Evolution of the single-wall carbon nanotubes bundle structure under compressive deformation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The change in the structure and properties of a carbon nanotube (CNT) bundle under the action of uniaxial compression deformation in the framework of a quasi-three-dimensional computer experiment is investigated. The equilibrium configurations of the CNT bundle cross section are considered and their energetic properties are analyzed. It is found that up to a compression strain of 12% the bundle deformation develops almost homogeneously, while at higher strains a number of structural rearrangements begin in the bundle and regions with different degrees of ellipticity of CNT cross sections are formed. When the compression strain reaches 24%, even more significant structural changes are observed, including the formation of collapsed CNTs. The presented results reveal the mechanisms of absorption of external impact energy by the CNT bundle, which is important for the development of materials damping shock and vibration loads.

Full Text

Restricted Access

About the authors

O. V. Andrukhova

National University of Science and Technology MISIS

Email: alinamorkina@yandex.ru
Russian Federation, Moscow

A. A. Ovcharov

LLC “GPB-IT1”

Email: alinamorkina@yandex.ru
Russian Federation, Moscow

T. V. Andrukhova

Altai State University

Email: alinamorkina@yandex.ru
Russian Federation, Barnaul

A. Y. Morkina

Institute for Metals Superplasticity Problems of the RAS; Ufa University of Science and Technology

Author for correspondence.
Email: alinamorkina@yandex.ru
Russian Federation, Ufa; Ufa

