Orthotics lower limbs in children with spastic forms of cerebral palsy: (literature review)

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. Cerebral palsy (CP) is an important medical and social problem due to the high frequency of childhood disability and a significant prevalence of the disease. One of the features of cerebral palsy is the formation of secondary orthopedic complications, for the correction of which, along with surgery and botulinum therapy, technical rehabilitation devices and orthoses in particular are used.

Aim: To analyze world experience in orthotics in children with cerebral palsy. World literature review in open electronic databases PubMed and Elibrary for the last 30 years. The most of publications focuses on ankle-foot orthoses as the most commonly used in foreign clinical practice. A minimal number of papers cover the problem of orthopedic footwear, despite on its prevalence in Russia. There are no works analyzing the frequency characteristics of orthoses used, including the likelihood of their reuse and rejection. There is no unified, generally accepted terminology and classification of orthoses. We found no articles covering the effectiveness of combined use of several types of orthoses. To date, no clinical guidelines for orthotics in children with cerebral palsy have been developed; therefore, in many cases, orthoses are prescribed empirically.

Conclusion. Thus, further research of the role of orthotics in the medical rehabilitation of children with cerebral palsy appears to be an urgent task.

Full Text

Restricted Access

About the authors

Elnur I. Dzhomardly

First orthopedic department for children in Federal state budgetary institution “Federal scientific center of rehabilitation disabled people name of G.A. Albrecht” Ministries of Labour and social protection of the Russian Federation

Email: mamedov.ie@yandex.ru
ORCID iD: 0000-0002-0281-3262
SPIN-code: 5853-0260

Traumatologist-orthopedist, postgraduate in traumatology and orthopedics

Russian Federation, 50, Bestughevskaya street, Sankt Petersburg, 195067

Andrey A. Koltsov

First orthopedic department for children in Federal state budgetary institution “Federal scientific center of rehabilitation disabled people name of G.A. Albrecht” Ministries of Labour and social protection of the Russian Federation

Author for correspondence.
Email: katandr2007@yandex.ru
ORCID iD: 0000-0002-0862-8826

the doctor in traumatology and orthopedics, PhD, the chief of First orthopedic department for children in Federal state budgetary institution “Federal scientific center of rehabilitation disabled people name of G.A. Albrecht” Ministries of Labour and social protection of the Russian Federation

