On the sensitivity of equilibria to the method of realization of unilateral constraints with piecewise smooth boundaries

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Two ways of implementing unilateral holonomic constraints with piecewise smooth boundaries are considered. Examples are given that testify both in favor of the proposed methods and against them. The sensitivity of the equilibria of a system subjected to holonomic constraints with piecewise smooth boundaries to the way these constraints are implemented is also discussed using examples. Two problems from the mechanics of systems constrained by a pair of inextensible weightless tethers are considered. In one of these problems, which is most likely academic in nature, equilibria are found and small oscillations near these equilibria are studied. Another problem relates to tethered systems deployed near a uniformly rotating celestial body. For it, the relative equilibria of a load suspended on a pair of tethers are found, and sufficient conditions for the stability of these relative equilibria are studied.

Texto integral

Acesso é fechado

Sobre autores

A. Burov

Federal Research Center “Computer Science and Control” of the RAS

Autor responsável pela correspondência
Email: jtm@narod.ru
Rússia, Moscow

Bibliografia

  1. Routh E.J. A Treatise on the Stability of a Given State of Motion. L.: MacMillan, 1877.
  2. Rubanovskii V.N., Stepanov S.Ia. On the Routh theorem and the Chetaev method for constructing the liapunov function from the integrals of the equations of motion // Journal of Applied Mathematics and Mechanics. 1969. V. 33. № 5. P.882–890. https://doi.org/10.1016/0021-8928(69)90096-3
  3. Karapetyan A.V. Stability of steady motions. URSS Publishing House, Moscow, 1998 [in Russian].
  4. Varkonyi P.L., Domokos G. Symmetry, Optima and Bifurcations in Structural Design // Nonlinear Dynamics. 2006. V. 43. P. 47–58. https://doi.org/10.1007/s11071-006-0749-7
  5. Berezkin E.N. Course of theoretical mechanics. Moscow State University, Moscow, 1974 [in Russian].
  6. Rubin H., Ungar P. Motions under a strong constraining force // Commun. Pure Appl.Math. 1957. V. 10. № 1. P. 65–87. https://doi.org/10.1002/cpa.3160100103
  7. Baumgarte J. Stabilization of constraints and integrals of motion in dynamical systems // Comput. Methods in Appl. Math. Eng. 1972. V. 1. № 1. P. 1–16. https://doi.org/10.1016/0045-7825(72)90018-7
  8. V.V. Kozlov. A constructive method of establishing the validity of the theory of systems with non-retaining constraints // Journal of Applied Mathematics and Mechanics. 1988. V. 52. № 6. P. 691–699. https://doi.org/10.1016/0021-8928(88)90001-9
  9. Burov A.A. The existence and stability of the equilibria of mechanical systems with constraints produced by large potential forces // Journal of Applied Mathematics and Mechanics. 2003. V. 67. № 2. P. 193–200. https://doi.org/10.1016/S0021-8928(03)90005-0
  10. Zhuravlev V.F., Fufaev N.A. Mechanics of systems with non-retaining constarints (Nauka, Moscow, 1993) [in Russian].
  11. Burov A.A., Kosenko I.I. Stability and bifurcations of relative equilibria of a pendulum suspended on the equator // Cosmic Res. 2013. V. 51. P. 209–212. https://doi.org/10.1134/S0010952513030015
  12. Burov A., Kosenko I. On the inverted pendulum // Kvant. 2014. № 4. P. 29–31 [in Russian].
  13. Telyakovsky S.A. A course of lectures on mathematical analysis. Semester II. REC Lecture courses / Mathematical V. A. Steklov Institute of the Russian Academy of Sciences (MIAN). Iss. 17. (MIAN, Moscow, 2011) [in Russian].