References

  1. Galiakhmetova L.Kh., Bachurin D.V., Korznikova E.A., Bayazitov A.M., Kudreyko A.A., Dmitriev S.V. Shock loading of carbon nanotube bundle // Mech. Mater. 2022. V. 174. 104460. https://doi.org/10.1016/j.mechmat.2022.104460
  2. Dongju L. et al. Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescence // Sci. Adv. 2022. V. 8. № 16. https://doi.org/10.1126/sciadv.abn0939
  3. Zhan H., Lin J.H., Shi H.L., Wang J.N. Construction of carbon nanotubes/bismaleimide composite films with superior tensile strength and toughness // Compos. Sci. Technol. 2021. V. 214. P. 108975. https://doi.org/10.1016/j.compscitech.2021.108975
  4. Hennequin T., Manghi M., Noury A., Henn F., Jourdain V., Palmeri J. Influence of the quantum capacitance on electrolyte conductivity through carbon nanotubes // J. Phys. Chem. Lett. 2024. V. 15. № 8. P. 2177–2183. https://doi.org/10.1021/acs.jpclett.3c03248
  5. Wiśniewska M., Laptev A., Marczewski M., et al. Influence of carbon nanotubes on thermal and electrical conductivity of zirconia-based composite // Ceram. Int. 2023. V. 49. № 10. P. 15442–15450. https://doi.org/10.1016/j.ceramint.2023.01.129
  6. Oluwalowo A., Nguyen N., Zhang S., Park J.G., Liang R. Electrical and thermal conductivity improvement of carbon nanotube and silver composites // Carbon. 2019. V. 146. P. 224–231. https://doi.org/10.1016/j.carbon.2019.01.073
  7. Jia Q., Zhou Y. et al. Differential multi-probe thermal transport measurements of multi-walled carbon nanotubes grown by chemical vapor deposition // Int. J. Heat Mass Transfer. 2023. V. 216. P. 124535. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124535
  8. Jie W., Duan X., Gong L., Nie S. Interfacial and filler size effects on mechanical/thermal/electrical properties of CNTs-reinforced nanocomposites // Polymers. 2024. V. 16. № 6. P. 808. https://doi.org/10.3390/polym16060808
  9. Wang X., Wang D., Ma S. et al. Enhanced toughness of boron carbide by single-wall carbon nanotube bundles // Mater. Today Commun. 2023. V. 35. P. 105651. https://doi.org/10.1016/j.mtcomm.2023.105651
  10. Ushakov I.V., Safronov I.S. Directed changing properties of amorphous and nanostructured metal alloys with help of nanosecond laser impulses // CIS Iron and Steel Review. 2021. № 2. P. 77–81. https://doi.org/10.17580/cisisr.2021.02.14
  11. Ushakov I.V., Safronov I.S., Oshorov A.D., Zhiqiang W., Muromtsev D.Y. Physics of the effect of high-temperature pulse heating on defects in the surface layer of a metal alloy // Metallurgist. 2023. V. 67. P. 986–994. https://doi.org/10.1007/s11015-023-01588-z
  12. Moumen A., Tarfaoui M., Nachtane M., Lafdi K. Carbon nanotubes as a player to improve mechanical shock wave absorption // Compos. B Eng. 2019. V. 164. P. 67–71. https://doi.org/10.1016/j.compositesb.2018.11.072
  13. Qiao J., Ushakov I.V., Safronov I.S. et al. Physical mechanism of nanocrystalline composite deformation responsible for fracture plastic nature at cryogenic temperatures // Nanomaterials. 2024. V. 14. № 8. P. 723. https://doi.org/10.3390/nano14080723
  14. Wang Z., Ushakov I.V., Safronov I.S., Zuo J. Physical mechanism of selective healing of nanopores in condensed matter under the influence of laser irradiation and plasma // Nanomaterials. 2024. V. 14. № 2. P. 139. https://doi.org/10.3390/nano14020139
  15. Safronov I.S., Ushakov I.V. Targeted alternation in properties of solid amorphous-nanocrystalline material in exposing to nanosecond laser radiation // DDF. 2021. V. 410. P. 469–474. https://doi.org/10.4028/www.scientific.net/DDF.410.469
  16. Tang J., Qin L.-C., Sasaki T., Yudasaka M., Matsushita A., Iijima S. Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure // Phys. Rev. Lett. 2000. V. 85. P. 1887–1889. https://doi.org/10.1103/PhysRevLett.85.1887
  17. Ilgamov M.A., Aitbaeva A.A., Pavlov I.S., Dmitriev S.V. Carbon nanotube under pulsed pressure // FU Mech. Eng. 2024. V. 22. № 2. P. 275–292. https://doi.org/10.22190/FUME230820049I
  18. Karmakar S., Sharma S.M., Teredesai P.V., Muthu D.V.S., Govindaraj A., Sikka S.K., Sood A.K. Structural changes in single-walled carbon nanotubes under non-hydrostatic pressures: X-ray and Raman studies // New J. Phys. 2003. V. 5. P. 143. https://doi.org/10.1088/1367-2630/5/1/143
  19. Ivanova S.Yu., Osipenko K.Yu., Demin A.I., Banichuk N.V., Lisovenko D.S. Studying the properties of metamaterials with a negative Poisson’s ratio when punched by a rigid impactor // Mech. Solids. 2023. V. 58. P. 1536–1544. https://doi.org/10.3103/S0025654423600897
  20. Ivanova S.Yu., Osipenko K.Yu., Kuznetsov V.A., Solovyov N.G., Banichuk N.V., Lisovenko D.S. Experimental investigation of the properties of auxetic and non-auxetic metamaterials made of metal during penetration of rigid strikers // Mech. Solids. 2023. V. 58. P. 524–528. https://doi.org/10.3103/S0025654422601616
  21. Lisovenko D.S., Baimova J.A., Rysaeva L.K., Gorodtsov V.A., Rudskoy A.I., Dmitriev S.V. Equilibrium diamond-like carbon nanostructures with cubic anisotropy: Elastic properties // Phys. Status Solidi (B) Basic Res. 2016. V. 253. № 7. P. 1295–1302. https://doi.org/10.1002/pssb.201600049
  22. Lee J.-H., Loya P., Lou J., Thomas E. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration // Science. 2014. V. 346. № 6213. P. 1092–1096. https://doi.org/10.1126/science.1258544
  23. Lin Y., Liyong T. Suspended monolayer graphene traps high-speed single-walled carbon nanotube // Carbon. 2016. V. 107. P. 689–695. https://doi.org/10.1016/j.carbon.2016.06.041
  24. Shepelev I.A., Chetverikov A.P., Dmitriev S.V., Korznikova E.A. Shock waves in graphene and boron nitride // Comput. Mater. Sci. 2020. V. 177. P. 109549. https://doi.org/10.1016/j.commatsci.2020.109549
  25. Rysaeva L.K., Korznikova E.A., Murzaev R.T., et al. Elastic damper based on the carbon nanotube bundle // FU Mech. Eng. 2020. V. 18. № 1. P. 1–12. https://doi.org/10.22190/FUME200128011R
  26. Korznikova E.A., Rysaeva L.K., Savin A.V., et al. Chain model for carbon nanotube bundle under plane strain conditions // Materials. 2019. V. 12. № 23. P. 3951. https://doi.org/10.3390/ma12233951
  27. Savin A.V., Korznikova E.A., Dmitriev S.V. Scroll configurations of carbon nanoribbons // Phys. Rev. B. 2015. V. 92. P. 035412. https://doi.org/10.1103/PhysRevB.92.035412
  28. Savin A.V., Savina O.I. Elastic and plastic deformations of multilayer packings of carbon nanotubes on a flat substrate // Journal of Experimental and Theoretical Physics. 2022. P. 75–85. https://doi.org/10.31857/S0044451022010072
  29. Rysaeva L.K., Bachurin D.V., Murzaev R.T., et al. Evolution of the carbon nanotube bundle structure under biaxial and shear strains // FU Mech. Eng. 2020. V. 18. № 4. P. 525–536. https://doi.org/10.22190/FUME201005043R
  30. Savin A.V., Savina O.I. Dynamics of Carbon Nanotube Chains Located on Flat Substrates // Solid State Physics. 2021. P. 137. https://doi.org/10.21883/FTT.2021.01.50412.183
  31. Savin A.V., Korznikova E.A., Dmitriev S.V. Modeling of Folded and Rolled Packings of Carbon Nanoribbons // Solid State Physics. 2015. P. 2278. https://doi.org/10.1103/PhysRevB.99.235411
  32. Savin A.V., Korznikova E.A., Dmitriev S.V. Dynamics of surface graphene ripplocations on a flat graphite substrate // Phys. Rev. B. 2019. V. 99. P. 235411. https://doi.org/10.1103/PhysRevB.99.235411
  33. Dmitriev S.V., Morkina A.Y., Tarov D.V. et al. Effect of repetitive high-density current pulses on plastic deformation of copper wires under stepwise loading // Spec. Mech. Eng. Oper. Res. 2024. V. 1. № 1. P. 27–43. https://doi.org/10.31181/smeor1120243
  34. Liew K.M., Wong C.H., He X.Q., Tan M.J., Meguid S.A. Nanomechanics of single and multiwalled carbon nanotubes // Phys. Rev. B. 2004. V. 69. № 11. P. 115429. https://doi.org/10.1103/PhysRevB.69.115429
  35. Safaei B., Naseradinmousavi P., Rahmani A. Development of an accurate molecular mechanics model for buckling behavior of multi-walled carbon nanotubes under axial compression // J. Mol. Graph. Model. 2016. V. 65. P. 43–60. https://doi.org/10.1016/j.jmgm.2016.02.001
  36. Chang W., Liu F., Liu Y. et al. Smallest carbon nanowires made easy: Long linear carbon chains confined inside single-walled carbon nanotubes // Carbon. 2021. V. 183. P. 571–577. https://doi.org/10.1016/j.carbon.2021.07.037

