Abstract
For the first time, the maximum synergistic effect of reducing the flammability of epoxy resin according to the oxygen index was established using a non-stoichiometric mixture of melamine and ammonium hydrophosphate. The synergetics of the mixture is due to the formation of heat-resistant ceramic-like structures as a result of thermal degradation of the components. In the present work, the effect of increasing the resistance up to (80 ± 10)% to impulse loads followed by rapid failure (mechanical or rheological explosion) was established for the first time for a polymer composite based on cured epoxy resin with 20% content of phosphorus-nitrogen-containing flame retardants (P,N-antipyrenes) due to the introduction of 0.5–1.5% organobentonite nanoparticles. It is also recorded that the electric current pulses arising from the ultrafast destruction of the “matrix” composite differ in frequency characteristics from the composite with the introduced nanoparticles of organobentonite. For a polymeric composite, one band of radio frequency radiation with a maximum at 2.4 MHz is fixed, and for a composite with introduced organobentonite nanoparticles, bands of radio frequency radiation with maxima at 2.4, 20.9 and 25.3 MHz. A probable mechanism of the observed effect is proposed.