Ранняя реабилитация больных после инсульта – версии и контраверсии (обзор литературы)

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Статья содержит обзор основных направлений медицинской реабилитации при инсульте. Приведены современные взгляды на процесс интенсивной и умеренной ранней реабилитации.

Полный текст

Доступ закрыт

Об авторах

Алексей Алексеевич Марцияш

Кемеровский государственный медицинский университет

Email: kafedrav@yandex.ru
ORCID iD: 0000-0003-2948-9666

д.м.н., профессор

Россия, Кемерово

Светлана Алексеевна Зуева

Кемеровская областная клиническая больница имени С.В. Беляева

Email: Umo_kokb@mail.ru

заведующая отделением неврологии

Россия, Кемерово

Вадим Гельевич Мозес

Кемеровский государственный медицинский университет

Email: Vadimmoses@mail.ru
ORCID iD: 0000-0002-3269-9018

д.м.н., профессор

Россия, Кемерово

Кира Борисовна Мозес

Кемеровский государственный медицинский университет

Email: Kbsolo@mail.ru
ORCID iD: 0000-0003-2906-6217

ассистент кафедры

Россия, Кемерово

Евгений Владимирович Лишов

Кемеровский государственный медицинский университет

Email: Lishovevgenii@mail.ru
ORCID iD: 0000-0003-3272-5818

д.м.н., профессор

Россия, Кемерово

Светлана Ивановна Елгина

Кемеровский государственный медицинский университет

Email: ElginaSI@mail.ru
ORCID iD: 0000-0002-6966-2681

д.м.н., профессор

Россия, Кемерово

Елена Владимировна Рудаева

Кемеровский государственный медицинский университет

Автор, ответственный за переписку.
Email: Erudaeva@mail.ru
ORCID iD: 0000-0002-6599-9906

