Эффективность применения цифровых и телемедицинских технологий в реабилитации пациентов с дорсопатиями и хроническим болевым синдромом: обзор литературы

Аннотация

Дорсопатии и хронический болевой синдром (ХБС) являются патологиями, составляющими медико-социальную проблему в связи с высокой распространенностью, тенденцией к хронизации и низкой эффективностью стандартных методов лечения, что приводит к снижению трудоспособности и инвалидизации населения. Традиционные программы реабилитации сталкиваются с рядом ограничений, включающих территориальную отдаленность, низкую доступность специализированной помощи, особенно в сельской местности, и недостаточную приверженность пациентов к лечению. Актуальность настоящего обзора обусловлена необходимостью поиска новых, более эффективных и доступных модернизаций программ реабилитации, включающих цифровые и телемедицинские технологии (ЦТ и ТМТ). На основе анализа 70 отобранных публикаций в соответствии с критериями PRISMA проведен комплексный обзор эффективности применения ЦТ и ТМТ в реабилитации пациентов с дорсопатиями и ХБС. Исходя из полученных данных можно сделать вывод о том, что различные формы ЦТ — синхронные (видеоконсультации) и асинхронные (мобильные приложения, SMS-напоминания, VR/AR-технологии, носимые устройства, работающие по принципу биологической обратной связью (БОС)) — демонстрируют сопоставимую с очным форматом эффективность в снижении интенсивности боли (по ВАШ), улучшении физической активности (исходя по анализу данных с использованием индексов Освестри, Роланда-Морриса), повышении приверженности лечению (до 90%) и качества жизни по шкале SF-36. Ключевыми механизмами положительного воздействия ЦТ являются коррекция кинезиофобии через дозированное виртуальное экспонирование, модуляция нейропластичности и нормализация паттернов движения за счет обратной связи в реальном времени. Несмотря на существующие организационные, нормативные и технологические пробелов в РФ (отсутствие регламентов оплаты в системе ОМС, проблемы лицензирования ПО, риски нарушения конфиденциальности данных, низкая цифровая грамотность), накопленная международная и отечественная доказательная база подтверждает высокий потенциал интеграции ЦТ и ТМТ в реабилитационные программы.

Полный текст

Доступ закрыт

Список литературы

  1. Denisov IN, Zaugolnikova TV, Popova TS, et al. Dorsopathies: the relevance of preventive examinations for early diagnosis, identification of risk factors and comorbid diseases. Vestnik Rossiiskogo gosudarstvennogo meditsinskogo universiteta. 2018;(5):14–20. doi: 10.24075/vrgmu.2018.065
  2. Konchugova TV, Agasarov LG, Aphanova TV, et al. Resultative scheme of sequential application of electrostimulation courses for dorsopathies: results of a comparative study. Vestnik vosstanovitel'noi meditsiny. 2025;24(3):38–44. https://doi.org/10.38025/2078-1962-2025-24-3-38-44
  3. Kochubey AV, Konanykhina AK, Burtsev AK. Trends in the prevalence of diseases of the musculoskeletal system and connective tissue in the adult population of Moscow. Problemy sotsial'noi gigieny, zdravookhraneniya i istorii meditsiny. 2018;26(2):72–77. DOI: http://dx.doi.org/10.18821/0869-866Х-2018-26-2-72-77
  4. Isamukhametova Y. Effectiveness and Perspectives on The Application of Traditional Korean And Western Medicine in The Treatment of Lumbosacral Dorsopathy. International Journal of Medical Sciences And Clinical Research. 2025;5(05):79–87. https://doi.org/10.37547/ijmscr/Volume05Issue05-17
  5. Vlasova VN. Digitalization of the Russian healthcare system: promising directions and risks. Meditsinskaya etika. 2021;9(3):4–8. doi: 10.24075/medet.2021.021
  6. Zabolotnaya NV, Gatilova IN, Zabolotny AT. Digitalization of healthcare: achievements and development prospects. Ekonomika. Informatika. 2020;47(2):380–389. doi: 10.18413/2687-0932-2020-47-2-380-389
  7. El-tallawy sn, pergolizzi jv, vasiliu-feltes i, et al. Innovative applications of telemedicine and other digital health solutions in pain management: a literature review. Pain and therapy. 2024;13:791–812. Https://doi.org/10.1007/s40122-024-00620-7
