Spatial reorientation of a solid body using a moving mass in the presence of external forces specified as the functions of time
- Autores: Shmatkov A.M.1
-
Afiliações:
- Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
- Edição: Volume 517, Nº 1 (2024)
- Páginas: 59-64
- Seção: МЕХАНИКА
- URL: https://rjmseer.com/2686-7400/article/view/651776
- DOI: https://doi.org/10.31857/S2686740024040098
- EDN: https://elibrary.ru/JOPINN
- ID: 651776
Citar
Resumo
The spatial motion of a mechanical system consisting of a rigid body and a moving point mass, interacting with each other by means of unspecified internal forces, has been studied. The task is to construct such a trajectory for a point mass, when moving along which a rigid body, under the influence of the force of interaction with this mass, changes its orientation in space according to a known program. It is assumed that there are external forces acting on both objects, specified as functions of time. A system of three first-order ordinary differential equations, resolved with respect to derivatives, is obtained, which allows solving the problem. These relationships can be used to control spacecraft and robotic systems.
Palavras-chave
Sobre autores
A. Shmatkov
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: shmatkov@ipmnet.ru
Rússia, Moscow
Bibliografia
- Xu J., Fang H. Improving performance: recent progress on vibration-driven locomotion systems // Nonlinear Dyn., 2019. V. 98. N 4. P. 2651–2669.
- Liu Y., Chernousko F.L., Terry B.S., Chávez J.P. Special issue on self-propelled robots: from theory to applications // Meccanica. 2023. V. 58. P. 317–319.
- Schmoeckel F., Worn H. Remotely controllable mobile microrobots acting as nano positioners and intelligent tweezers in scanning electron microscopes (SEMs) / Proc. Intern. Conference Robotics and Automation. 2001. IEEE, N.Y. P. 3903–3913.
- Lampert P., Vakebtutu A., Lagrange B., De Lit P., Delchambre A. Design and performances of a one-degree-of-freedom guided nano-actuator // Robot. Comput. Integr. Manuf. 2003. V. 19. N 1/2. P. 89–98.
- Vartholomeos P., Papadopoulos E. Dynamics, design and simulation of a novel micro-robotic platform employing vibration microactuators // J. Dyn. Syst. Meas. Control. 2006. V. 128. N 1. P. 122–133.
- Gradetsky V., Solovtsov V., Kniazkov M., Rizzotto G.G., Amato P. Modular design of electromagnetic mechatronic microrobots / Proc. of 6th Intern. Conference Climbing and Walking Robots (CLAWAR). 2003. Catania, Italy. P. 651–658.
- Черноусько Ф.Л. О движении тела, содержащего подвижную внутреннюю массу // ДАН. 2005. Т. ٤٠٥. № ١. С. 56–60.
- Bolotnik N.N., Figurina T.Yu., Chernousko F.L. Optimal control of the rectilinear motion of a two-body system in a resistive medium // J. Appl. Math. Mech. 2012. V. 76. N 1. P. 1–14.
- Li H., Furuta K., Chernousko F.L. Motion generation of the Capsubot using internal force and static friction / Proc. 45th IEEE Conference on Decision and Control. 2006. San Diego, USA. P. 6575–6580.
- Zimmerman K., Zeidis I., Bolotnik N., Pivovarov M. Dynamics of a two-module vibration-driven system moving along a rough horizontal plane // Multibody Syst. Dyn. 2009. V. 22. N 2. P. 199–219.
- Chernousko F.L. Two-dimensional motions of a body containing internal moving masses // Meccanica. 2016. V. 51, N 12. P. 3203–3209.
- Черноусько Ф.Л. Оптимальное управление движением двухмассовой системы // ДАН. ٢٠١٨. Т. 480. № 5. С. 528–532.
- Шматков А.М. Поворот тела за кратчайшее время перемещением точечной массы // ДАН. 2018. Т. 481. № 5. С. 498–502.
- Bolotnik N., Figurina T. Controllabilty of a two-body crawling system on an inclined plane // Meccanica. 2023. V. 58. P. 321–336.
- Figurina T., Knyazkov D. Periodic regimes of motion of capsule system on rough plane // Meccanica. 2023. V. 58. P. 493–507.
- Chernousko F.L. Controlling the orientation of a solid using the internal mass // J. Appl. Mech. Tech. Phys. 2019. V. 60. N 2. P. 278–283.
- Naumov N.Yu., Chernousko F.L. Reorientation of a rigid body controlled by a movable internal mass // J. Comput. Syst. Sci. Int. 2019. V. 58. N 2. P. 252–259.
- Chernousko F. Reorientation of a rigid body by means of auxiliary masses // Meccanica. 2023. V. 58. P. 387–395.
- Shmatkov A.M. Objects changing the spatial orientation of a solid body by using mobile mass // J. Comput. Syst. Sci. Int. 2020. V. 59. N 4. P. 622–629.
- Белецкий В.В., Яншин А.М. Влияние аэродинамических сил на вращательное движение искусственных спутников. Киев: Наук. думка, 1984. 187 с.
- Shmatkov A.M. Changing the spatial orientation of a rigid body using one moving mass in the presence of external forces // Meccanica. 2023. V. 58. P. 441–450.
- Маркеев А.П. Теоретическая механика. М.: ЧеРо, 1999. 572 с.
- Журавлев В.Ф. Основы теоретической механики. М.: Физматлит, 2008. 304 с.
Arquivos suplementares
