Evolution of the single-wall carbon nanotubes bundle structure under compressive deformation
- Authors: Andrukhova O.V.1, Ovcharov A.A.2, Andrukhova T.V.3, Morkina A.Y.4,5
-
Affiliations:
- National University of Science and Technology MISIS
- LLC “GPB-IT1”
- Altai State University
- Institute for Metals Superplasticity Problems of the RAS
- Ufa University of Science and Technology
- Issue: No 2 (2025)
- Pages: 119-136
- Section: Articles
- URL: https://rjmseer.com/1026-3519/article/view/686210
- DOI: https://doi.org/10.31857/S1026351925020071
- EDN: https://elibrary.ru/anhtcw
- ID: 686210
Cite item
Abstract
The change in the structure and properties of a carbon nanotube (CNT) bundle under the action of uniaxial compression deformation in the framework of a quasi-three-dimensional computer experiment is investigated. The equilibrium configurations of the CNT bundle cross section are considered and their energetic properties are analyzed. It is found that up to a compression strain of 12% the bundle deformation develops almost homogeneously, while at higher strains a number of structural rearrangements begin in the bundle and regions with different degrees of ellipticity of CNT cross sections are formed. When the compression strain reaches 24%, even more significant structural changes are observed, including the formation of collapsed CNTs. The presented results reveal the mechanisms of absorption of external impact energy by the CNT bundle, which is important for the development of materials damping shock and vibration loads.
Full Text

About the authors
O. V. Andrukhova
National University of Science and Technology MISIS
Email: alinamorkina@yandex.ru
Russian Federation, Moscow
A. A. Ovcharov
LLC “GPB-IT1”
Email: alinamorkina@yandex.ru
Russian Federation, Moscow
T. V. Andrukhova
Altai State University
Email: alinamorkina@yandex.ru
Russian Federation, Barnaul
A. Y. Morkina
Institute for Metals Superplasticity Problems of the RAS; Ufa University of Science and Technology
Author for correspondence.
Email: alinamorkina@yandex.ru
Russian Federation, Ufa; Ufa
References
- Galiakhmetova L.Kh., Bachurin D.V., Korznikova E.A., Bayazitov A.M., Kudreyko A.A., Dmitriev S.V. Shock loading of carbon nanotube bundle // Mech. Mater. 2022. V. 174. 104460. https://doi.org/10.1016/j.mechmat.2022.104460
- Dongju L. et al. Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescence // Sci. Adv. 2022. V. 8. № 16. https://doi.org/10.1126/sciadv.abn0939
- Zhan H., Lin J.H., Shi H.L., Wang J.N. Construction of carbon nanotubes/bismaleimide composite films with superior tensile strength and toughness // Compos. Sci. Technol. 2021. V. 214. P. 108975. https://doi.org/10.1016/j.compscitech.2021.108975
- Hennequin T., Manghi M., Noury A., Henn F., Jourdain V., Palmeri J. Influence of the quantum capacitance on electrolyte conductivity through carbon nanotubes // J. Phys. Chem. Lett. 2024. V. 15. № 8. P. 2177–2183. https://doi.org/10.1021/acs.jpclett.3c03248
- Wiśniewska M., Laptev A., Marczewski M., et al. Influence of carbon nanotubes on thermal and electrical conductivity of zirconia-based composite // Ceram. Int. 2023. V. 49. № 10. P. 15442–15450. https://doi.org/10.1016/j.ceramint.2023.01.129
- Oluwalowo A., Nguyen N., Zhang S., Park J.G., Liang R. Electrical and thermal conductivity improvement of carbon nanotube and silver composites // Carbon. 2019. V. 146. P. 224–231. https://doi.org/10.1016/j.carbon.2019.01.073