д.м.н., доцент

Россия, Кемерово

Список литературы

  1. Mijajlović M.D., Pavlović A., Brainin M., et al. Post-stroke dementia – a comprehensive review // BMC Med. 2017. Vol. 15, N 1. Р. 11. doi: 10.1186/s12916-017-0779-7
  2. Пирадов М.А., Максимова М.Ю., Танашян М.М. Инсульт. Пошаговая инструкция. Москва: ГЭОТАР-Медиа, 2019. 267 с.
  3. Dąbrowski J., Czajka A., Zielińska-Turek J., et al. Brain functional reserve in the context of neuroplasticity after stroke // Neural Plast. 2019. Vol. 2019. Р. 9708905. doi: 10.1155/2019/9708905
  4. Stewart J.C., Cramer S.C. Genetic variation and neuroplasticity: role in rehabilitation after stroke // J Neurol Phys Ther. 2017. Vol. 41, Suppl 3. S17–S23. doi: 10.1097/NPT.0000000000000180
  5. Nemchek V., Haan E.M., Mavros R., et al. Voluntary exercise ameliorates the good limb training effect in a mouse model of stroke // Exp Brain Res. 2021. Vol. 239, N 2. Р. 687–697. doi: 10.1007/s00221-020-05994-6
  6. Bundy D.T., Guggenmos D.J., Murphy M.D., Nudo R.J. Chronic stability of single-channel neurophysiological correlates of gross and fine reaching movements in the rat // PLoS One. 2019. Vol. 14, N 10. Р. e0219034. doi: 10.1371/journal.pone.0219034
  7. Erickson C.A., Gharbawie O.A., Whishaw I.Q. Attempt-dependent decrease in skilled reaching characterizes the acute postsurgical period following a forelimb motor cortex lesion: an experimental demonstration of learned nonuse in the rat // Behav Brain Res. 2007. Vol. 179, N 2. Р. 208–218. doi: 10.1016/j.bbr.2007.02.004
  8. Dijkhuizen R.M., Ren J., Mandeville J.B., et al. Functional magnetic resonance imaging of reorganization in rat brain after stroke // Proc Natl Acad Sci U S A. 2001. Vol. 98, N 22. Р. 12766–12771 doi: 10.1073/pnas.231235598
  9. Dijkhuizen R.M., Singhal A.B., Mandeville J.B., et al. Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study // J Neurosci. 2003. Vol. 23, N 2. Р. 510–517.
  10. Grefkes C., Fink G.R. Recovery from stroke: current concepts and future perspectives // Neurol Res Pract. 2020. Vol. 2. Р. 17. doi: 10.1186/s42466-020-00060-6
  11. Bernhardt J., Hayward K.S., Kwakkel G., et al. Agreed definitions and a shared vision for new standards in stroke recovery research: the stroke recovery and rehabilitation roundtable taskforce // Neurorehabil Neural Repair. 2017. Vol. 31, N 9. Р. 793–799. doi: 10.1177/1545968317732668
  12. Lapi D., Colantuoni A. Remodeling of cerebral microcirculation after ischemia-reperfusion // J Vasc Res. 2015. Vol. 52, N 1. Р. 22–31. doi: 10.1159/000381096
  13. Kugler C., Thielscher C., Tambe B.A., et al. Epothilones improve axonal growth and motor outcomes after stroke in the adult mammalian CNS // Cell Rep Med. 2020. Vol. 1, N 9. Р. 100159. doi: 10.1016/j.xcrm.2020.100159
  14. Kojima T., Hirota Y., Ema M., et al. Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum // Stem Cells. 2010. Vol. 28. Р. 545–554.
  15. Figiel I., Kruk P.K., Zaręba-Kozioł M., et al. MMP-9 signaling pathways that engage rho GTPases in brain plasticity // Cells. 2021. Vol. 10, N 1. Р. 166. doi: 10.3390/cells10010166
  16. Andreska T., Rauskolb S., Schukraft N., et al. Induction of BDNF expression in layer II/III and layer V neurons of the motor cortex is essential for motor learning // J Neurosci. 2020. Vol. 40, N 33. Р. 6289–6308. doi: 10.1523/JNEUROSCI.0288-20.2020
  17. Santoro M., Siotto M., Germanotta M., et al. BDNF rs6265 polymorphism and its methylation in patients with stroke undergoing rehabilitation // Int J Mol Sci. 2020. Vol. 21, N 22. Р. 8438. doi: 10.3390/ijms21228438
  18. Schabitz W.R., Steigleder T., Cooper-Kuhn C.M., et al. Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis // Stroke. 2007. Vol. 38, N 7. Р. 2165–2172.
  19. Kinde B., Wu D.Y., Greenberg M.E., Gabel H.W. DNA methylation in the gene body influences MeCP2-mediated gene repression // Proc Natl Acad Sci U S A. 2016. Vol. 113, N 52. Р. 15114–15119. doi: 10.1073/pnas.1618737114
  20. Bian H., Zhou Y., Zhou D., et al. The latest progress on miR-374 and its functional implications in physiological and pathological processes // J Cell Mol Med. 2019. Vol. 23, N 5. Р. 3063–3076. doi: 10.1111/jcmm.14219
  21. Zhang P., Xianglei J., Hongbo Y., et al. Neuroprotection of early locomotor exercise poststroke: evidence from animal studies // Can J Neurol Sci. 2015. Vol. 42, N 4. Р. 213–220.
  22. Xu Y., Yao Y., Lyu H., et al. Rehabilitation effects of fatigue-controlled treadmill training after stroke: a rat model study // Front Bioeng Biotechnol. 2020. Vol. 8. Р. 590013. doi: 10.3389/fbioe.2020.590013
  23. Biernaskie J. Efficacy of rehabilitative experience declines with time after focal ischemic brain injury // J Neurosci. 2004. Vol. 24, N 5. Р. 1245–1254.
