Transition Metal-Free Acetylene Chemistry: Trends and Rates of Development. A Review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Behind the modern snowballing growth of publications devoted to transition metal-catalyzed chemistry of acetylene, the works dealing with acid- and base-promoted acetylene reactions stand in the background, although acid-base catalysis, along with enzymatic one, hold a dominant place in living nature. It was acid-base catalysis that was historically first introduced into human practice, and then into research. Until now, the majority of practically important reactions involving acetylene (these are mainly Favorsky reactions: vinylation of alcohols, ethynylation of carbonyl compounds, prototropic isomerization of alkynes, rearrangement of α-haloketones) represent base-catalyzed processes. Over the last decades, transition metal-free acetylene chemistry was progressing owing to the employment of superbases and superacids for the activation of the triple carbon–carbon bond. In the present paper, using recent publications of the authors (2021), the advances in application of superbase media in the chemistry of alkynes are surveyed. Also, the usage of electron-deficient acetylenes as objects especially sensitive to the action of bases in the search for new preparative reactions with participation of the triple carbon–carbon bond is analyzed. A short period (one year) was chosen in order to clearly illustrate the dynamics and efficiency of research in this area.

Full Text

Restricted Access

About the authors

E. Yu. Schmidt

Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: boris_trofimov@irioch.irk.ru
Russian Federation, Irkutsk

B. A. Trofimov

Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: boris_trofimov@irioch.irk.ru