  8. Nikolaev va, vorobtsova es, nikolaev aa. Digital healthcare in medical rehabilitation after stroke: management of telemedicine technologies. Menedzher zdravookhraneniya. 2024;(11):97–109. doi: 10.21045/1811-0185-2024-11-97-109
  9. Park c, yi c, choi wj, et al. Long-term effects of deep-learning digital therapeutics on pain, movement control, and preliminary cost-effectiveness in low back pain: a randomized controlled trial. Digital health. 2023;9:20552076231217817. Https://doi.org/10.1177/20552076231217817
  10. Franchini m, salvatori m, denoth f, et al. Participation in low back pain management: it is time for the to-be scenarios in digital public health. International journal of environmental research and public health. 2022;19(13):7805. Https://doi.org/10.3390/ijerph19137805
  11. Volkova oa, budarin ss, smirnova ev, et al. Experience in the use of telemedicine technologies in the healthcare systems of foreign countries and the russian federation: a systematic review. Farmakoekonomika. Sovremennaya farmakoekonomika i farmakoepidemiologiya. 2021;14(4):549–562. Https://doi.org/10.17749/2070-4909/farmakoekonomika.2021.109
  12. Sevostyanova ev, nikolaev yua, bogdankevich nv, et al. Comprehensive rehabilitation of patients with dorsopathy of the lumbar spine combined with irritable bowel syndrome in a therapeutic clinic. Voprosy kurortologii, fizioterapii i lechebnoi fizicheskoi kultury. 2018;95(2):10–18. Https://doi.org/10.17116/kurort201895210-18
  13. Shebib r, bailey jf, smittenaar p, et al. Randomized controlled trial of a 12-week digital care program in improving low back pain. Npj digital medicine. 2019;2:1. Https://doi.org/10.1038/s41746-018-0076-7
  14. Toelle tr, utpadel-fischler da, haas kk, et al. App-based multidisciplinary back pain treatment versus combined physiotherapy plus online education: a randomized controlled trial. Npj digital medicine. 2019;2:34. Https://doi.org/10.1038/s41746-019-0109-x
  15. Garcia lm, birckhead bj, krishnamurthy p, et al. An 8-week self-administered at-home behavioral skills-based virtual reality program for chronic low back pain: double-blind, randomized, placebo-controlled trial conducted during covid-19. Journal of medical internet research. 2021;23(2):e26292. doi: 10.2196/26292
  16. Guo q, zhang l, han ll, et al. Effects of virtual reality therapy combined with conventional rehabilitation on pain, kinematic function, and disability in patients with chronic neck pain: randomized controlled trial. Jmir serious games. 2024;12(1):e42829. doi: 10.2196/42829
  17. Cui d, janela d, costa f, et al. Randomized-controlled trial assessing a digital care program versus conventional physiotherapy for chronic low back pain. Npj digital medicine. 2023;6:121. Https://doi.org/10.1038/s41746-023-00870-3
  18. Abadiyan f, hadadnezhad m, khosrokiani z, et al. Adding a smartphone app to global postural re-education to improve neck pain, posture, quality of life, and endurance in people with nonspecific neck pain: a randomized controlled trial. Trials. 2021;22:274. Https://doi.org/10.1186/s13063-021-05214-8
  19. Moreno-ligero m, moral-munoz ja, salazar a, et al. Mhealth intervention for improving pain, quality of life, and functional disability in patients with chronic pain: systematic review. Jmir mhealth and uhealth. 2023;11(1):e40844. doi: 10.2196/40844
  20. Choi t, heo s, choi w, et al. A systematic review and meta-analysis of the effectiveness of virtual reality-based rehabilitation therapy on reducing the degree of pain experienced by individuals with low back pain. International journal of environmental research and public health. 2023;20(4):3502. Https://doi.org/10.3390/ijerph20043502
  21. Goudman l, jansen j, billot m, et al. Virtual reality applications in chronic pain management: systematic review and meta-analysis. Jmir serious games. 2022;10(2):e34402.
