Application of pervaporation and vapor-phase membrane method for concentrating of furfural from aqueous solutions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The relevance of increasing furfural production is supported by the expanding range of its applications. Furfural is produced exclusively through biomass hydrolysis, and rectification—which involves significant capital and operational costs—is currently the predominant method for obtaining commercial-grade furfural. Improving the efficiency of furfural concentration and reducing energy consumption can be achieved through membrane technology. This paper reviews the current state of research on the application of pervaporation and vapor-phase membrane separation, membrane materials, and membranes for furfural concentration. An analysis of published experimental data is presented, including an assessment of the membrane’s contribution to the separation process. It is shown that the furfural/water separation factor during phase transition is approximately 7 for a solution containing 6 wt.% furfural and exhibits weak temperature dependence. For a PDMS (polydimethylsiloxane) membrane, the furfural/water separation factor from 3.9 to 7.5. Using mathematical modeling of the vapor-phase membrane separation of furfural from hydrolysate, the expected process performance was calculated for an available PDMS-based membrane. The advantages of membrane technology over rectification are demonstrated: Production of a vapor stream with a higher organic phase content (35–50 wt.% vs. 27 wt.%). Higher proportion of furfural directed for further purification after decantation (87% of the initial stream vs. 70%).

Texto integral

Acesso é fechado

Sobre autores

A. Kozlova

Topchiev Institute of Petrochemical Synthesis RAS

Autor responsável pela correspondência
Email: a_a_kozlova@ips.ac.ru
Rússia, Leninsky Prospekt, 29, Moscow, 119991

