Mathematical modeling of creep of aluminum alloy 1570R (Al-Mg-Sc system) using kinetic physical-mathematical theory of metal creep

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

In the work with the purpose of determining the prospects of using the kinetic physical and mathematical theory of creep of metals for performing design calculations when creating new technology products, the results obtained in describing the theory of uniaxial creep processes of 1570R alloy under conditions of steady-state and abrupt changes in thermomechanical loading parameters are presented. It is established that the new physical and mathematical theory of creep of metals being developed, which, unlike the classical phenomenological theory, takes into account the structure of the metal and its change in the creep process, equally well describes the process under steady-state and non-stationary conditions of thermomechanical loading. The important role of the structural state of the metal on the creep process is shown. The main structural parameter determining the characteristics of the process is the scalar density of immobile dislocations.

作者简介

V. Greshnov

Ufa University of Science and Technology

编辑信件的主要联系方式.
Email: greshnov_vm@list.ru
Ufa, Republic of Bashkortostan, Russia

I. Puchkova

Ufa University of Science and Technology

Email: puchkova_iv@mail.ru
Ufa, Republic of Bashkortostan, Russia

参考

  1. Greshnov V.M. Physical-Mathematical Theory of Irreversible Strains in Metals // Mech. Solids. 2011. V. 46. № 4. P. 544–553. https://doi.org/10.3103/S0025654411040054
  2. Greshnov V.M. A model of a viscoplastic body taking into account the loading history // Mech. Solids. 2005. V. 40. №. 2. P. 97–103.
  3. Greshnov V.M.Physico-mathematical theory of large irreversible deformations of metals. M.: Fizmatlit, 2018. 232 с.
  4. Greshnov V.M.Physico-mathematical theory of high irreversible strains in metals. – CRC Press Taylor & Francis Group Bocaraton London New York. 2019. 242 p. https://doi.org/10.1201/9780429259791
  5. Greshnov V.M., Patyaeva I.V., Sidorov V.E.Physico-Mathematical Theory of Metal Plasticity and Creeping // Vest. UGATU. 2007. V. 9. № 6. P. 143–152.
  6. Greshnov V.M., Shaikhutdinov R.I., Puchkova I.V. Kinetic physical phenomenological model of creep-rupture strength of metals // Journal of Applied Mechanics and Technical Physics. 2017. V. 58. № 1. P. 165–172. https://doi.org/10.1134/S0021894417010187
  7. Greshnov V.M, Safin F.F., Puchkova I.V. Plastic structure formation of the 1570R alloy (Al–Mg–Sc) using the physico-mathematical theory of metal plasticity // Journal of Applied Mechanics and Technical Physics. 2022. V. 63. P. 669–675. https://doi.org/10.1134/S0021894422040149
  8. Greshnov V.M., Puchkova I.V., Safin F.F.Development of technology for the production of parts of increased strength and tightness from 1570R alloy for pneumatic and hydraulic equipment of advanced aircraft and rocket engines // KSHP. OMD 2022. № 10. P. 3–9.
  9. Lokoshchenko A.M. Creep and long-term strength of metals. M.: Fizmatlit, 2016.
  10. RabotnovYu.N. Creep of structural elements. M.: Nauka, 1966.
  11. Namestnikov V.S., Khvostunov A.A. Creep of duralumin under constant variable loads // Appl. Mech. Tech. Phys. 1960. № 4. P. 90–95.
  12. Namestnikov V.S., RabotnovYu.N. On hereditary theories of creep // Appl. Mech.Tech.Phys. 1961. V. 2. № 4. P. 148.
  13. Ohno N., Murakami S., Ueno T. A constitutive model of creep describing creep recovery and material softening caused by stress reversals. 1985.
  14. Greshnov V.M., Shaikhutdinov R.I. On the kinetic physical and mathematical metal creep theory controlled by thermally activated dislocation sliding // Izvestiâ Akademii nauk. Rossijskaâ akademiâ nauk. Mehanikatverdogotela. 2024. № 2. P. 305–324. https://doi.org/10.31857/S1026351924020157
  15. Namestnikov V.S. A phenomenological model of creep under variable stress // PMTF. 1993. № 4. P. 123–127.
  16. Lokoshchenko A.M., Fomin L.V., BasalovYu.G., Aghababyan V.S. Modeling of metal creep under non-stationary complex stress state // Bulletin of Samara State Tech. University. Series Phys.-Math. Sciences. 2019. V. 23. № 1. P. 86–89.
  17. Lokoshchenko A.M. Modeling of long-term strength of metals under non-stationary complex stress state // Applied Mathematics and Mechanics. 2018. V. 82. № 1. P. 84–97.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025