Quaternion regular equations of the two-body problem and the problem of the motion of a satellite in the gravitational field of the earth in the Kustaanheimo-Stifel variables and modified four-dimensional variables: dynamics of relative motion
- 作者: Chelnokov Y.N.1
-
隶属关系:
- Institute for Problems of Precision Mechanics and Control RAS
- 期: 编号 2 (2024)
- 页面: 103-138
- 栏目: Articles
- URL: https://rjmseer.com/1026-3519/article/view/673080
- DOI: https://doi.org/10.31857/S1026351924020044
- EDN: https://elibrary.ru/uwielz
- ID: 673080
如何引用文章
详细
The article develops the quaternion regularization of differential equations (DE) of the relative perturbed motion of the body under study, which we previously proposed within the framework of the perturbed spatial problem of two bodies: the equations of motion of the center of mass of this body in a coordinate system rotating in an inertial coordinate system according to an arbitrarily given law, and also develops a quaternion regularization of the motion DEs for the body under study relative to the coordinate system associated with the Earth. New quaternion DEs for the perturbed motion of an artificial Earth satellite relative to the coordinate system associated with the Earth are proposed. These equations have (in new times) the form of DE for the relative motion of a perturbed four-dimensional oscillator in the Kustaanheimo-Stiefel variables or in the modified four-dimensional variables we proposed, supplemented by DEs for the satellite’s motion energy and time. These equations for the perturbed relative motion of the satellite take into account the zonal, tesseral and sectorial harmonics of the Earth’s gravitational field. The proposed equations, in contrast to classical equations, are regular (do not contain special points such as singularity (division by zero)) for the relative motion of a satellite in the Newtonian gravitational field of the Earth. The equations are convenient for applying methods of nonlinear mechanics and high-precision numerical calculations when studying the orbital motion of a satellite relative to the Earth and predicting its motion.
关键词
作者简介
Yu. Chelnokov
Institute for Problems of Precision Mechanics and Control RAS
编辑信件的主要联系方式.
Email: ChelnokovYuN@gmail.com
俄罗斯联邦, Saratov
参考
- Euler L. De motu rectilineo trium corporum se mutuo attrahentium // Nov. Comm. Petrop. 1765. V. 11. P. 144–151.
- Levi-Civita T. Traettorie singolari ed urbi nel problema ristretto dei tre corpi // Ann. mat. pura appl. 1904. V. 9. P. 1–32.
- Levi-Civita T. Sur la regularization du probleme des trois corps // Acta Math. 1920. V. 42. P. 99–144.
- Levi-Civita T. Sur la resolution qualitative du problem restreint des trois corps // Opere mathematiche. 1956. № 2. P. 411–417.
- Kustaanheimo P. Spinor regularization of the Kepler motion // Ann. Univ. Turku. 1964. V. 73. P. 3–7.
- Kustaanheimo P. Stiefel E. Perturbation theory of Kepler motion based on spinor regularization // J. Reine Angew. Math. 1965. V. 218. P. 204–219.
- Stiefel E.L., Scheifele G. Linear and Regular Celestial Mechanics. Berlin: Springer, 1971.
- Velte W. Concerning the regularizing KS-transformation // Celest. Mech. 1978. V. 17. P. 395–403.
- Vivarelli M.D. The KS transformation in hypercomplex form // Celest. Mech. Dyn. Astron. 1983. V. 29. P. 45–50.
- Vivarelli M.D. Geometrical and physical outlook on the cross product of two quaternions // Celest. Mech. 1988. V. 41. P. 359–370.
- Vivarelli M.D. On the connection among three classical mechanical problems via the hypercomplex KS-transformation // Celest. Mech. Dyn. Astron. 1991. V. 50. P. 109–124.
- Shagov O.B. On two types of equations of motion of an artificial Earth satellite in oscillatory form // Izv. Academy of Sciences of the USSR. Mechanics of solids. 1990. № 2. P. 3–8.
- Deprit A, Elipe A. and Ferrer S. Linearization: Laplace vs. Stiefel // Celest. Mech. Dyn. Astron. 1994. V. 58. P. 151–201.
- Vrbrik J. Celestial mechanics via quaternions // Can. J. Phys. 1994. V. 72. P. 141–146.
- Vrbrik J. Perturbed Kepler problem in quaternion form // J. Phys. 1995. V. 28. P. 193–198.
- Waldvogel J. Quaternions and the perturbed Kepler problem // Celest. Mech. Dyn. Astron. 2006. V. 95. P. 201–212.
- Waldvogel J. Quaternions for regularizing Celestial Mechanics: the right way // Celest. Mech. Dyn. Astron. 2008. V. 102. № 1. P. 149–162.
