On an analytical solution to the creep problem of a viscoelastic cylindrical layer under torsional loading

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Using a mathematical model of large deformations of materials with elastic, plastic and viscous properties, an analytical solution is obtained for the problem of deformation under creep conditions of a viscoelastic material placed in a gap between two rigid cylindrical surfaces, when the outer rigid cylinder rotates due to a twisting moment applied to it, while the inner cylinder is stationary. The displacements, reversible and irreversible deformations, stresses at all stages of deformation, including residual deformations and stresses under full unloading, are calculated.

作者简介

A. Begun

Institute of Automation and Control Processes, FEB RAS; Vladivostok State University

编辑信件的主要联系方式.
Email: asustinova@mail.ru
Vladivostok, Russia; Vladivostok, Russia

L. Kovtanyuk

Institute of Automation and Control Processes, FEB RAS

Email: lk@iacp.dvo.ru
Vladivostok, Russia

参考

  1. Rabotnov Y.N. Creep of Structural Elements. Moscow: Nauka 1966. 752 с.
  2. Finnie I., Heller W.R. Creep of engineering materials, McGraw-Hill Book Co., Inc., New York, 1959. 341 p.
  3. Malinin N.N. Applied Theory of Plasticity and Creep. Moscow: Mashinostroenie. 1975. 400 p.
  4. Lokoshchenko A.M. Creep and long-term strength of metals. Moscow: Fizmatlit. 2016. 504 p.
  5. Weir C.D. The creep of thick tube under internal pressure // Journal of Applied Mechanics. 1957. V. 24. № 3. P. 464–466. https://doi.org/10.1115/1.4011565
  6. Bhatnagar N.S., Kulkarni P.S., Arya V.K. Creep analysis of an internally pressurised orthotropic rotating cylinder // Nuclear Engineering and Design. 1984. V. 83. № 3. P. 379–388.
  7. Sim R.G., Penny R.K. Plane strain creep behaviour of thick-walled cylinders // International Journal of Mechanical Sciences. 1971. V. 13. № 12. P. 987–1009.
  8. Bhatnagar N.S., Gupta S.K. Analysis of thick-walled orthotropic cylinder in the theory of creep // Journal of the Physical Society of Japan. 1969. V. 27. № 6. P. 1655–1662. https://doi.org/10.1143/JPSJ.27.1655
  9. Bhatnagar N.S., Kulkarni P.S., Arya V.K. Creep analysis of orthotropic rotating cylinders considering finite strains // International Journal of Non-Linear Mechanics. 1986. V. 21. № 1. P. 61–71.
  10. Liu S.-A., Chen W.-P. On the creep rupture of a pressurized sphere // Journal of the Chinese Society of Mechanical Engineers. 1997. V. 18. № 5. P. 467–475.
  11. Liu S.-A. Creep-fatigue rupture of a thick sphere subjected to pulsating internal pressure // Journal of the Chinese Society of Mechanical Engineers. 2004. V. 25. № 4. P. 363–372.
  12. Miller G.K. Stresses in a spherical pressure vessel undergoing creep and dimensional changes // International Journal of Solids and Structures. 1995. V. 32. № 14. P. 2077-2093.
  13. Rimrott F.P.J., Luke J.R. Large strain creep of rotating cylinders // ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik. 1961. V. 41. № 12. P. 485–500.
  14. Bhatnagar N.S., Arya V.K. Creep of thick-walled spherical vessels under internal pressure considering large strains // Indian Journal of Pure and Applied Mathematics. 1975. № 6. P. 1080.
  15. Sakaki T., Kuroki T., Sugimoto K. Creep of a hollow sphere // Journal of Applied Mechanics, Transactions ASME. 1990. V. 57. № 2. P. 276–281. https://doi.org/10.1115/1.2891985
  16. Baniasadi M., Fareghi P., Darijani F., Baghani M. Finite strain relaxation and creep in coupled axial and torsional deformation // Mechanics Based Design of Structures and Machines. 2020. P. 2795–2811. https://doi.org/10.1080/15397734
  17. Hoseini Z., Nejad M., Niknejad A., Ghannad M. New exact solution for creep behavior of rotating thick-walled cylinders // Journal of Basic and Applied Scientific Research. 2011. V. 1. № 10. P. 1704–1708.
  18. Nejad M., Hoseini Z., Niknejad A., Ghannad M. A new analytical solution for creep stresses in thick-walled spherical pressure vessels // Journal of Basic and Applied Scientific Research. 2011. V. 1. № 11. P. 2162–2166.
  19. Hoseini Z., Nejad M., Niknejad A., Ghannad M. New exact solution for creep behavior of rotating thick-walled cylinders // Journal of Basic and Applied Scientific Research. 2011. V. 1. № 10. P. 1704–1708.
  20. Kobelev V. Some Basic Solutions for Nonlinear Creep // International Journal of Solids and Structures. 2014. V. 51. № 4. P. 3372–3381. https://doi.org/10.1016/j.ijsolstr.2014.05.029
  21. Kuznetsov E.B., Leonov S.S. On the analytical solution of one creep problem // Journal of SVMO. 2018. V. 20. № 3. P. 282–294. https://doi.org/10.15507/2079-6900.20.201803.282-294
  22. Shutov A., Altenbach H., Naumenko K. Steady-State Creep Analysis of Pressurized Pipe Weldments by Perturbation Method // International Journal of Solids and Structures. 2006. V. 43. № 22–23. P. 6908–6920. https://doi.org/10.1016/j.ijsolstr.2006.02.013
  23. Bykovtsev G.I., Shitikov A.V. Finite deformations of elastoplastic media // Reports of the USSR Academy of Sciences. 1990. V. 311. № 1. P. 59–62.
  24. Burenin A.A., Bykovtsev G.I., Kovtanyuk L.V. On one simple model for an elastoplastic medium under finite deformations // Reports of the USSR Academy of Sciences. 1996. V. 347. № 2. P. 199–201.
  25. Burenin A.A., Kovtanyuk L.V. Large irreversible deformations and elastic aftereffect. Vladivostok: Dalnauka, 2013. 312 p.
  26. Kovtanyuk L.V. Analytical solution of the problem of creep of a viscoelastic material in a round pipe // Reports of the Russian Academy of Sciences. Physics, Technical Sciences. 2023. V. 514. P. 70–74. https://doi.org/10.31857/S2686740023060111
  27. Norton F.H. The Creep of Steel at High Temperatures // McGraw Hill Book Company. New York, 1929. 90 p.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025