Russian Federation, 50, Bestughevskaya street, Sankt Petersburg, 195067

References

  1. Valentina J, Davidson SA, Bear N, et al. A prospective study investigating gross motor function of children with cerebral palsy and GMFCS level II after long-term botulinum toxin type A use. BMC Pediatr. 2020;20(1):7. doi:
  2. 1186/s12887-019-1906-8.
  3. Ielapi A, Forward M, de Beule M. Computational and experimental evaluation of the mechanical properties of ankle foot orthoses: a literature review. Prosthet Orthot Int. 2019;43(3):339–348. doi: 10.1177/0309364618824452.
  4. Lindskov L, Huse AB, Johansson M, Nygård S. Muscle activity in children with spastic unilateral cerebral palsy when walking with ankle-foot orthoses: an explorative study. Gait Posture. 2020;80:31–36. doi: 10.1016/j.gaitpost.2020.05.011.
  5. Demet O. [Orthotic management in cerebral palsy. (In Turkish)]. Acta Orthop Traumatol Turc. 2009;43(2):165–172. doi: 10.3944/AOTT.2009.165.
  6. Young J, Jackson S. Improved motor function in a pre-ambulatory child with spastic bilateral cerebral palsy, using a custom rigid ankle-foot orthosis-footwear combination: a case report. Prosthet Orthot Int. 2019;43(4):453–458. doi: 10.1177/0309364619852239.
  7. Lintanf M, Bourseul JS, Houx L, et al. Effect of ankle-foot orthoses on gait, balance and gross motor function in children with cerebral palsy: a systematic review and meta-analysis. Clin Rehabil. 2018;32(9):1175–1188. doi: 10.1177/0269215518771824.
  8. Betancourt JP, Eleeh P, Stark S, Jain NB. Impact of ankle-foot orthosis on gait efficiency in ambulatory children with cerebral palsy: a systematic review and meta-analysis. Am J Phys Med Rehabil. 2019;98(9):759–770. doi:
  9. 1097/PHM.0000000000001185.
  10. Son I, Lee D, Hong S, et al. Comparison of gait ability of a child with cerebral palsy according to the difference of dorsiflexion angle of hinged ankle-foot orthosis: a case report. Am J Case Rep. 2019;20:1454–1459. doi: 10.12659/AJCR.916814.
  11. Tavernese E, Petrarca M, Rosellini G, et al. Carbon Modular Orthosis (Ca.M.O.): an innovative hybrid modular ankle-foot orthosis to tune the variable rehabilitation needs in hemiplegic cerebral palsy. NeuroRehabilitation. 2017;40(3):447–457. doi: 10.3233/NRE-161432.
  12. Wahid F, Begg R, Sangeux M, et al. The effects of an ankle foot orthosis on cerebral palsy gait: a multiple regression analysis. Conf Proc IEEE Eng Med Biol Soc. 2015;5509-12. doi:
  13. 1109/EMBC.2015.7319639.
  14. Meyns P, Kerkum YL, Brehm MA, et al. Ankle foot orthoses in cerebral palsy: effects of ankle stiffness on trunk kinematics, gait stability and energy cost of walking. Eur J Paediatr Neurol. 2020;26:68–74. doi: 10.1016/j.ejpn.2020.02.009.
  15. Middleton EA, Hurley GR, McIlwain JS. The role of rigid and hinged polypropylene ankle-foot-orthoses in the management of cerebral palsy: a case study. Prosthet Orthot Int. 1988;12(3):129–135. doi: 10.3109/03093648809079396.
  16. Radtka SA, Skinner SR, Dixon DM, Johanson ME. A comparison of gait with solid, dynamic, and no ankle-foot orthoses in children with spastic cerebral palsy. Phys Ther. 1997;77(4):395–409. doi: 10.1093/ptj/77.4.395.
  17. Eddison N, Healy A, Needham R, Chockalingam N. The effect of tuning ankle foot orthoses-footwear combinations on gait kinematics of children with cerebral palsy: a case series. Foot (Edinb). 2020;43:101660. doi: 10.1016/j.foot.2019.101660.
  18. Contini BG, Bergamini E, Alvini M, et al. A wearable gait analysis protocol to support the choice of the appropriate ankle-foot orthosis: a comparative assessment in children with Cerebral Palsy. Clin Biomech (Bristol, Avon). 2019;70:177–185. doi: 10.1016/j.clinbiomech.2019.08.009.
  19. Lam WK, Leong JC, Li YH, et al. Biomechanical and electromyographic evaluation of ankle foot orthosis and dynamic ankle foot orthosis in spastic cerebral palsy. Gait Posture. 2005;22(3):189–197. doi: 10.1016/j.gaitpost.2004.09.011.
  20. Abel MF, Juhl GA, Vaughan CL, Damiano DL. Gait assessment of fixed ankle-foot orthoses in children with spastic diplegia. Arch Phys Med Rehabil. 1998;79(2):126–133. doi:
  21. 1016/s0003-9993(98)90288-x.
  22. Buckon CE, Thomas SS, Jakobson-Huston S, et al. Comparison of three ankle-foot orthosis configurations for children with spastic diplegia. Dev Med Child Neurol. 2004;46(9):590–598. doi: 10.1017/s0012162204001008.
  23. Campbell J, Ball J. Energetics of walking in cerebral palsy. Orthop Clin North Am. 1978;9(2):374–377.
  24. Smiley SJ, Jacobsen FS, Mielke C, et al. A comparison of the effects of solid, articulated, and posterior leaf spring ankle-foot orthoses and shoes alone on gait and energy expenditure in children with spastic diplegic cerebral palsy. Orthopedics. 2002;25(4):411–415.