- Saha P. Interpreting the Kustaanheimo–Stiefel transform in gravitational dynamics // MNRAS 400. 2009. P. 228–231; https://doi.org/10.1111/j.1365-2966.2009.15437.x. arXiv:0803.4441
- Zhao L. Kustaanheimo–Stiefel regularization and the quadrupolar conjugacy // Regul. Chaotic Dyn. 2015. V. 20. № 1. Р. 19–36; https://doi.org/10.1134/S1560354715010025
- Roa J., Urrutxua H., Pelaez J. Stability and chaos in Kustaanheimo–Stiefel space induced by the Hopf fibration // Monthly Notices of the Royal Astronomical Society. 2016. V. 459. № 3. P. 2444–2454.
- Roa J., Pelaez J. The theory of asynchronous relative motion II: universal and regular solutions // Celest. Mech. Dyn. Astron., September 2016.
- Breiter S. and Langner K. Kustaanheimo–Stiefel transformation with an arbitrary defining vector // Celest. Mech. Dyn. Astron. 2017. V. 128. P. 323–342.
- Breiter S., Langner K. The extended Lissajous–Levi-Civita transformation // Celest. Mech. Dyn. Astron. 2018. V. 130. P. 68.
- Breiter S., Langner K. The Lissajous–Kustaanheimo–Stiefel transformation // Celest. Mech. Dyn. Astron. 2019. V. 131. P. 9.
- Ferrer S., Crespo F. Alternative Angle-Based Approach to the KS-Map. An interpretation through Symmetry // Journal of Geometric Mechanics. 2018. V. 10. № 3. P. 359–372.
- Chelnokov Yu.N. On the regularization of the equations of the three-dimensional two body problem // Mech. Solids. 1981. V. 16. № 6. P. 1–10.
- Chelnokov Yu.N. Regular equations of the three-dimensional two-body problem // Mech. Solids. 1984. V. 19. № 1. P. 1–7.
- Chelnokov Yu.N. Quaternion Methods in the Problems of Perturbed Motion of a Material Point, Part 1: General Theory. Applications to the Problem of Regularization and to the Problem of Satellite Motion. Available from VINITI. № 218628-V (Moscow, 1985) [in Russian].
- Chelnokov Yu.N. Quaternion Methods in the Problems of Perturbed Motion of a Material Point, Part 2: Three-Dimensional Problem of Unperturbed Central Motion. Problem with Initial Conditions, Available from VINITI, № 8629-V (Moscow, 1985) [in Russian].
- Chelnokov Yu.N. Application of quaternions in the theory of orbital motion of an artificial satellite. I // Cosmic Research. 1992. V. 30. № 6. P. 612–621.
- Chelnokov Yu.N. Application of quaternions in the theory of orbital motion of an artificial satellite. II // Cosmic Research. 1993. V. 31. № 3. P. 409–418.
- Chelnokov Yu.N. Quaternion regularization and stabilization of perturbed central motion. I // Mech. Solids. 1993. V. 28. № 1. P. 16–25.
- Chelnokov Yu.N. Quaternion regularization and stabilization of perturbed central motion. II // Mech. Solids. 1993. V. 28. № 2. P. 1–12.
- Chelnokov Yu.N. Application of quaternions in space flight mechanics // Gyroscopy and navigation. 1999. № 4. P. 47–66.
- Chelnokov Yu.N. Analysis of optimal motion control for a material point in a central field with application of quaternions // J. Comp. Syst. Sci. Int. 2007. V. 46. № 5. P. 688–713.
- Chelnokov Yu.N. Quaternion models and methods of dynamics, navigation and motion control. M.: Fizmatlit, 2011.
