The evolution of regions of reversible and irreversible deformation within a hollow sphere with complex rheological properties under conditions of unsteady heating

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The Ivlev–Sporykhin continuum model, which is a model of a hardening elastoviscoplastic solid, is considered in this study. The model takes into account both reversible and irreversible deformations to investigate evolutionary processes occurring in a hollow sphere under the influence of a time-dependent temperature field. During the solution of this problem, an analytical expression for the temperature distribution within the body was derived. A generalized tree of evolution of regions of elasticity, plastic flow, unloading, and re-plasticity was also constructed. Expressions for the radial components of stress and displacement in these regions were also developed. Four rheological models were compared, taking into account the various properties of the medium.

Толық мәтін

Рұқсат жабық

Авторлар туралы

D. Chernyshov

Voronezh State University

Хат алмасуға жауапты Автор.
Email: chernyshov.danil@gmail.com
Ресей, Voronezh, 394018

А. Kovalev

Voronezh State University

Email: kav-mail@mail.ru
Ресей, Voronezh, 394018

Әдебиет тізімі

  1. Parkus H. Instationäre Wärmespannungen. Vienna: Springer, 1959.
  2. Bershtain M.L., Zaimovskiy V.A. Mechanical Properties of Metals. M.: Metallurgiya, 1979.
  3. Burenin A.A., Tkacheva A.V. Gadolin Problem of Assembling A Prestressed Two-Layer Pipe // J. Appl. Mech. Tech. Phys. 2023. № 5. P. 929–942.
  4. Dats E.P., Murashkin E.V., Bururuev A.M., Nesterov T.K., Stadnik N.E. Calculation of Residual Stresses in The State of Elastic Unloading of a Preheated Inhomogeneous Thermoelastoplastic Material Under Conditions of Toroidal Symmetry //. Estn. Chuvash. Gos. Ped. Univ. Im. Yakovleva Ser. Mekh. Predeln. Sost. 2021. № 1. P. 105–113.
  5. Akinlabi E.T., Dats E.P., Mahamood R.M., Murashkin E.V., Shatalov M.Y. On a Method of Temperature Stresses Computation in a Functionally Graded Elastoplastic Material // Mech. Solids. 2020. № 6. P. 800–807.
  6. Patent No. 2010132900, Int. Cl. E04B 5/21 (2006.01). Steel reinforcement structure of bubbledeck slab elements and procedure of manufacturing bubbledeck slab elements: No. 2010000002: filed 14.05.2010: publicated 18.11.2010 / Duc Thang // WIPO : World Intellectual Property Organization.
  7. URL: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2010132900
  8. Love A.E.H. A treatise on the mathematical theory of elasticity. Cambridge: University Press, 1927.
  9. Lychev S.A., Lycheva T.N., Koifman K.G. The Nonlinear Evolutionary Problem for Self-Stressed Multilayered Hyperelastic Spherical Bodies // PNRPU Mechanics Bulletin. 2020. № 1. P. 43–59.
  10. Dats E.P. Candidate’s Dissertation in Physics and Mathematica. (KnAGTU, Komsomolsk-na-Amure, 2017), pp. 23–48.
  11. Chernyshov D.A., Kovalev A.V. Thermal Deformation of a Body with Complex Rheology under Conditions of Spherical Symmetry // Mech. Solids. 2022. № 4. P. 740–753.
  12. Kartashov E.M. Analytical Methods in Heat Conductivity of Solids. M.: Vysshaya Shkola, 2001 [in Russian].
  13. Sporykhin A.N. Perturbation Method in Stability Problems for Complex Media. Voronezh: Voronezh. Gos. Univ., 1997 [in Russian].

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Evolution tree of zones with different rheological properties, E – elastic region, P – plastic flow regions, U – unloading zones, R – repeated plastic flow regions.

Жүктеу (870KB)
3. Fig. 2. Location of regions with different rheology and elastic-plastic boundaries in the presence of all seven zones.

Жүктеу (67KB)
4. Fig. 3. Distribution of dimensionless temperature in the body.

Жүктеу (240KB)
5. Fig. 4. Distribution of residual stresses in the body.

Жүктеу (220KB)
6. Fig. 5. Location of elastic-plastic boundaries

Жүктеу (393KB)

© Russian Academy of Sciences, 2025