Переверзева В. В., Примак А. А. Генетическое разнообразие синонимичных гаплотипов фрагмента гена цитохрома b красной полевки Myodes (Clethrionomys) rutilus (Pallas, 1779) // Генетика. 2016. Т. 52. № 2. С. 189–197. https://doi.org/10.7868/S0016675816020090.
  9. Переверзева В. В., Примак А. А., Докучаев Н. Е. Дубинин Е. А., Евдокимова А. А. Изменчивость гена цитохрома b мтДНК красно-серой полевки (Craseomys rufocanus Sundevall, 1846) Северного Приохотья и бассейна р. Колыма // Вестник СВНЦ ДВО РАН. 2018. № 1. С. 101–112.
  10. Переверзева В. В., Докучаев Н. Е., Примак А. А., Дубинин Е. А. Полиморфизм цитохрома b красной полевки Clethrionomys rutilus Pallas // Вестник СВНЦ ДВО РАН. 2020. № 3. С. 109–119. https://doi.org/10.34078/1814-0998-2020-3-109-119.
  11. Переверзева В. В., Докучаев Н. Е., Примак А. А., Дубинин Е. А. Изменчивость полипептида цитохрома b красно-серой полевки Craseomys rufocanus Sundevall, 1846 // Известия РАН. Серия биологическая. 2022а. № 2. С. 115–126. https://doi.org/10.31857/S1026347022020147.
  12. Переверзева В. В., Докучаев Н. Е., Примак А. А., Дубинин Е. А., Киселев С. В. Изменчивость гена цитохрома b мтДНК полевки-экономки (Alexandromys oeconomus Pallas, 1776) Северного Охотоморья // Успехи современной биологии. 2022б. Т. 142. № 1. С. 90–104. https://doi.org/10.31857/S0042132422010057.
  13. Переверзева В. В., Докучаев Н. Е., Примак А. А., Дубинин Е. А. Изменчивость гена цитохрома b мтДНК полевки-экономки (Alexandromys oeconomus Ognev, 1914) некоторых популяций Северо-Востока Азии и Аляски // Успехи современной биологии. 2023. Т. 143 № 2. С. 149–164. https://doi.org/10.31857/S0042132423020084.
  14. Рожкова Д. Н., Зиневич Л. С., Карякин И. В., Сорокин А. Г., Тамбовцева В. Г., Куликов А. М. Ненейтральная изменчивость цитохрома b у балобана Falco cherrug Grey, 1834 и кречета Falco rusticolus L. //Генетика. 2021. Т. 57. № 4. С. 454–463. https://doi.org/10.31857/S0016675821040123.
  15. Ялковская Л. Э. Зыков С. В. Сибиряков П. А. Генетическая изменчивость желтогорлой мыши (Sylvaemus flavicollis Melch., 1834, Muridae, Rodentia) на восточной границе ареала // Генетика. 2018. Т. 54. № 6. С. 629–638. https://doi.org/10.7868/S001667581806005X.
  16. Bannikova A. A., Chernetskaya D., Raspopova A., Alexandrov D., Fang Y., Dokuchaev N., Sheftel B., Lebedev V. Evolutionary history of the genus Sorex (Soricidae, Eulipotyphla) as inferred from multigene data // Zoologica Scripta, 2018. Vol. 47. Issue 5. P. 518–538. https://doi.org/10.1111/zsc.12302.
  17. Benkert P., Biasini M., Schwede T. Toward the estimation of the absolute quality of individual protein structure models // Bioinformatics. 2011. V. 27. P. 343–350. https://doi.org/10.1093/bioinformatics/btq662.
  18. Bertoni M., Kiefer F., Biasini M., Bordoli L., Schwede T. Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology // Sci. Rep. 2017. V. 7. P. 10480. https://doi.org/10.1038/s41598-017-09654-8.
  19. Bienert S., Waterhouse A., de Beer T. A.P., Tauriello G., Studer G., Bordoli L., Schwede T. The SWISS-MODEL Repository – new features and functionality // Nucleic Acids Res. 2017. V. 45. P. D313–D319. https://doi.org/10.1093/nar/gkw1132.
  20. Excoffier L., Laval G., Schneider S. Arlequin ver. 3.0: An integrated software package for population genetics data analysis // Evol. Bioinformatics Online. 2005. V. 1. P. 47–50. https://doi.org/10.4137/Ebo.S0.
  21. Faerman M., Bar-Gal G.K., Boaretto E., Boeskorov G. G., Dokuchaev N. E., Ermakov O. A., Golenishchev F. N., Gubin S. V., Mintz E., Simonov E., Surin V. L., Titov S. V., Zanina O. G., Formozov N. A. DNA analysis of a 30,000-year-old Urocitellus glacialis from northeastern Siberia reveals phylogenetic relationships between ancient and present-day arctic ground squirrels // Scientific Reports. 2017. V. 7. P. 42639. https://doi.org/10.1038/srep42639.
  22. Galbreath K. E., Cook J. A. Genetic consequences of Pleistocene glaciations for the tundra vole (Microtus oeconomus) in Beringia // Mol. Ecol. 2004. V. 13. P. 135–148. https://doi.org/10.1046/j.1365-294X.2004.02026.x·Source:PubMed.