- Jia Q., Zhou Y. et al. Differential multi-probe thermal transport measurements of multi-walled carbon nanotubes grown by chemical vapor deposition // Int. J. Heat Mass Transfer. 2023. V. 216. P. 124535. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124535
- Jie W., Duan X., Gong L., Nie S. Interfacial and filler size effects on mechanical/thermal/electrical properties of CNTs-reinforced nanocomposites // Polymers. 2024. V. 16. № 6. P. 808. https://doi.org/10.3390/polym16060808
- Wang X., Wang D., Ma S. et al. Enhanced toughness of boron carbide by single-wall carbon nanotube bundles // Mater. Today Commun. 2023. V. 35. P. 105651. https://doi.org/10.1016/j.mtcomm.2023.105651
- Ushakov I.V., Safronov I.S. Directed changing properties of amorphous and nanostructured metal alloys with help of nanosecond laser impulses // CIS Iron and Steel Review. 2021. № 2. P. 77–81. https://doi.org/10.17580/cisisr.2021.02.14
- Ushakov I.V., Safronov I.S., Oshorov A.D., Zhiqiang W., Muromtsev D.Y. Physics of the effect of high-temperature pulse heating on defects in the surface layer of a metal alloy // Metallurgist. 2023. V. 67. P. 986–994. https://doi.org/10.1007/s11015-023-01588-z
- Moumen A., Tarfaoui M., Nachtane M., Lafdi K. Carbon nanotubes as a player to improve mechanical shock wave absorption // Compos. B Eng. 2019. V. 164. P. 67–71. https://doi.org/10.1016/j.compositesb.2018.11.072
- Qiao J., Ushakov I.V., Safronov I.S. et al. Physical mechanism of nanocrystalline composite deformation responsible for fracture plastic nature at cryogenic temperatures // Nanomaterials. 2024. V. 14. № 8. P. 723. https://doi.org/10.3390/nano14080723
- Wang Z., Ushakov I.V., Safronov I.S., Zuo J. Physical mechanism of selective healing of nanopores in condensed matter under the influence of laser irradiation and plasma // Nanomaterials. 2024. V. 14. № 2. P. 139. https://doi.org/10.3390/nano14020139
- Safronov I.S., Ushakov I.V. Targeted alternation in properties of solid amorphous-nanocrystalline material in exposing to nanosecond laser radiation // DDF. 2021. V. 410. P. 469–474. https://doi.org/10.4028/www.scientific.net/DDF.410.469
- Tang J., Qin L.-C., Sasaki T., Yudasaka M., Matsushita A., Iijima S. Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure // Phys. Rev. Lett. 2000. V. 85. P. 1887–1889. https://doi.org/10.1103/PhysRevLett.85.1887
- Ilgamov M.A., Aitbaeva A.A., Pavlov I.S., Dmitriev S.V. Carbon nanotube under pulsed pressure // FU Mech. Eng. 2024. V. 22. № 2. P. 275–292. https://doi.org/10.22190/FUME230820049I
- Karmakar S., Sharma S.M., Teredesai P.V., Muthu D.V.S., Govindaraj A., Sikka S.K., Sood A.K. Structural changes in single-walled carbon nanotubes under non-hydrostatic pressures: X-ray and Raman studies // New J. Phys. 2003. V. 5. P. 143. https://doi.org/10.1088/1367-2630/5/1/143
- Ivanova S.Yu., Osipenko K.Yu., Demin A.I., Banichuk N.V., Lisovenko D.S. Studying the properties of metamaterials with a negative Poisson’s ratio when punched by a rigid impactor // Mech. Solids. 2023. V. 58. P. 1536–1544. https://doi.org/10.3103/S0025654423600897
- Ivanova S.Yu., Osipenko K.Yu., Kuznetsov V.A., Solovyov N.G., Banichuk N.V., Lisovenko D.S. Experimental investigation of the properties of auxetic and non-auxetic metamaterials made of metal during penetration of rigid strikers // Mech. Solids. 2023. V. 58. P. 524–528. https://doi.org/10.3103/S0025654422601616