  25. Caliskan Uckun A, Celik C, Ucan H, Ordu Gokkaya NK. Comparison of effects of lower extremity orthoses on energy expenditure in patients with cerebral palsy. Dev Neurorehabil. 2014;17(6):388–392. doi: 10.3109/17518423.2013.830653.
  26. Brehm MA, Harlaar J, Schwartz M. Effect of ankle-foot orthoses on walking efficiency and gait in children with cerebral palsy. J Rehabil Med. 2008;40(7):529–534. doi: 10.2340/16501977-0209.
  27. Harris SR, Riffle K. Effects of inhibitive ankle-foot orthoses on standing balance in a child with cerebral palsy. A single-subject design. Phys Ther. 1986;66(5):663–667. doi:
  28. 1093/ptj/66.5.663.
  29. Wingstrand M, Hagglung G, Rodby-Bousquet E. Ankle-foot orthoses in children with cerebral palsy: a cross sectional population based study of 2200 children. BMC Musculoskelet Disord. 2014;15:327. doi: 10.1186/1471-2474-15-327.
  30. Carlberg EB, Hadders-Algra M. Postural dysfunction in children with cerebral palsy some implications for therapeutic guidance. Neural Plast. 2005;12(2-3):221–228. doi:
  31. 1155/NP.2005.221.
  32. Khaled A, Sahar OM, El-Din N, Ibrahem MB. Role of three side support ankle-foot orthosis in improving the balance in children with spastic diplegic cerebral palsy. Egypt j med hum genet. 2013;14(1):77–85. doi:
  33. 1016/j.ejmhg.2012.10.001.
  34. Zhao X, Xiao N, Li H, Du S. Day vs. day-night use of ankle-foot orthoses in young children with spastic diplegia: a randomized controlled study. Am J Phys Med Rehabil. 2013;92(10):905–911. doi: 10.1097/PHM.0b013e318296e3e8.
  35. Hainsworth F, Harrison MJ, Sheldon TA, Roussounis SH. A preliminary evaluation of ankle orthoses in the management of children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):243–247. doi: 10.1111/j.1469-8749.1997.tb07419.x.
  36. Totah D, Menon M, Jones-Hershinow C, et al. The impact of ankle-foot orthosis stiffness on gait: a systematic literature review. Gait Posture. 2019;69:101–111. doi:
  37. 1016/j.gaitpost.2019.01.020.
  38. Agarwal KN, Chen C, Scher DM, Dodwell ER. Migration percentage and odds of recurrence/subsequent surgery after treatment for hip subluxation in pediatric cerebral palsy: a meta-analysis and systematic review. J Child Orthop. 2019;13(6):582–592. doi: 10.1302/1863-2548.13.190064.
  39. Letts M, Shapiro L, Mulder K, Klassen O. The windblown hip syndrome in total body cerebral palsy. J Pediatr Orthop. 1984;4(1):55–62. doi: 10.1097/01241398-198401000-00013.
  40. Miller F, Slomczykowski M, Cope R, Lipton GE. Computer modeling of the pathomechanics of spastic hip dislocation in children. J Pediatr Orthop. 1999;19(4):486–492. doi: 10.1097/00004694-199907000-00012.
  41. Graham HK, Boyd R, Carlin JB, et al. Does botulinum toxin a combined with bracing prevent hip displacement in children with cerebral palsy and «hips at risk»? A randomized, controlled trial. J Bone Joint Surg Am. 2008;90(1):23–33. doi: 10.2106/JBJS.F.01416.
  42. Pountney TE, Mandy A, Green E, Gard PR. Hip subluxation and dislocation in cerebral palsy ― a prospective study on the effectiveness of postural management programmes. Physiother Res Int. 2009;14(2):116–127. doi: 10.1002/pri.434.
  43. Willoughby K, Ang SG, Thomason P, Graham HK. The impact of botulinum toxin A and abduction bracing on long-term hip development in children with cerebral palsy. Dev Med Child Neurol. 2012;54(8):743–747. doi:
  44. 1111/j.1469-8749.2012.04340.x.
  45. Семенова К.А. Лечение двигательных расстройств при детских церебральных параличах. ― М.: Медицина, 1976. ― 185 с. [Semenova KA. Treatment of motor disorders in children with cerebral palsy. Moscow: Meditsina; 1976. 185 р. (In Russ.)]
  46. Клочкова О.А., Куренков А.Л., Кенис В.М. Формирование контрактур при спастических формах детского церебрального паралича: вопросы патогенеза // Ортопедия, травматология и восстановительная хирургия детского возраста. ― 2018. ― Т.6. ― №1. ― С. 58–66. [Klochkova OA, Kurenkov AL, Kenis VM. Development of contractures in spastic forms of cerebral palsy: pathogenesis and prevention. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2018;6(1):58–66. (In Russ.)]. doi: 10.17816/PTORS6158-66.
  47. Williams PE, Goldspink G. Changes in sarcomere length and physiological properties in immobilized muscle. J Anat. 1978;127(Pt 3):459–468.
  48. Tardieu C, Lespargot A, Tabary C, et al. For how long must the soleus muscle be stretched each day to prevent contractures. Dev Med Child Neurol. 1986;30(1):3–10. doi:
  49. 1111/j.1469-8749.1988.tb04720.x.
  50. Soares AG, Aoki MS, Miyabara EH, et al. Ubiquitin-ligase and deubiquitinating gene expression in stretched rat skeletal muscle. Muscle Nerve. 2007;36(5):685–693. doi: 10.1002/mus.20866.