  23. Guex N., Peitsch M. C., Schwede T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective // Electrophoresis. 2009. V. 30. P. S162–S173. https://doi.org/10.1002/elps.200900140.
  24. Hassanin A., Lecointre G., Tiller S. Related articles, links abstract. The «evolutionary signal» of homoplasy in protein-coding gene sequences and its consequences for a priori weighting in plylogeny // C. R. Acad. Sci. 1998. V. 321. №. 7. Р. 611–620.
  25. Howell N. Evolutionary conservation of protein regions in the proton motive cytochrome b and their possible roles in redox catalysis // J. Mol. Evol. 1989. V. 29. P. 157–169.
  26. Irwin D. M., Kocher T. D., Wilson A. C. Evolution of the cytochrome b gene of mammals // J. Mol. Evol. 1991. V. 32. P. 128–144.
  27. Iwasa M. A., Kostenko V. A., Frisman L. V. and Kartavtseva I. V. Phylogeography of the root vole Microtus oeconomus in Russian Far East: A special reference to comparison between Holarctic and Palaearctic voles // Mammal Study. 2009. V. 34. Р. 123–130. https://doi.org/10.3106/041.034.0301.
  28. Kocher T. D., Thomas W. K., Meyer A., Edwards S. V., Pääbo S., Villablanca F. X., Wilson A. C. Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers // Proc. Nati. Acad. Sci. USA. 1989. V. 86. Р. 6196–6200.
  29. Kohli B. A., Fedorov V. B., Waltari E., and Cook J. A. Phylogeography of a Holarctic rodent (Myodes rutilus): testing high-latitude biogeographical hypotheses and the dynamics of range shifts // J. Biogeogr. 2015. V. 42. Р. 377–389. https://doi.org/10.1111/jbi.12433.
  30. McClellan D.A., Palfreyman E. J., Smith M. J., Moss J. L.,Christensen R.G., Sailsbery J. K. Physicochemical evolution and molecular adaptation of the cetacean and artiodactyl cytochrome b proteins // Mol. Biol. Evol. 2005. V. 22. P. 437–455. https://doi.org/10.1093/MOLBEV/MSI028.
  31. Nei M. Molecular Evolutionary Genetics. N.Y.: Columbia Univ. Press, 1987. 495 р.
  32. Nei M., Kumar S. Molecular evolution and phylogenetic. N.Y.: Oxford Univ. Press, 2000. 333 p.
  33. Petrova T. V., Zakharov E. S., Samiya R., Abramson N. I. Phylogeography of the narrow-headed vole Lasiopodomys (Stenocranius) gregalis (Cricetidae, Rodentia) inferred from mitochondrial cytochrome b sequences: an echo of Pleistocene prosperity // J. Zoolog. System. Evol. Res. 2015. V. 53. P. 97–108. https://doi.org/10.1111/jzs.12082.
  34. Studer G., Rempfer C., Waterhouse A. M. Gumienne R., Haas J., Schwede T. QMEANDisCo – distance constraints applied on model quality estimation // Bioinformatics. 2020. V. 36. № 6. P. 1765–1771. https://doi.org/10.1093/bioinformatics/btz828.
  35. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA-6: Molecular Evolutionary Genetics Analysis Version 6.0.2.74 // Mol. Biol. Evol. 2013. V. 30. Р. 2725–2729. https://doi.org/10.1093/molbev/mst197
  36. Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R. F. T., Heer F. T., de Beer T. A. P., Rempfer C., Bordoli L., Lepore R., Schwede T. SWISSMODEL: Homology modelling of protein structures and complexes // Nucl. Acids Res. 2018. V. 46. P. W296–W303. https://doi.org/10.1093/nar/gky427.
  37. Zardoya R., Meyer A. Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates // Mol. Biol. Evol. 1996. V. 13. № 7. P. 933–942.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Map-scheme of sampling sites for the root vole of the Central Asian and Beringian phylogroups (shown as black and white filled circles, respectively); in case of the presence of both phylogroups, their proportion corresponds to the size of the highlighted sectors. The numbers indicate: 1 – Okhotsk settlement, river basin: 2 – Kulu, 3 – Detrin, 4 – Srednekan; 5 – Evensk settlement, 6 – Omolon river basin, 7 – Chaun, 8 – Paramushir Island, 9 – Kamchatka Peninsula, 10 – Talan Island, 11 – Arman settlement, 12 – Srednekan Island. Misunderstandings, 13 – Magadan, 14 – Ola Lagoon (14a – Ola village, 14b – Atargan village, 14c – Uratamlyan Island), 15 – Fairbanks (Alaska).