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The structure of the calculation block of size I×J×A2, where I, J ∈ Z is the number of CNTs in a cell in the x and y directions, A is the distance between the centers of adjacent CNTs, D is the diameter of the CNT, d is the distance between the walls of adjacent CNTs, a is the distance between C atoms in the CNT cross-section.

Download (425KB)
3. Fig. 2. Equilibrium structures of a CNT bundle at a deformation of (a) 1% and (b) 10%. The color scale reflecting the ellipticity of the CNT is shown on the right.

Download (746KB)
4. Fig. 3. (a) Dependence of the ellipticity e of the CNT on the compressive strain εyy; the maximum and minimum values ​​are shown by the red and blue curves, respectively; (b) the relative spread of the ellipticity of the CNT depending on the strain. The red and blue dots show the results of calculations in which metastable configurations of the bundle were obtained.

Download (305KB)
5. Fig. 4. (a) Characteristic patterns of misorientation of CNT diameters at small deformations of 1, 4, 7, and 10%; red and blue segments show the maximum and minimum CNT diameters, respectively. Histograms of the distribution of tube misorientation angles for (b) stratified packings, (c) packings with island misorientation.

Download (579KB)
6. Fig. 5. Evolution of the CNT bundle structure in the compressive strain range from 10 to 14.8%: (a) 10.0%, (b) 14.0%, (c) 14.75%, and (d) 14.8%. The displacements are shown by segments, the length and direction of which illustrate how the position of the atom and the centers of mass of the CNTs in the bundle has changed. At a deformation of about 10%, two CNT blocks with different directions of displacement of their centers of mass are highlighted in red and blue in the figure. (e) shows the change in the geometry of the CNT bundle.

Download (808KB)
7. Fig. 6. Ellipticity and potential energy distribution patterns in a CNT bundle obtained at deformations of (a) 14%, (b) 15%, (c) 20%, (d) 22%, (e) 24–24.8%, (f) 25%, (g) 30%, (h) 35%, (i) 40%. The scales illustrating the relative potential energy of each CNT are shown on the right. Blue color corresponds to the maximum energy, red color – to the minimum.

Download (1MB)
8. Fig. 7. Dependence of the specific potential energy Ea=E/n of the CNT bundle on the relative deformation of the bundle. The blue curve shows the dependence of the total specific energy of the bundle, the purple curve shows the contribution of pairwise van der Waals interactions of atoms, the black and green curves illustrate the contribution to the energy of valence bonds and valence angles, respectively. The vertical dotted lines show the deformations at which qualitative changes (bifurcation points) appear in the bundle structure.

Download (201KB)

Copyright (c) 2025 Russian Academy of Sciences