  14. Kozlov V.V.Implementation of non-integrable constraints in classical mechanics // Dokl. USSR Academy of Sciences. 1983. V. 272. № 3. P. 550–554.
  15. Ivanov A.P. On the stability of systems with non-retaining constraints // Journal of Applied Mathematics and Mechanics. 1984. V. 48. № 5. P. 523–528. https://doi.org/10.1016/0021-8928(84)90054-6
  16. Kozlov V.V., Treshchev D.V. Billiards. A genetic introduction to the dynamics of systems with impacts. Publishing House of Moscow State University, Moscow, 1991. [in Russian].
  17. Deryabin M.V. The realization of unilateral constraints // Journal of Applied Mathematics and Mechanics. 1994. V. 58. № 6. P. 1079–1083. https://doi.org/10.1016/0021-8928(94)90124-4
  18. Deryabin M.V., Kozlov V.V. A theory of systems with unilateral constraints // Journal of Applied Mathematics and Mechanics. 1995. V. 59. № 4. P. 505–512. https://doi.org/10.1016/0021-8928(95)00059-3
  19. Deryabin M.V. General principles of dynamics and theory of unilateral constraints // Vestn. Moscow State Univ. Ser. 1. Mathem., mech. 1998. № 1. P. 53–59.
  20. Ivanov A.P., Dynamics of systems with mechanical collisions. International Education Program, Moscow, 1997 [in Russian].
  21. Berezinskaya S.N., Kugushev E.I. On the motion of mechanical systems with unilateral constraints // Vestn. Moscow State Univ. Ser.1. Mathem. Mech. 2005. № 3. P. 18–24.
  22. Rumyantsev V.V. Variational principles for systems with unilateral constraint // Journal of Applied Mathematics and Mechanics. 2006. V. 70. № 6. P. 808–818. https://doi.org/10.1016/j.jappmathmech.2007.01.002
  23. Leine R.I., van de Wouw N. Stability and Convergence of Mechanical Systems with Unilateral Constraints. Berlin, Heidelberg: Springer-Verlag, 2008. 236 p.
  24. Otradnova L.S. Maximum of action for Hamiltonian systems with unilateral constraints // Moscow Univ. Mech. Bull. 2012. № 67. P. 103–104. https://doi.org/10.3103/S0027133012040061
  25. Rodnikov A.V. The algorithms for capture of the space garbage using “Leier constraint” // Regular and Chaotic Dynamics. 2006. V. 11. № 4. P. 483–489. https://doi.org/10.1070/RD2006v011n04ABEH000366
  26. Rodnikov A.V. On the motion of a material point along a leyer fixed on a precessing rigid body,” Rus. J. Nonlin. Dyn. 2011. V. 7. № 2. P. 295–311. https://doi.org/10.20537/nd1102007
  27. Rodnikov A.V. On the coplanar equilibria of a space station on a tether fixed on a precessing asteroid// Rus. J. Nonlin. Dyn. 2012. V. 8. № 2. P. 309–322. https://doi.org/10.20537/nd1202007
  28. Rodnikov A.V. Modeling the dynamics of a space station in the vicinity of an asteroid // Mathematical modeling and numerical methods. 2016. № 10. Р. 55–68.
  29. Rodnikov A.V. Mathematical model of a two-tether space station system and dynamically symmetric asteroid // Mathematical modeling and numerical methods. 2017. № 16. Р. 92–101. https://doi.org/10.18698/2309-3684-2017-4-92101
  30. Rodnikov A.V. On safe configurations of a natural-artificial space tether system // AIP Conference Proceedings. 2018. V. 1959. № 1. P. 040018. https://doi.org/10.1063/1.5034621

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. For example 1.

Baixar (77KB)
3. Fig. 2. For example 2.

Baixar (82KB)
4. Fig. 3. For example 3.

Baixar (39KB)
5. Fig. 4. Example 1 (continued).

Baixar (88KB)
6. Fig. 5. Example 3 (continued).

Baixar (92KB)
7. Fig. 6. For problem 1: a heavy point suspended on two cables.

Baixar (62KB)
8. Fig. 7. For problem 2: a point suspended from a rotating celestial body on two cables.

Baixar (92KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025