  51. Desloovere K, Molenaers G, de Cat J, et al. Motor function following multilevel botulinum toxin type A treatment in children with cerebral palsy. Dev Med Child Neurol. 2007;49(1):56–61. doi: 10.1017/s001216220700014x.
  52. Anderson JP, Snow B, Dorey FJ, Kabo JM. Efficacy of soft splints in reducing severe knee-flexion contractures. Dev Med Child Neurol. 1988;30(4):502–508. doi:
  53. 1111/j.1469-8749.1988.tb04777.x.
  54. Pin T, Dyke P, Chan M. The effectiveness of passive stretching in children with cerebral palsy. Dev Med Child Neurol. 2006;48(10):855–862. doi: 10.1017/S0012162206001836.
  55. Zöllner AM, Abilez OJ, Böl M, Kuhl E. Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis. PLoS One. 2012;7(10):e45661. doi:
  56. 1371/journal.pone.0045661.
  57. Kerckhoffs RC, Omens JH, McCulloch AD. A single strain-based growth law predicts concentric and eccentric cardiac growth during pressure and volume overload. Mech Res Commun. 2012;42:40–50. doi:
  58. 1016/j.mechrescom.2011.11.004.
  59. Maas JC, Dallmeijer AJ, Huijing PA, et al. Splint: the efficacy of orthotic management in rest to prevent equinus in children with cerebral palsy, a randomised controlled trial. BMC Pediatr. 2012;12:38. doi: 10.1186/1471-2431-12-38.
  60. Barret RS, Lichtwark GA. Gross muscle morphology and structure in spastic cerebral palsy: systematic review. Dev Med Child Neurol. 2010;52(9):794–804. doi:
  61. 1111/j.1469-8749.2010.03686.x.
  62. Marcucci A, Edouard P, Loustalet E, et al. Efficiency of flexible derotator in walking cerebral palsy children. Ann Phys Rehabil Med. 2011;54(6):337–347. doi: 10.1016/j.rehab.2011.07.960.
  63. Chang WD, Chang NJ, Lin HY, Lai PT. Changes of plantar pressure and gait parameters in children with mild cerebral palsy who used a customized external strap orthosis: a crossover study. Biomed Res Int. 2015;2015:813942. doi: 10.1155/2015/813942.
  64. Кольцов А.А., Джомардлы Э.И. Анализ динамики типов технических средств реабилитации и частоты их использования у пациентов с детским церебральным параличом // Ортопедия, травматология и восстановительная хирургия детского возраста. ― 2020. ― Т.8. ― №2. ― С. 55–64. [Koltsov AA, Dzhomardly EI. Analysis of type and frequency dynamics of rehabilitation assistive devices in children with cerebral palsy. Pediatric Traumatology, Orthopaedics and reconstructive Surgery. 2020;8(2):55–64. (In Russ.)]. doi: 10.17816/PTORS18953.
  65. Murri A, Zechner G. [Corrective dynamic shoe fitting of the functional clubfoot in patients with infantile cerebral palsy. (In German)]. Z Orthop Ihre Grenzgeb. 1994;132(3):214–220. doi: 10.1055/s-2008-1039965.
  66. Bekk NV, Belova LA, Lapina TS. Feature customization of orthopedic shoes for children with cerebral palsy. Theoret Appl Sci. 2018;68(12):117–121. doi: 10.15863/TAS.2018.12.68.21.
  67. Ceci LA, Salgado AS, Przysiezny WL. Modificação das aferências sensitivas podais e sua influência na amplitude. Rer Fisio Magazine. 2004;1:116–119.
  68. Циркунова Н.А., Шуленина Н.М. Новые и усовершенствованные конструкции ортопедических изделий при деформациях стоп (ортопедические стельки). ― М., 1957. ― С. 27–31. [Tsirkunova NA, Shulenina NM. Novye i usovershenstvovannye konstruktsii ortopedicheskikh izdelii pri deformatsiyakh stop (ortopedicheskie stel’ki). Moscow; 1957. Р. 27–31. (In Russ.)]
  69. Christovão TC, Pasini H, Grecco LA, et al. Effect of postural insoles on static and functional balance in children with cerebral palsy: a randomized controlled study. Braz J Phys Ther. 2015;19(1):44–51. doi: 10.1590/bjpt-rbf.2014.0072.
  70. Gross MT, Mercer VS, Lin FC. Effects of foot orthoses on balance in older adults. J Orthop Sports Phys Ther. 2012;42(7):649–657. doi: 10.2519/jospt.2012.3944.
  71. Nobre A, Monteiro FF, Golin MO, et al. Analysis of postural oscillation in children with cerebral palsy. Electromyogr Clin Neurophysiol. 2010;50(5):239–244.
  72. Palluel E, Nougier V, Olivier I. Do spike insoles enhance postural stability and plantar-surface cutaneous sensitivity in the elderly? Age (Dordr). 2008;30(1):53–61. doi:
  73. 1007/s11357-008-9047-2.
  74. Novak I, Morgan C, Fahey M, et al. State of evidence traffic lights 2019: Systematic review of intervention for preventing and treating children with cerebral palsy. Curr Neurol Neurosci Rep. 2020;20(2):3. doi: 10.1007/s11910-020-1022-z.

Supplementary files

There are no supplementary files to display.

Statistics

Views

Abstract: 140

PDF (Russian): 12

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.

Copyright (c) 2020 Eco-Vector



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies