Abstract
. A polymer gel is considered as a mixture consisting of a highly elastic elastic material and a liquid (solvent) dissolved in it. Based on the generalized Mooney-Rivlin model, an expression of free energy is proposed that describes the deformation behavior and thermodynamic properties of polymer gels. In this model, it is assumed that the Mooney-Rivlin “constants” depend on the concentration of the liquid dissolved in the polymer. From this expression, the defining relations for the stress tensor, the chemical potential of the solvent and the osmotic stress tensor are obtained. On their basis, an experimental study of the deformation properties of mesh elastomers swollen in a solvent of various chemical nature has been performed. In particular, the dependence of the elastic properties of elastomers on the solvent concentration has been studied and the parameters describing this dependence have been determined.