- Lisovenko D.S., Baimova J.A., Rysaeva L.K., Gorodtsov V.A., Rudskoy A.I., Dmitriev S.V. Equilibrium diamond-like carbon nanostructures with cubic anisotropy: Elastic properties // Phys. Status Solidi (B) Basic Res. 2016. V. 253. № 7. P. 1295–1302. https://doi.org/10.1002/pssb.201600049
- Lee J.-H., Loya P., Lou J., Thomas E. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration // Science. 2014. V. 346. № 6213. P. 1092–1096. https://doi.org/10.1126/science.1258544
- Lin Y., Liyong T. Suspended monolayer graphene traps high-speed single-walled carbon nanotube // Carbon. 2016. V. 107. P. 689–695. https://doi.org/10.1016/j.carbon.2016.06.041
- Shepelev I.A., Chetverikov A.P., Dmitriev S.V., Korznikova E.A. Shock waves in graphene and boron nitride // Comput. Mater. Sci. 2020. V. 177. P. 109549. https://doi.org/10.1016/j.commatsci.2020.109549
- Rysaeva L.K., Korznikova E.A., Murzaev R.T., et al. Elastic damper based on the carbon nanotube bundle // FU Mech. Eng. 2020. V. 18. № 1. P. 1–12. https://doi.org/10.22190/FUME200128011R
- Korznikova E.A., Rysaeva L.K., Savin A.V., et al. Chain model for carbon nanotube bundle under plane strain conditions // Materials. 2019. V. 12. № 23. P. 3951. https://doi.org/10.3390/ma12233951
- Savin A.V., Korznikova E.A., Dmitriev S.V. Scroll configurations of carbon nanoribbons // Phys. Rev. B. 2015. V. 92. P. 035412. https://doi.org/10.1103/PhysRevB.92.035412
- Savin A.V., Savina O.I. Elastic and plastic deformations of multilayer packings of carbon nanotubes on a flat substrate // Journal of Experimental and Theoretical Physics. 2022. P. 75–85. https://doi.org/10.31857/S0044451022010072
- Rysaeva L.K., Bachurin D.V., Murzaev R.T., et al. Evolution of the carbon nanotube bundle structure under biaxial and shear strains // FU Mech. Eng. 2020. V. 18. № 4. P. 525–536. https://doi.org/10.22190/FUME201005043R
- Savin A.V., Savina O.I. Dynamics of Carbon Nanotube Chains Located on Flat Substrates // Solid State Physics. 2021. P. 137. https://doi.org/10.21883/FTT.2021.01.50412.183
- Savin A.V., Korznikova E.A., Dmitriev S.V. Modeling of Folded and Rolled Packings of Carbon Nanoribbons // Solid State Physics. 2015. P. 2278. https://doi.org/10.1103/PhysRevB.99.235411
- Savin A.V., Korznikova E.A., Dmitriev S.V. Dynamics of surface graphene ripplocations on a flat graphite substrate // Phys. Rev. B. 2019. V. 99. P. 235411. https://doi.org/10.1103/PhysRevB.99.235411
- Dmitriev S.V., Morkina A.Y., Tarov D.V. et al. Effect of repetitive high-density current pulses on plastic deformation of copper wires under stepwise loading // Spec. Mech. Eng. Oper. Res. 2024. V. 1. № 1. P. 27–43. https://doi.org/10.31181/smeor1120243
- Liew K.M., Wong C.H., He X.Q., Tan M.J., Meguid S.A. Nanomechanics of single and multiwalled carbon nanotubes // Phys. Rev. B. 2004. V. 69. № 11. P. 115429. https://doi.org/10.1103/PhysRevB.69.115429
- Safaei B., Naseradinmousavi P., Rahmani A. Development of an accurate molecular mechanics model for buckling behavior of multi-walled carbon nanotubes under axial compression // J. Mol. Graph. Model. 2016. V. 65. P. 43–60. https://doi.org/10.1016/j.jmgm.2016.02.001
- Chang W., Liu F., Liu Y. et al. Smallest carbon nanowires made easy: Long linear carbon chains confined inside single-walled carbon nanotubes // Carbon. 2021. V. 183. P. 571–577. https://doi.org/10.1016/j.carbon.2021.07.037
Supplementary files