  22. Garofano m, del sorbo r, calabrese m, et al. Remote rehabilitation and virtual reality interventions using motion sensors for chronic low back pain: a systematic review of biomechanical, pain, quality of life, and adherence outcomes. Technologies. 2025;13(5):186. Https://doi.org/10.3390/technologies13050186
  23. Tejera dm, beltran-alacreu h, cano-de-la-cuerda r, et al. Effects of virtual reality versus exercise on pain, functional, somatosensory and psychosocial outcomes in patients with non-specific chronic neck pain: a randomized clinical trial. International journal of environmental research and public health. 2020;17(16):5950. Https://doi.org/10.3390/ijerph17165950
  24. Özden f, özkeskin m, tümtürk i, et al. The effect of exercise and education combination via telerehabilitation in patients with chronic neck pain: a randomized controlled trial. International journal of medical informatics. 2023;180:105281. Https://doi.org/10.1016/j.ijmedinf.2023.105281
  25. Afzal mw, ahmad a, hanif hmb, et al. Effects of virtual reality exercises on chronic low back pain: quasi-experimental study. Jmir rehabilitation and assistive technologies. 2023;10:e43985. doi: 10.2196/43985
  26. Lara-palomo ic, antequera-soler e, matarán-peñarrocha ga, et al. Comparison of the effectiveness of an e-health program versus a home rehabilitation program in patients with chronic low back pain: a double blind randomized controlled trial. Digital health. 2022;8:20552076221074482. Https://doi.org/10.1177/20552076221074482
  27. Christiansen S, Cohen Sp. Chronic Pain: Pathophysiology And Mechanisms. In: Singh V, Falco Fj, Kaye Ad, Et Al., Eds. Essentials Of Interventional Techniques In Managing Chronic Pain. Springer, Cham; 2024. Https://Doi.Org/10.1007/978-3-031-46217-7_2
  28. Vergne-Salle P, Bertin P. Chronic Pain And Neuroinflammation. Joint Bone Spine. 2021;88(6):105222. Https://Doi.Org/10.1016/J.Jbspin.2021.105222
  29. Opara Ja, Saulicz E, Szczygieł Jw, Et Al. Is The Central Sensitization In Chronic Nonspecific Low Back Pain Structural Phenomenon Or Psychological Reaction? A Narrative Review. Journal Of Clinical Medicine. 2025;14(2):577. Https://Doi.Org/10.3390/Jcm14020577
  30. Li Xh, Miao Hh, Zhuo M. Nmda Receptor Dependent Long-Term Potentiation In Chronic Pain. Neurochemical Research. 2019;44:531–538. Https://Doi.Org/10.1007/S11064-018-2614-8
  31. Kopach O, Voitenko N. Spinal Ampa Receptors: Amenable Players In Central Sensitization For Chronic Pain Therapy? Channels. 2021;15(1):284-297. Https://Doi.Org/10.1080/19336950.2021.1885836
  32. Palada V, Ahmed As, Finn A, Et Al. Characterization Of Neuroinflammation And Periphery-To-Cns Inflammatory Cross-Talk In Patients With Disc Herniation And Degenerative Disc Disease. Brain, Behavior, And Immunity. 2019;75:60-71. Https://Doi.Org/10.1016/J.Bbi.2018.09.010
  33. Loggia Ml. "Neuroinflammation": Does It Have A Role In Chronic Pain? Evidence From Human Imaging. Pain. 2024;165(11s):S58-S67. doi: 10.1097/J.Pain.0000000000003342
  34. Tao Zy, Wang Px, Wei Sq, Et Al. The Role Of Descending Pain Modulation In Chronic Primary Pain: Potential Application Of Drugs Targeting Serotonergic System. Neural Plasticity. 2019;2019(1):1389296. Https://Doi.Org/10.1155/2019/1389296
  35. Moreira Lpc, Mendoza C, Barone M, Et Al. Reduction In Pain Inhibitory Modulation And Cognitive-Behavioral Changes In Patients With Chronic Low Back Pain: A Case-Control Study. Pain Management Nursing. 2021;22(5):599-604. Https://Doi.Org/10.1016/J.Pmn.2021.05.004
  36. Macías-Toronjo I, Rojas-Ocaña Mj, Sánchez-Ramos Jl, Et Al. Pain Catastrophizing, Kinesiophobia And Fear-Avoidance In Non-Specific Work-Related Low-Back Pain As Predictors Of Sickness Absence. Plos One. 2020;15(12):E0242994. Https://Doi.Org/10.1371/Journal.Pone.0242994
  37. De Lucia A, Perlini C, Chiarotto A, et al. eHealth-integrated psychosocial and physical interventions for chronic pain in older adults: scoping review. Journal of Medical Internet Research. 2024;26:e55366. doi: 10.2196/55366