- Chelnokov Yu.N. Quaternion regularization in celestial mechanics and astrodynamics and trajectory motion control. I // Cosmic Research. 2013. V. 51. № 5. P. 353–364; https://doi.org/10.7868/S0023420613050026
- Chelnokov Yu.N. Quaternion regularization in celestial mechanics and astrodynamics and trajectory motion control. II // Cosmic Research. 2014. V. 52. № 4. P. 304–317; https://doi.org/10.1134/S0010952514030022
- Chelnokov Yu.N. Quaternion regularization in celestial mechanics, astrodynamics, and trajectory motion control. III // Cosmic Research. 2015. V. 53. № 5. P. 394–409; https://doi.org/10.1134/S0010952515050044
- Chelnokov Yu.N. Quaternion regularization of the equations of the two-body problem and the limited three-body problem // In the collection: XI All-Russian Congress on fundamental problems of theoretical and applied mechanics. Collection of reports. Compiled by: D.Yu. Akhmetov, A.N. Gerasimov, Sh.M. Khaidarov. 2015. P. 4051–4053. URL: http://elibrary.ru/item.asp?id=24826037
- Chelnokov Yu.N. Quaternion regularization of the eguations of the perturbed spatial restricted three-body problem: I // Mech. Solids. 2017. Vol. 52. № 6. P. 613–639; https://doi.org/10.3103/S0025654417060036
- Chelnokov Yu.N. Quaternion regularization of the equations of the perturbed spatial restricted three-body problem: II // Mech. Solids. 2018. V. 53. № 6. P. 634–651; https://doi.org/10.3103/S0025654418060055
- Chelnokov Yu.N. Perturbed spatial problem of two bodies: regular quaternion equations of relative motion // Applied Mathematics and Mechanics. 2018. T. 82. № 6. P. 721–733; https://doi.org/10.31857/S003282350002736-9
- Chelnokov Yu.N. Perturbed spatial two-body problem: regular quaternion equations of relative motion // Mech. Solids. 2019. V. 54. № 2. P. 169–178; https://doi.org/10.3103/S0025654419030075
- Chelnokov Yu.N. Quaternion equations of disturbed motion of an artificial Earth satellite // Cosmic Research. 2019. V. 57. № 2. P. 101–114; https://doi.org/10.1134/S0010952519020023
- Chelnokov Yu.N., Loginov M.Yu. New quaternion models of regular mechanics of space flight and their applications in problems of forecasting the motion of cosmic bodies and inertial navigation in space // Collection of materials: XXVIII St. Petersburg International Conference on Integrated Navigation Systems. St. Petersburg, 2021. P. 292–295.
- Bordovitsyna T.V. Modern numerical methods in problems of celestial mechanics. M.: Nauka, 1984.
- Bordovitsyna T.V., Avdyushev V.A. Theory of motion of artificial Earth satellites. Analytical and numerical methods. Tomsk: Publishing house Tom. University, 2007.
- Fukushima T. Efficient orbit integration by linear transformation for Kustaanheimo–Stiefel regularization // The Astronomical Journal. 2005. V. 129. № 5. P. 2496; http://doi.org/10.1086/429546
- Fukushima T. Numerical comparison of two-body regularizations // The Astronomical Journal. 2007. V. 133. № 6. P. 2815.
- Pelaez J., Hedo J.M., Rodriguez P.A. A special perturbation method in orbital dynamics // Celest. Mech. Dyn. Astron. February 2007; https://doi.org/10.1007/s10569-006-9056-3
- Bau G., Bombardelli C., Pelaez J., Lorenzini E. Non-singular orbital elements for special perturbations in the two-body problem // Monthly Notices of the Royal Astronomical Society. September 2015.
- Amato D., Bombardelli C., Bau G., Morand V., Rozengren A.J. Non-averaged regularized formulations as an alternative to semianalytical orbit propagation methods // Celest. Mech. Dyn. Astron. May 2019.
- Bau G., Roa J. Uniform formulation for orbit computation: the intermediate elements // Celest. Mech. Dyn. Astron. January 2020.
- Hopf H. Uber die Abbildungen der dreidimensionalen Sphare auf die Kugelflache // Math. Ann. 1931. V. 104. № 1. P. 637–665.
- Brumberg V.A. Analytical algorithms of celestial mechanics. M.: Nauka, 1980.
- Chelnokov Yu.N. Quaternionic and biquaternionic models and methods of solid mechanics and their applications. Geometry and kinematics of motion. M.: Fizmatlit, 2006.
- Branets V.N., Shmyglevsky I.P. Application of quaternions in problems of rigid body orientation. M.: Nauka, 1973.
- Zhuravlev V.F. Fundamentals of theoretical mechanics. M.: Fizmatlit, 2008.
- Abalakin V.K., Aksenov E.P., Grebenikov E.A., Demin V.G., Ryabov Yu.A. A reference guide to celestial mechanics and astrodynamics. M.: Nauka, 1976.
- Duboshin G.N. Celestial mechanics: Methods of the theory of motion of artificial celestial bodies. M.: Nauka, 1983.
- Demin V.G. Movement of an artificial satellite in a non-central gravitational field. M.–Izhevsk: Research Center “Regular and Chaotic Dynamics”, Izhevsk Institute of Computer Research. 2010.
- Chelnokov Y.N. Quaternion methods and models of regular celestial mechanics and astrodynamics // Applied Mathematics and Mechanics (English Edition). 2022. Vol. 43. № 1. P. 21–80; https://doi.org/10.1007/s10483-021-2797-9
补充文件