Academician of the RAS

Russian Federation, Irkutsk

References

  1. Dickstein J.I., Miller S.I. Ch. 19. Nucleophalic attacks on acetylenes. In: The chemistry of the carbon–carbon triple bond. Ch. 19. Patai S. (еd.). Wiley, Chichester, UK, 1978. P. 813–955. https://doi.org/10.1002/9780470771570.ch8
  2. Schmidt E.Yu., Semenova N.V., Ushakov I.A., Vashchenko A.V., Trofimov B.A. // Org. Lett. 2021. V. 23. P. 4743−4748. https://doi.org/10.1021/acs.orglett.1c01460
  3. Absalyamov D.Z., Vitkovskaya N.M., Orel V.B., Schmidt E.Yu., Trofimov B.A. // Asian J. Org. Chem. 2023. V. 12. e202300042. https://doi.org/10.1002/ajoc.202300042
  4. Muñiz K. // J. Am. Chem. Soc. 2007. V. 129. P. 14542–14543. https://doi.org/10.1021/ja075655f
  5. Sridharan V., Ribelles P., Estévez V., Villacampa M., Ramos M.T., Perumal P.T., Menéndez J.C. // Chem. Eur. J. 2012. V. 18. P. 5056–5063. https://doi.org/10.1002/chem.201103562
  6. Jin C.-Y., Wang Y., Liu Y.-Z., Shen C., Xu P.-F. // J. Org. Chem. 2012. V. 77. P. 11307−11312. https://doi.org/10.1021/jo301886j
  7. Feng J.-J., Zhang J. // ACS Catal. 2016. V. 6. P. 6651–6661. https://doi.org/10.1021/acscatal.6b02072
  8. Bhat C., Tilve S.G. // RSC Adv. 2014. V. 4. P. 5405–5452. https://doi.org/10.1002/chin.201416274
  9. Trepos R., Cervin G., Hellio C., Pavia H., Stensen W., Stensvåg K., Svendsen J.-S., Haug T., Svenson J. // J. Nat. Prod. 2014. V. 77. P. 2105–2113. https://doi.org/10.1021/np5005032
  10. Schmidt E.Yu., Semenova N.V., Tatarinova I.V., Ushakov I.A., Vashchenko A.V., Trofimov B.A. // Eur. J. Org. Chem. 2021. V. 2021. P. 2802–2806. https://doi.org/10.1002/ejoc.202100377
  11. Schmidt E.Yu., Trofimov B.A., Zorina N.V., Mikhaleva A.I., Ushakov I.A., Skital’tseva E.V., Kazheva O.N., Alexandrov G.G., Dyachenko O.A. // Eur. J. Org. Chem. 2010. V. 2010. P. 6727–6730. https://doi.org/10.1002/ejoc.201001229
  12. Bidusenko I.A., Schmidt E.Yu., Ushakov I.A., Trofimov B.A. // Eur. J. Org. Chem. 2018. V. 2018. P. 4845–4849. https://doi.org/10.1002/ejoc.201800850
  13. Schmidt E.Yu., Trofimov B.A. // Russ. Chem. Rev. 2024. V. 93. RCR5145. https://doi.org/10.59761/RCR5145
  14. Bidusenko I.A., Schmidt E.Yu., Ushakov I.A., Vashchenko A.V., Trofimov B.A. // Org. Lett. 2021. V. 23. P. 4121−4126. https://doi.org/10.1021/acs.orglett.1c01009
  15. Whittaker R.E., Dermenci A., Dong G. // Synthesis. 2016. V. 48. P. 161–183. https://doi.org/10.1055/s-0035-1560515
  16. Nájera C., Sydnes L.K., Yus M. // Chem. Rev. 2019. V. 119. P. 11110–11244. https://doi.org/10.1021/acs.chemrev.9b00277
  17. Li Y., Yu J., Bi Y., Yan G., Huang D. // Adv. Synth. Catal. 2019. V. 361. P. 4839–4881. https://doi.org/10.1002/adsc.201900611
  18. Wang Z.-Y., Wang K.-K., Chen R., Liu H., Chen K. // Eur. J. Org. Chem. 2020. V. 2020. P. 2456–2474. https://doi.org/10.1002/ejoc.201901921
  19. Worch J.C., Stubbs C.J., Price M.J., Dove A.P. // Chem. Rev. 2021. V. 121. P. 6744–6776. https://doi.org/10.1021/acs.chemrev.0c01076
  20. Trofimov B.A., Schmidt E.Yu., Zorina N.V., Ivanova E.V., Ushakov I.A. // J. Org. Chem. 2012. V. 77. P. 6880−6886. https://doi.org/10.1021/jo301005p
  21. Shabalin D.A., Dvorko M.Yu., Schmidt E.Yu., Trofimov B.A. // Org. Biomol. Chem. 2021. V. 19. P. 2703–2715. https://doi.org/10.1039/d1ob00193k
  22. Fontes L.F.B., da Silva R.N., Silva A.M.S., Guieu S. // ChemPhotoChem. 2020. V. 4. P. 5312–5317. http://dx.doi.org/10.1002/cptc.202000134
  23. Duan L., Chen Y., Jia J., Zong X., Sun Z., Wu Q., Xue S. // ACS Appl. Energy Mater. 2020. V. 3. P. 1672–1683. http://dx.doi.org/10.1021/acsaem.9b02152
  24. Sasaki I. // Synthesis. 2016. V. 48. P.1974–1992. http://dx.doi.org/10.1055/s-0035-1561974
  25. Shrestha A., Park S., Shin S., Kadayat T.M., Bist G., Katila P., Kwon Y., Lee E.-S. // Bioorg. Chem. 2018. V. 79. P. 1–18. https://doi.org/10.1016/j.bioorg.2018.03.033
  26. Baloutaki B.A., Sayahi M.H., Nikpassand M., Kefayati H. // Res. Chem. Intermed. 2020. V. 46. P. 1153–1163. https://link.springer.com/article/10.1007/s11164-019-04025-6
  27. Beauvarlet J., Das R.N., Alvarez-Valadez K., Martins I., Muller A., Darbo E., Richard E., Soubeyran P., Kroemer G., Guillon J., Mergny J.-L., Djavaheri-Mergny M. // Cancers. 2020. V. 12. P. 1621. https://doi.org/10.3390/cancers12061621
  28. Sobenina L.N., Tomilin D.N., Trofimov B.A. // Russ. Chem. Rev. 2014. V. 83. P. 475–501. https://doi.org/10.1070/rc2014v083n06abeh004418
  29. Sobenina L.N., Trofimov B.A. // Molecules. 2020. V. 25. P 2490. https://doi.org/10.3390/molecules25112490
  30. Tomilin D.N., Sobenina L.N., Ushakov I.A., Trofimov B.A. // Synthesis. 2021. V. 53. P. 1137–1148. https://doi.org/10.1055/s-0040-1706474
  31. Trofimov B.A., Belyaeva K.V. // Tetrahedron Lett. 2020. V. 61. P. 151991. https://doi.org/10.1016/j.tetlet.2020.151991
  32. Belyaeva K.V., Nikitina L.P., Afonon A.V., Grichshenko L.A., Trofimov B.A. // J. Org. Chem. 2021. V. 86. P. 3800–3809. https://doi.org/10.1021/acs.joc.0c02644
  33. Tarasova O.A., Tatarinova I.V., Vakul’skaya T.I., Khutsishvili S.S., Smirnov V.I., Klyba L.V., Prozorova G.F., Mikhaleva A.I., Trofimov B.A. // J. Organomet. Chem. 2013. V. 745–746. P. 1–7. https://doi.org/10.1016/j.jorganchem.2013.06.025
  34. Tarasova O.A., Nedolya N.A., Albanov A.I., Bagryanskaya I.Yu., Trofimov B.A. // J. Organomet. Chem. 2021. V. 933. P. 121651. https://doi.org/10.1016/j.jorganchem.2020.121651
  35. Шмидт Е.Ю., Трофимов Б.А. // ДАН. Химия, науки о материалах. 2022. Т. 505. С. 5–24. https://doi.org/10.31857/S268695352270008X
  36. Никитина Л.П., Беляева К.В., Гень В.С., Афонин А.В., Трофимов Б.А. // ДАН. Химия, науки о материалах. 2022. Т. 506. С. 3–7. https://doi.org/10.31857/S2686953522600404
  37. Bidusenko I.A., Schmidt E.Yu., Ushakov I.A., Vashchenko A.V., Protsuk N.I., Orel V.B., Vitkovskaya N.M., Trofimov B.A. // J. Org. Chem. 2022. V. 87. P. 12225–12239. https://doi.org/10.1021/acs.joc.2c01372
  38. Bidusenko I.A., Schmidt E.Yu., Protsuk N.I., Ushakov I.A., Trofimov B.A. // Mendeleev Commun. 2023. V. 33. P. 24–26. https://doi.org/10.1016/j.mencom.2023.01.007
  39. Schmidt E.Yu., Tatarinova I.V., Lobanova N.A., Ushakov I.A., Bagryanskaya I.Yu., Trofimov B.A. // Org. Biomol. Chem. 2023. V. 21. P. 7209–7218. https://doi.org/10.1039/d3ob01311a
  40. Bidusenko I.A., Schmidt E.Yu., Protsuk N.I., Ushakov I.A., Trofimov B.A. // Mendeleev Commun. 2024. V. 34. P. 110–112. https://doi.org/10.1016/j.mencom.2024.01.033
  41. Bidusenko I.A., Schmidt E.Yu., Kozlova D.O., Protsuk N.I., Ushakov I.A., Bagryanskaya I.Yu., Orel V.B., Zubarev A.A., Trofimov B.A. // Org. Lett. 2024. V. 26. P. 4963−4968. https://doi.org/10.1021/acs.orglett.4c01531