V. Grudkovskaya

Topchiev Institute of Petrochemical Synthesis RAS

Email: a_a_kozlova@ips.ac.ru
Rússia, Leninsky Prospekt, 29, Moscow, 119991

M. Afokin

Topchiev Institute of Petrochemical Synthesis RAS

Email: a_a_kozlova@ips.ac.ru
Rússia, Leninsky Prospekt, 29, Moscow, 119991

M. Shalygin

Topchiev Institute of Petrochemical Synthesis RAS

Email: a_a_kozlova@ips.ac.ru
Rússia, Leninsky Prospekt, 29, Moscow, 119991

Bibliografia

  1. Jorqueira D.S., Lima L.F., Moya S.F., et al. // Applied Catalysis A: General. 2023. V. 119. P. 360.
  2. Mariscal R., Maireles-Torres P., Ojeda M., Sádaba I., Granados M. L. // Energy and environmental science. 2016. V. 9. P. 1144–1189. https://doi.org/10.1039/C5EE02666K
  3. Kabbour M., Luque R. // Biomass, biofuels, biochemicals. 2020. P. 283–297. https://doi.org/10.1016/B978-0-444-64307-0.00010-X
  4. Сушкова В.И. // Химия растительного сырья. 2023. V. 2. P. 27–54. https://doi.org/10.14258/jcprm.20230211880
  5. Zhao S., Zhang Y., Rao Z., Liu H., et al. // Applied Catalysis B: Environment and Energy. 2025. P. 125228. https://doi.org/10.1016/j.apcatb.2025.125228
  6. Sun Y., Wang Z., Liu Y., et al. // Energies. 2019. V. 13. P. 21. https://doi.org/10.3390/en13010021
  7. Tu R., Liang K., Sun Y., Wu Y., et al. // Chinese J. Chemical Engineering. 2023. V. 452. P. 139526.
  8. Mitran G., Nguyen T.L.P., Seo D.K. // Biomass and Bioenergy. 2024. V. 190. P. 107429.
  9. Joshi R., Tiwari M.S. // Catalysis Today. 2025. P. 115276.
  10. Lange J.P., Van Der Heide E., van Buijtenen J., Price R. // ChemSusChem. 2012. V. 5. P. 150–166. https://doi.org/10.1002/cssc.201100648
  11. Lange J. P. // Catalysis Today. 2024. P. 114726. https://doi.org/10.1016/j.cattod.2024.114726
  12. ООО “НПО Завод фурановых соединений”. Официальный сайт. URL: https://npozfs.ru/.
  13. Yong K.J., Wu T.Y., Lee C.B., et al. // Biomass and Bioenergy. 2022. V. 161. P. 106458. https://doi.org/10.1016/j.biombioe.2022.106458
  14. Delbecq F., Wang Y., Muralidhara A., et al. // Frontiers in chemistry. 2018. V. 6. P. 146. https://doi.org/10.3390/coatings11010110
  15. Dutta S., De S., Saha B., Alam M. I. // Catalysis Science Technology. 2012. V. 2. P. 2025–2036. https://doi.org/10.1039/C2CY20235B
  16. Ntimbani R.N., Farzad S., Görgens J.F. // Biomass Conversion and Biorefinery. 2021. V. 12. P. 5257–5267. https://doi.org/10.1007/s13399-021-01313-3
  17. Jaswal A., Singh P.P., Mondal T. // Green Chemistry. 2022. V. 24. P. 510–551. https://doi.org/10.1039/D1GC03278J
  18. Сушкова В.И, Воробьёва Г.И. Безотходная конверсия растительного сырья в биологически активные вещества. Москва. Дели принт. 2008. С. 215.
  19. Чхеда Ж.Н., Ланж Ж.П. Замкнутый способ получения фурфурола из биомасс. Пат. № 2713659 (РФ), 06.02.2020.
  20. Li X., Hu J., Yang T., Yang X., Qu J., Li C.M. // Nano Energy. 2022. V. 92. P. 106714. https://doi.org/10.1016/j.nanoen.2021.106714
  21. Lee C.B.T.L., Wu T.Y. // Renewable and Sustainable Energy Reviews. 2021. V. 137. P. 110172. https://doi.org/10.1016/j.rser.2020.110172
  22. Cai C.M., Zhang T., Kumar R., Wyman C.E. // J. Chem. Tech. Biotech. 2014. V. 89. P. 2–10. https://doi.org/10.1002/jctb.4168
  23. Weingarten R., Tompsett G.A., Conner W.C., Huber G.W. // Journal of Catalysis. 2011. V. 279. P. 174–182. https://doi.org/10.1016/j.jcat.2011.01.013
  24. Dulie N.W., Woldeyes B.V, Demsash H.D., Jabasingh A.S. // Waste and Biomass Valorization. 2021. V. 12. P. 531–552. https://doi.org/10.1007/s12649-020-00946-1
  25. Dubiniak A., Kulikov L., Egazaryants S., Maximov A., Karakhanov E. // Applied Catalysis A: General. 2025. V. 689. P. 120025. https://doi.org/10.1016/j.apcata.2024.120025
  26. Galkin K.I., Ananikov V.P. // ChemSusChem. 2019. V. 12. P. 185–189. https://doi.org/10.1002/cssc.201802126
  27. Edumujeze D., Fournier-Salaün M.C., Leveneur S. // Fuel. 2025. V. 381. P. 133423. https://doi.org/10.1016/j.fuel.2024.133423
  28. Qian X., Jia S., Skogestad S., Yuan X. // Computer Aided Chemical Engineering. 2016. V. 38. P. 409–414. https://doi.org/10.1016/B978-0-444-63428-3.50073-4
  29. Contreras-Zarazúa G., Martin-Martin M., Sánchez-Ramirez E., Segovia-Hernández J.G. // Chemical Engineering and Processing-Process Intensification. 2022. V. 171. P. 108569. https://doi.org/10.1016/j.cep.2021.108569
  30. Nhien L.C., Long N.V.D., Kim S., Lee M. // Biotechnology for Biofuel. 2017. V. 10. P. 81. https://doi.org/10.1186/s13068-017-0767-3
  31. Alonso-Riano P., Illera A.E., Amândio M.S., et al. // Separation and Purification Technology. 2023. V. 309. P. 123008. https://doi.org/10.1016/j.seppur.2022.123008
  32. Zhuang Y., Si Z., Pang S., et al. // Journal of Cleaner Production. 2023. V. 396. P. 136481. https://doi.org/10.1016/j.jclepro.2023.136481
  33. Mohamad N., Reig M., Vecino X., et al. // Journal of Chemical Technology Biotechnology. 2019. V. 94. P. 2899–2907. https://doi.org/10.1002/jctb.6093