  38. Eccleston C, Fisher E, Liikkanen S, et al. A prospective, double-blind, pilot, randomized, controlled trial of an "embodied" virtual reality intervention for adults with low back pain. Pain. 2022;163(9):1700-1715. doi: 10.1097/j.pain.0000000000002617
  39. Jaffal SM. Neuroplasticity in chronic pain: insights into diagnosis and treatment. The Korean Journal of Pain. 2025;38(2):89-102. DOI: https://doi.org/10.3344/kjp.24393
  40. Zou J, Hao S. Exercise-induced neuroplasticity: a new perspective on rehabilitation for chronic low back pain. Frontiers in Molecular Neuroscience. 2024;17:1407445. https://doi.org/10.3389/fnmol.2024.1407445
  41. Pratscher S, Mickle AM, Marks JG, et al. Optimizing Chronic Pain Treatment with Enhanced Neuroplastic Responsiveness: A Pilot Randomized Controlled Trial. Nutrients. 2021;13(5):1556. https://doi.org/10.3390/nu13051556
  42. Bazzari AH, Bazzari FH. Advances in targeting central sensitization and brain plasticity in chronic pain. Egyptian Journal of Neurology, Psychiatry and Neurosurgery. 2022;58:38. https://doi.org/10.1186/s41983-022-00472-y
  43. Maggio MG, Bonanno M, Calderone A, et al. Remapping Body Representation Using Virtual Reality in Chronic Neuropathic Pain: Systematic Review. Journal of Medical Internet Research. 2025;27:e71074. doi: 10.2196/71074
  44. Trujillo MS, Alvarez AF, Nguyen L, et al. Embodiment in virtual reality for the treatment of chronic low back pain: a case series. Journal of Pain Research. 2020;13:3131-3137. https://doi.org/10.2147/JPR.S275312
  45. Sakuma S, Kimpara K, Kawai Y, et al. Integrating Physical Therapy and Virtual Reality to Manage Pain-Related Fear of Movement in Patients With Chronic Pain: A Randomized Controlled Trial. Cureus. 2025;17(2). doi: 10.7759/cureus.79551
  46. Hennessy RW, Rumble D, Christian M, et al. A graded exposure, locomotion-enabled virtual reality app during walking and reaching for individuals with chronic low back pain: cohort gaming design. JMIR Serious Games. 2020;8(3):e17799. doi: 10.2196/17799
  47. Peebles AT, Van der Veen S, Stamenkovic A, et al. A virtual reality game suite for graded rehabilitation in patients with low back pain and a high fear of movement: within-subject comparative study. JMIR Serious Games. 2022;10(1):e32027. doi: 10.2196/32027
  48. Simons LE, Hess CW, Choate ES, et al. Virtual Reality–Augmented Physiotherapy for Chronic Pain in Youth: Protocol for a Randomized Controlled Trial Enhanced With a Single-Case Experimental Design. JMIR Research Protocols. 2022;11(12):e40705. doi: 10.2196/40705
  49. Albakri G, Bouaziz R, Alharthi W, et al. Phobia Exposure Therapy Using Virtual and Augmented Reality: A Systematic Review. Applied Sciences. 2022;12(3):1672. https://doi.org/10.3390/app12031672
  50. Albakri G, Bouaziz R, Alharthi W, et al. Phobia Exposure Therapy Using Virtual and Augmented Reality: A Systematic Review. Applied Sciences. 2022;12(3):1672. https://doi.org/10.3390/app12031672
  51. Alsubaie AM, Martinez-Valdes E, De Nunzio AM, et al. Trunk control during repetitive sagittal movements following a real-time tracking task in people with chronic low back pain. Journal of Electromyography and Kinesiology. 2021;57:102533. https://doi.org/10.1016/j.jelekin.2021.102533
  52. Liikkanen S, Mäkinen M, Huttunen T, et al. Body movement as a biomarker for use in chronic pain rehabilitation: an embedded analysis of an RCT of a virtual reality solution for adults with chronic pain. Frontiers in Pain Research. 2022;3:1085791. https://doi.org/10.3389/fpain.2022.1085791
  53. Yao R, Zhang W, Evans R, et al. Inequities in health care services caused by the adoption of digital health technologies: scoping review. Journal of Medical Internet Research. 2022;24(3):e34144. doi: 10.2196/34144