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1. Single-reactor synthesis of diaminoketones 1 [2].

Download (103KB)
3. Scheme 2. Putative mechanism for the formation of diaminoketones 1.

Download (102KB)
4. Scheme 3. Cyclisation of diaminoketones 1 into hexahydropyrrolo[3,2-b]indoles 2 [2].

Download (63KB)
5. Scheme 4. Putative mechanism of formation of hexahydropyrrolo[3,2-b]indoles 2.

Download (105KB)
6. Scheme 5. Cyclisation of diaminoketones 1 to pyrrolidines 3 [2].

Download (65KB)
7. Scheme 6. Putative mechanism of formation of pyrrolidines 3.

Download (62KB)
8. Scheme 7. Synthesis of benzylidenpiperidinols [2].

Download (112KB)
9. Scheme 8. Two-step synthesis of N-(arylamino)thieno[3,2-b]pyrroles [10].

Download (143KB)
10. Scheme 9. Putative mechanism for the transformation of 7-methylene-6,8-dioxabicyclo[3.2.1.1]octanes 6 into N-(aryl-amino)thieno[3,2-b]pyrroles 7.

Download (183KB)
11. Scheme 10. Synthesis of 1-pyrrolines and 2H-pyrroles [14].

Download (145KB)
12. Scheme 11. Suggested mechanism of formation of 2,3,5-triaryl-1-pyrrolines and polyarylated 2H-pyrroles [14].

Download (101KB)
13. Scheme 12. One-step synthesis of 2,4,6-triarylpyridines 11 [21].

Download (136KB)
14. Scheme 13. Suggested mechanism of formation of 2,4,6-triarylpyridines 11.

Download (68KB)
15. Scheme 14. Hydroamination of acylethynylpyrroles [30].

Download (73KB)
16. Scheme 15. Synthesis of pyrrolylacylpyridines [30].

Download (85KB)
17. Scheme 16. Suggested mechanism of formation of pyrrolylacylpyridines.

Download (80KB)
18. Scheme 17. Synthesis of E,Z-pyrrolylaminodienediones [30].

Download (70KB)
19. Scheme 18. Synthesis of 3-(acyl)-5-(acyl ethenyl)pyrrolylpyridines [30].

Download (92KB)
20. Scheme 19. Putative mechanism for the formation of 3-(acyl)-5-(acyl ethenyl)pyrrolylpyridines.

Download (90KB)
21. Scheme 20. Double functionalisation of quinolines with cyanoacetylenes [32].

Download (98KB)
22. Scheme 21. Assumed mechanism of double functionalisation of quinolines [32].

Download (227KB)
23. Scheme 22. Synthesis of furo[3,4-b]quinolinones [32].

Download (82KB)
24. Scheme 23. Hydrolysis of 2-acetal-3-cyanoquinolines [32].

Download (92KB)
25. Scheme 24. Synthesis of 2-sulfanyl-3-(ferrocenylmethoxy)-1H-pyrroles and their rearrangement into 2-(ferrocenylmethyl)-1,2-dihydro-3H-pyrrol-3-ones [34].

Download (175KB)

Copyright (c) 2025 Russian Academy of Sciences