下载 (408KB)
3. Fig. 2. The proportion of cytochrome b enzyme isoforms in root vole samples from Northeast Asia and Alaska.

下载 (347KB)
4. Fig. 3. Amino acid substitutions in cytochrome b enzyme isoforms in tundra voles of the Central Asian and Beringian phylogroups. Amino acid substitutions are presented relative to the amino acid sequence of the FEcbCA-1 isoform. Substitution sites are shown from the beginning of the polypeptide.

下载 (579KB)
5. Fig. 4. ML phylogenetic trees constructed using data on the variability of the nucleotide sequence of the cytochrome b gene of the root vole haplotypes of the Central Asian clade encoding the enzyme isoform FEcbCA-1 and the Beringian clade encoding the isoform FEcbBr-1. Bootstrap indices (> 50%) are indicated at branching nodes.

下载 (262KB)
6. Fig. 5. Haplotypes of the cytochrome b gene FEcbCA-1 – FEcbCA-8 of the root vole. Nucleotide substitutions are presented relative to the nucleotide sequence of the EcbCA-1 haplotype. Substitution sites are shown from the beginning of the cytochrome b gene.

下载 (756KB)
7. Fig. 6. Haplotypes of the cytochrome b gene of FEcbBr-1 individuals of the root vole. Nucleotide substitutions are presented relative to the nucleotide sequence of the EcbBr-1 haplotype. Substitution sites are shown from the beginning of the cytochrome b gene.

下载 (445KB)
8. Fig. 7. Sites of amino acid substitutions in the three-dimensional structure of the truncating vole cytochrome b, modeled on the basis of protein homology on the SWISS-MODEL server and visualized in the iCn3D network program.

下载 (318KB)

版权所有 © Russian Academy of Sciences, 2025