  34. Ali A.A., Al-Othman A., Tawalbeh M., et al. // Journal of Environmental Chemical Engineering. 2024. V. 13. P. 114998. https://doi.org/10.1016/j.jece.2024.114998
  35. Pervaporation, DeltaMem AG. Официальный сайт. URL: https://www.deltamem.ch/.
  36. Shalygin M.G., Kozlova A.A., Heider J., et al. // Membranes and Membrane Technologies. 2023. V. 5. P. 55–67. https://doi.org/10.1134/s2517751623010055
  37. Borisov I.L., Golubev G.S., Vasilevsky V.P., et al. // J. Membr. Sci. 2017. V. 523. P. 291–300. https://doi.org/10.1016/j.memsci.2016.10.009
  38. Yakovlev A.V., Shalygin M.G., Matson S.M., et al. // J. Membr. Sci. 2013. V. 434. P. 99–105. https://doi.org/10.1016/j.memsci.2013.01.061
  39. Hu S., Guan Y., Cai D., et al. // Scientific Reports. 2015. V. 5. P. 9428. https://doi.org/10.1038/srep09428
  40. Shalygin M.G., Kozlova A.A., Teplyakov V.V. // Membranes and Membrane Technologies. 2022. V. 4. P. 258–266. https://doi.org/10.1134/S2517751622040084
  41. Borisov I.L., Volkov V.V. // Separation and Purification Technology. 2015. V. 146. P. 3341. https://doi.org/10.1016/j.seppur.2015.03.023
  42. Wang Y., Ban Y., Liu J., et al. // J. Membr. Sci. 2025. V. 722. P. 123864. https://doi.org/10.1016/j.memsci.2025.123864
  43. Vane L.M. // J. Chem. Tech. Biotech. 2019. V. 94. P. 343–365. https://doi.org/10.1002/jctb.5839
  44. Abo B.O., Gao M., Wang Y., et al. // Environ. Sci. Pollut. Res. 2019. V. 26. P. 20164–20182. https://doi.org/10.1007/s11356-019-05437-y
  45. Mao H., Li S.-H., Zhang A.-S., et al. // Separation and Purification Technology. 2021. V. 272. P. 118813. https://doi.org/10.1016/j.seppur.2021.118813
  46. Green D., Southard M.Z. // Perry’s Chemical Engineers Handbook. 2019. P. 2–8.
  47. Tai W.P., Lee H.Y., Lee M.J. // Fluid Phase Equilibria. 2014. V. 384. P. 134–142. https://doi.org/10.1016/j.fluid.2014.10.037
  48. Liu G., Jin W. // J. Membr. Sci. 2021. V. 636. P. 119557. https://doi.org/10.1016/j.memsci.2021.119557
  49. Qin F., Li S., Qin P., Karim M.N., Tan T. // Green Chemistry. 2014. V. 16. P. 1262–1273. https://doi.org/10.1039/C3GC41867G
  50. Grushevenko E.A., Borisov I.L., Volkov A.V. // Pet. Chem. 2021. V. 61. P. 959–976. https://doi.org/10.1134/S0965544121090103
  51. Zheng P., McCarthy T.J. // Langmuir. 2010. V. 26. P. 18585–18590. https://doi.org/10.1021/la104065e
  52. Ahmad A., Li S.H., Zhao Z.P. // J. Membr. Sci. 2021. V. 620. P. 118863. https://doi.org/10.1016/j.memsci.2020.118863
  53. Liu W., Ji S.L., Guo H.X., Gao J., Qin Z.P. // J. Appl. Polym. Sci. 2014. V. 131. https://doi.org/10.1002/app.40004
  54. Baker R.W. Membrane technology and applications. Wiley. 2024. P. 539. https://doi.org/10.1002/9781119686026
  55. Vinh-Thang H., Kaliaguine S. // Chemical reviews. 2013. V. 113. P. 4980–5028. https://doi.org/10.1021/cr3003888
  56. Sandmeier M., Paunović N., Conti R., et. al. // Macromolecules. 2021. V. 54. P. 7830–7839. https://doi.org/10.1021/acs.macromol.1c00856
  57. Li S., Li P., Si Z., Li G., et al. // AIChE J. 2019. V. 65. P. e16710. https://doi.org/10.1002/aic.16710
  58. Sawatdiruk S., Charoensuppanimit P., Faungnawakij K., Klaysom C. // Sep. Pur. Tech. 2021. V. 278. P. 119281. https://doi.org/10.1016/j.seppur.2021.119281
  59. Shan H., Li S., Zhang X., et al. // Sep. Pur. Tech. 2021. V. 258. P. 118006. https://doi.org/10.1016/j.seppur.2020.118006
  60. Xu X., Nikolaeva D., Hartanto Y., Luis P. // Separation and Purification Technology. 2021. V. 278. P. 119233. https://doi.org/10.1016/j.seppur.2021.119233
  61. Ghosh U.K., Pradhan N.C., Adhikari B. // Desalination. 2010. V. 252. P. 1–7. https://doi.org/10.1016/j.desal.2009.11.009
  62. Ghosh U.K., Pradhan N.C., Adhikari B. // Desalination. 2007. V. 208. P. 146–158. https://doi.org/10.1016/j.desal.2006.04.078
  63. Yang Y., Si Z., Cai D., et. al. // Separation and Purification Technology. 2020. V. 235. P. 116144. https://doi.org/10.1016/j.seppur.2019.116144
  64. Wang Y., Xue T., Si Z., et al. // J. Membr. Sci. 2022. V. 653. P. 120515. https://doi.org/10.1016/j.memsci.2022.120515
  65. Liu C., Ding C., Hao X., et. al // Separation and Purification Technology. 2018. V. 207. P. 42–50. https://doi.org/10.1016/j.seppur.2018.06.029
  66. Yang R., Zhang H., Li X., Ye X., Liu L. // ACS Sustainable Chemistry Engineering. 2024. V. 12. P. 12378–12385. https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.4c02672
  67. Шалыгин М.Г., Козлова А.А., Нетрусов А.И., Тепляков В.В. // Мембраны и мембранные технологии. 2016. Т. 6. № 3. C. 313–324. https://doi.org/10.1134/S221811721603010X
  68. Vane L.M. // Separation Science and Technology. 2013. V. 48. P. 429–437.
  69. Teplyakov V.V., Shalygin M.G., Kozlova A.A., et al. // Petroleum Chemistry. 2017. V. 57. P. 747–762. https://doi.org/10.1134/S0965544117090080

