Velocity Effect in Synthesis of Noncircular Nanopores by Etching Tracks of Swift Heavy Ions in Olivine

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The velocity effect was studied in the synthesis of nanopores with a noncircular cross section by etching tracks of swift heavy ions in olivine. The developed atomistic model for the etching of olivine irradiated with swift heavy ions predicts the possibility of synthesizing nanopores with a noncircular cross section in it. The model consists of connected blocks that describe the sequential stages of track formation and etching. The TREKIS Monte Carlo model describes the initial electronic and lattice excitations in the nanoscale vicinity of the trajectory of an incident ion. These results are used as initial conditions for molecular dynamics simulation of structural changes along the ion trajectory. The obtained atomic coordinates after cooling of the structurally damaged area serve as the initial data for the original atomistic model of track etching in olivine. The results of the model application show that it is possible to control the cross section of these pores by changing the orientation of the crystal relative to the direction of irradiation. The presented simulation results for Xe ions demonstrate that the size of the resulting pores depends on the velocity of the incident ion, and not only on its linear energy loss.

Sobre autores

S. Gorbunov

Lebedev Physical Institute of the RAS

Autor responsável pela correspondência
Email: gorbunovsa@lebedev.ru
Rússia, Moscow

P. Babaev

Lebedev Physical Institute of the RAS

Email: gorbunovsa@lebedev.ru
Rússia, Moscow

A. Volkov

Lebedev Physical Institute of the RAS

Email: gorbunovsa@lebedev.ru
Rússia, Moscow

R. Voronkov

Lebedev Physical Institute of the RAS

Email: gorbunovsa@lebedev.ru
Rússia, Moscow

R. Rymzhanov

Joint Institute of Nuclear Researches

Email: gorbunovsa@lebedev.ru
Rússia, Dubna

Bibliografia

  1. Komarov F.F. // Physics-Uspekhi. 2017. V. 60. P. 435.
  2. Kozhina E.P., Bedin S.A., Nechaeva N.L., Podoyni-tsyn S.N., Tarakanov V.P., Andreev S.N., Grigoriev Y.V., Naumov A.V. // Appl. Sci. 2021. V. 11. P 1375. https://doi.org./10.3390/APP11041375
  3. Apel P. // Radiat. Meas. Pergamon. 2001. V. 34. № 1–6. P. 559. https://doi.org./10.1016/S1350-4487(01)00228-1
  4. Barth W., Bayer W., Dahl L., Groening L., Richter S., Yaramyshev S. // Nucl. Instrum. Methods Phys. Res. A. 2007. V. 577. № 1–2. P. 211. https://doi.org./10.1016/J.NIMA.2007.02.054
  5. Apel P.Y. // Radiat. Phys. Chem. 2019. V. 159. P. 25. https://doi.org/10.1016/j.radphyschem.2019.01.009
  6. Hadley A., Notthoff C., Mota-Santiago P., Hossain U.H., Kirby N., Toimil-Molares M.E., Trautmann C., Kluth P. // Nanotechnology. 2019. V. 30. № 27. P. 274001. https://doi.org./10.1088/1361-6528/ab10c8
  7. Bruschi L., Mistura G., Prasetyo L., Do D.D., Dipalo M., De Angelis F. // Langmuir. 2018. V. 34. № 1. P. 106. https://doi.org./10.1021/ACS.LANGMUIR.7B03695
  8. Wu K., Chen Z., Li X. // Chem. Eng. J. 2015. V. 281. P. 813. https://doi.org./10.1016/J.CEJ.2015.07.012
  9. Prakash S., Pinti M., Bellman K. // J. Micromechan. Microeng. 2012. V. 22. № 6. P. 067002. https://doi.org./10.1088/0960-1317/22/6/067002
  10. Patterson N., Adams D.P., Hodges V.C., Vasile M.J., Michael J.R., Kotula P.G. // Nanotechnology. 2008. V. 19. № 23. P. 235304. https://doi.org./10.1088/0957-4484/19/23/235304
  11. Lang M., Voss K., Neumann R., Al E. // GSI Sci. Rep. 2005. 2006. V. 3. P. 343.
  12. Alexeev V., Bagulya A., Chernyavsky M., Gippius A., Goncharova L., Gorbunov S., Gorshenkov M., Kalini-na G., Konovalova N., Liu J. et al. // Astrophys. J. 2016. V. 829. № 2. P. 120. https://doi.org./10.3847/0004-637x/829/2/120
  13. Bagulya A.V., Kashkarov L.L., Konovalova N.S., Okat’eva N.M., Polukhina N.G., Starkov N.I. // JETP Lett. 2013. V. 97. № 12. P. 708. https://doi.org./110.1134/S0021364013120047
  14. Rymzhanov R.A., Gorbunov S.A., Medvedev N., Volkov A.E. // Nucl. Instrum Methods Phys. Res. B. 2019. V. 440. P. 25. https://doi.org./10.1016/j.nimb.2018.11.034
  15. Medvedev N., Volkov A.E., Rymzhanov R., Akhmetov F., Gorbunov S., Voronkov R., Babaev P. // J. Appl. Phys. 2023. V. 133. № 10. P. 100701. https://doi.org./10.1063/5.0128774
  16. Medvedev N.A., Rymzhanov R.A., Volkov A.E. // J. Phys. D. 2015. V. 48. № 35. P. 355303. https://doi.org./10.1088/0022-3727/48/35/355303
  17. Thompson A.P., Aktulga H.M., Berger R., Bolintinea-nu D.S., Brown W.M., Crozier P.S., in’t Veld P.J., Kohlmeyer A., Moore S.G., Nguyen T.D., Shan R., Stevens M.J., Tranchida J., Trott C., Plimpton S.J. // Comput. Phys. Commun. 2022. V. 271. P. 108171. https://doi.org./10.1016/J.CPC.2021.108171
  18. Gorbunov S.A., Babaev P.A., Rymzhanov R.A., Volkov A.E., Voronkov R.A. // J. Phys. Chem. C. 2023. V. 127. № 10. P. 5090. https://doi.org./10.1021/acs.jpcc.2c07236
  19. Gulbekyan G., Gikal B., Kalagin I., Kazarinov N. // Phys. Part. Nucl. Lett. 2010. V. 7. № 7. P. 511. https://doi.org./10.1134/S1547477110070186
  20. Matsui M. // Geophys. Res. Lett. 1996. V. 23. № 4. P. 395. https://doi.org./10.1029/96GL00260
  21. Luce R.W., Bartlett R.W., Parks G.A. // Geochim. Cosmochim. Acta. 1972. V. 36. № 1. P. 35. https://doi.org./10.1016/0016-7037(72)90119-6
  22. Pokharel R., Gerrits R., Schuessler J.A., von Blancken-burg F. // Chem. Geol. 2019. V. 525. P. 18. https://doi.org./10.1016/J.CHEMGEO.2019.07.001

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024