  54. Kugusheva TV, Laskova TS, Paikova VA. Management of telemedicine technologies: strategic priorities and institutional barriers. Gosudarstvennoe i munitsipalnoe upravlenie. Uchenye zapiski. 2025;43. https://doi.org/10.22394/2079-1690-2025-1-1-43-
  55. Beckers R, Kwade Z, Zanca F. The EU medical device regulation: Implications for artificial intelligence-based medical device software in medical physics. Physica Medica. 2021;83:1-8. https://doi.org/10.1016/j.ejmp.2021.02.011
  56. Gerke S, Babic B, Evgeniou T, et al. The need for a system view to regulate artificial intelligence/machine learning-based software as medical device. NPJ Digital Medicine. 2020;3:53. https://doi.org/10.1038/s41746-020-0262-2
  57. Ruzanova VD, Kryukova ES. The principle of confidentiality in the context of modernization of the medical industry: a system-legal approach. Vestnik Tomskogo gosudarstvennogo universiteta. 2024;(507):248-254. doi: 10.17223/15617793/507/28
  58. Voshev DV, Vosheva NA, Shepel RN, et al. Comparative analysis of the use of electronic Internet of Things technologies in the healthcare sector of foreign countries and Russia. Menedzher zdravookhraneniya. 2023;(8):44-53. doi: 10.21045/1811-0185-2023-8-44-53
  59. Sainimnuan S, Preedachitkul R, Petchthai P, et al. Low Prevalence of Adequate eHealth Literacy and Willingness to Use Telemedicine Among Older Adults: Cross-Sectional Study From a Middle-Income Country. Journal of Medical Internet Research. 2025;27:e65380. doi: 10.2196/65380
  60. Shaderkin IA. Barriers to telemedicine and ways to overcome them. Zhurnal telemeditsiny i elektronnogo zdravookhraneniya. 2022;8(2):59-76. https://doi.org/10.29188/2712-9217-2022-8-2-59-76
  61. Manakina ES, Medvedeva OV, Tazina TV. Digital transformation of private healthcare: features of integration. Sovremennye problemy zdravookhraneniya i meditsinskoi statistiki. 2022;(5):632-644. doi: 10.24412/2312-2935-2022-5-632-644
  62. Mittal A. Digital health: data privacy and security with cloud computing. Issues in Information Systems. 2020;21(1):227-238. https://doi.org/10.48009/1_iis_2020_227-238
  63. Alhammad N, Alajlani M, Abd-Alrazaq A, et al. Patients' perspectives on the data confidentiality, privacy, and security of mHealth apps: systematic review. Journal of Medical Internet Research. 2024;26:e50715. doi: 10.2196/50715
  64. Nurgalieva L, O'Callaghan D, Doherty G. Security and privacy of mHealth applications: a scoping review. IEEE Access. 2020;8:104247-104268. https://creativecommons.org/licenses/by/4.0/
  65. Voshev DV. Improvement of primary health care using digital technologies: methodology for developing a "digital maturity" assessment toolkit and evidence-based recommendations. Menedzher zdravookhraneniya. 2024;(10):53-62. doi: 10.21045/1811-0185-2024-10-53-62
  66. Yesina EA, Kalitskaya VV, Rykalina OA, et al. The role of digital technologies in optimizing healthcare costs: challenges and opportunities. Vestnik Akademii znanii. 2024;5(64):182-187.
  67. Grigorieva NS, Demkina AE, Korobeinikova AN. Digitalization of the Russian healthcare system: current barriers to achieving digital maturity. Population and Economics. 2024;8(1):1-14. doi: 10.3897/popecon.8.e111793
  68. Lebedeva DA. Comparative analysis: adequate data protection practices in healthcare in Russia and abroad. RUDN Journal of Law. 2025;29(1):235-254. https://doi.org/10.22363/2313-2337-2025-29-1-235-254
  69. McGraw D, Mandl KD. Privacy protections to encourage use of health-relevant digital data in a learning health system. NPJ Digital Medicine. 2021;4:2. https://doi.org/10.1038/s41746-020-00362-8
  70. Rzhevskaya NV, Lapina MA, Babenko MG. Research on data protection effectiveness in e-healthcare. Legal Informatics. 2024;(3):68-85. doi: 10.24412/1994-1404-2024-3-68-85

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор,



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86505 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80654 от 15.03.2021 г
.