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Furfural platform for the production of various types of biofuels [10].

Baixar (186KB)
3. Fig. 2. Schematic representation of mass transfer in pervaporation.

Baixar (153KB)
4. Fig. 3. Schematic representation of mass transfer in the vapor-phase membrane method.

Baixar (121KB)
5. Fig. 4. Phase diagram of furfural/water systems at 60°C (1) and 90°C (2) and butanol/water at 60°C (3), where x is the content of components in the liquid phase, y is in the vapor phase.

Baixar (131KB)
6. Fig. 5. The p-x-y diagram of the furfural/water system at 60°C (1) and 90°C (2), x is the furfural content in the liquid phase, y is in the vapor phase, p is the pressure of the vapor mixture above the solution.

Baixar (120KB)
7. Fig. 6. Available literature data on the properties of membranes in separating a water/furfural mixture in Robson diagram coordinates.

Baixar (133KB)
8. Fig. 7. Scheme of the process of vapor-phase membrane concentration of furfural: VN – vacuum pump, D – decanter, K – condenser, MM – membrane module. The furfural content is given without taking into account the carrier gas, the compositions of the permeate and retentate are indicated for a furfural extraction degree of 50%.

Baixar (75KB)
9. Fig. 8. Dependence of furfural content in permeate (solid line) and retentate (dashed line) on the degree of furfural extraction at permeate pressure of 1 and 10 kPa.

Baixar (95KB)
10. Fig. 9. Dependence of the selection share on the degree of furfural extraction at a permeate pressure of 1 and 10 kPa.

Baixar (88KB)
11. Fig. 10. Dependence of specific permeate productivity on the degree of furfural extraction at permeate pressure of 1 and 10 kPa.

Baixar (86KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025