  24. Seifali E., Hassanzadeh G., Mahdavipour M., et al. Extracellular vesicles derived from human umbilical cord perivascular cells improve functional recovery in brain ischemic rat via the inhibition of apoptosis // Iran Biomed J. 2020. Vol. 24, N 6. Р. 347–360. doi: 10.29252/ibj.24.6.342
  25. Zhang L., Hu X., Luo J., et al. Physical exercise improves functional recovery through mitigation of autophagy, attenuation of apoptosis and enhancement of neurogenesis after MCAO in rats // BMC Neurosci. 2013. Vol. 14, N 1. Р. 46. doi: 10.1186/1471-2202-14-46
  26. Codd L.N., Blackmore D.G., Vukovic J., Bartlett P.F. Exercise reverses learning deficits induced by hippocampal injury by promoting neurogenesis // Sci Rep. 2020. Vol. 10, N 1. Р. 19269. doi: 10.1038/s41598-020-76176-1
  27. Li F., Pendy J.T., Ding J.N., et al. Exercise rehabilitation immediately following ischemic stroke exacerbates inflammatory injury // Neurol Res. 2017. Vol. 39, N 6. Р. 530–537.
  28. Bundy D.T., Nudo R.J. Preclinical studies of neuroplasticity following experimental brain injury // Stroke. 2019. Vol. 50, N 9. Р. 2626–2633. doi: 10.1161/STROKEAHA.119.023550
  29. Zhao L.R., Willing A. Enhancing endogenous capacity to repair a stroke-damaged brain: An evolving field for stroke research // Prog Neurobiol. 2018. N 163-164. Р. 5–26. doi: 10.1016/j.pneurobio.2018.01.004
  30. Guo Z., Qian Q., Wong K., et al. Altered Corticomuscular Coherence (CMCoh) pattern in the upper limb during finger movements after stroke // Front Neurol. 2020. Vol. 11. Р. 410. doi: 10.3389/fneur.2020.00410
  31. Bernhardt J., Dewey H., Thrift A., et al. A very early rehabilitation trial for stroke (AVERT): phase II safety and feasibility // Stroke. 2008. Vol. 39, N 2. Р. 390–396. doi: 10.1161/STROKEAHA.107.492363
  32. Bernhardt J., Langhorne P., Lindley R., et al. Efficacy and safety of very early mobilisation within 24 hours of stroke onset (AVERT): a randomised controlled trial // Lancet. 2015. Vol. 386. Р. 46–55.
  33. Bernhardt J., Churilov L., Ellery F., et al. Prespecified dose-response analysis for a very early rehabilitation trial (AVERT) // Neurology. 2016. Vol. 86, N 23. Р. 2138–2145.
  34. Belnik A.P., Quintaine V., Andriantsifanetra C., et al. AMOBES (Active Mobility Very Early After Stroke): a randomized controlled trial // Stroke. 2017;48(2):400–405. doi: 10.1161/STROKEAHA.116.014803
  35. Riberholt C.G., Wagner V., Lindschou J., et al. Early head-up mobilisation versus standard care for patients with severe acquired brain injury: A systematic review with meta-analysis and Trial Sequential Analysis // PLoS One. 2020. Vol. 15, N 8. Р. e0237136. doi: 10.1371/journal.pone.0237136
  36. Tong Y., Cheng Z., Rajah G.B., et al. High intensity physical rehabilitation later than 24 h post stroke is beneficial in patients: a pilot randomized controlled trial (RCT) study in mild to moderate ischemic stroke // Front Neurol. 2019. Vol. 10. Р. 113. doi: 10.3389/fneur.2019.00113
  37. Van de Winckel A., De Patre D., Rigoni M., et al. Exploratory study of how Cognitive Multisensory Rehabilitation restores parietal operculum connectivity and improves upper limb movements in chronic stroke // Sci Rep. 2020. Vol. 10, N 1. Р. 20278. doi: 10.1038/s41598-020-77272-y
  38. Morreale M., Marchione P., Pili A., et al. Early versus delayed rehabilitation treatment in hemiplegic patients with ischemic stroke: proprioceptive or cognitive approach? // Eur J Phys Rehabil Med. 2016. Vol. 52, N 1. Р. 81–89.
  39. Sarabadani Tafreshi A., Riener R., Klamroth-Marganska V. Distinctive steady-state heart rate and blood pressure responses to passive robotic leg exercise during head-up tilt: a pilot study in neurological patients // Front Physiol. 2017. Vol. 8. Р. 327. doi: 10.3389/fphys.2017.00327
  40. Kumar S., Yadav R. Comparison between Erigo tilt-table exercise and conventional physiotherapy exercises in acute stroke patients: a randomized trial // Arch Physiother. 2020. Vol. 10. Р. 3. doi: 10.1186/s40945-020-0075-2
  41. Zeng X., Zhu G., Zhang M., Xie S.Q. Reviewing clinical effectiveness of active training strategies of platform-based ankle rehabilitation robots // J Healthc Eng. 2018. Vol. 2018. Р. 2858294. doi: 10.1155/2018/2858294
  42. Kuznetsov A.N., Rybalko N.V., Daminov V.D., Luft A.R. Early poststroke rehabilitation using a robotic tilt-table stepper and functional electrical stimulation // Stroke Res Treatm. 2013. Vol. 2013. Р. 946056.
  43. Forrester L.W., Roy A., Krywonis A., et al. Modular ankle robotics training in early subacute stroke: a randomized controlled pilot study // Neurorehabil Neural Repair. 2014. Vol. 28, N 7. Р. 678–687.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО "Эко-Вектор", 2021



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86505 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80654 от 15.03.2021 г
.



Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах