Calcium-Ion Binding by Polymeric Alendronate Derivatives

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Water-soluble phosphorus-containing polymers of various structures have been synthesized for the first time: a homopolymer of acryloyl alendronate, its copolymers with 4-acryloylmorpholine and 2-deoxy-2-methacrylamido-D-glucose, and a copolymer of N-vinylpyrrolidone with allyl alendronate. A comparative study of their ability to bind calcium ions has been conducted. It has been shown that for alendronate-containing polymers, the amount of Ca2+ bound by one phosphorus-containing group is 2 to 3 times higher than that of polyvinylphosphonic acid.

Full Text

Restricted Access

About the authors

Т. N. Nekrasova

Konstantinov Saint Petersburg Institute of Nuclear Physics of the Kurchatov Institute

Author for correspondence.
Email: nazaro@hq.macro.ru
Russian Federation, Saint Petersburg

А. I. Fischer

Konstantinov Saint Petersburg Institute of Nuclear Physics of the Kurchatov Institute

Email: nazaro@hq.macro.ru
Russian Federation, Saint Petersburg

O. V. Nazarova

Konstantinov Saint Petersburg Institute of Nuclear Physics of the Kurchatov Institute

Email: nazaro@hq.macro.ru
Russian Federation, Saint Petersburg

E. P. Salikova

Konstantinov Saint Petersburg Institute of Nuclear Physics of the Kurchatov Institute

Email: nazaro@hq.macro.ru
Russian Federation, Saint Petersburg

Yu. I. Zolotova

Konstantinov Saint Petersburg Institute of Nuclear Physics of the Kurchatov Institute

Email: nazaro@hq.macro.ru
Russian Federation, Saint Petersburg

I. I. Gavrilova

Konstantinov Saint Petersburg Institute of Nuclear Physics of the Kurchatov Institute

Email: nazaro@hq.macro.ru
Russian Federation, Saint Petersburg

A. V. Dobrodumov

Konstantinov Saint Petersburg Institute of Nuclear Physics of the Kurchatov Institute

Email: nazaro@hq.macro.ru
Russian Federation, Saint Petersburg

M. A. Bezrukova

Konstantinov Saint Petersburg Institute of Nuclear Physics of the Kurchatov Institute

Email: nazaro@hq.macro.ru
Russian Federation, Saint Petersburg

E. F. Panarin

Konstantinov Saint Petersburg Institute of Nuclear Physics of the Kurchatov Institute

Email: nazaro@hq.macro.ru

Corresponding Member of the RAS

Russian Federation, Saint Petersburg

References

  1. Bassi A., Gough J., Downes S. // J. Tissue Eng. Regen. Med. 2012. V. 6. P. 833–840. https://doi.org/10.1002/term.491
  2. Gemeinhart R.A., Bare C.M., Haasch R.T., Gemeinhart E.J. // J. Biomed. Mater. Res. 2006. V. 78A. P. 433–440. https://doi.org/10.1002/jbm.a.30788
  3. Dey R.E., Zhong X., Youle P.J., Wang Q.G., Wimpenny I., Downes S., Hoyland J.A., Watts D.C., Gough J.E., Budd P.M. // Macromolecules. 2016. V. 49. P. 2656–2662. https://doi.org/10.1021/acs.macromol.5b02594
  4. Xiao Z., Fu D., Zhang L., Fan W., Shen X., Q, X. // J. Orthop. Surg. Res. 2022. V. 17. P. 431. https://doi.org/10.1186/s13018-022-03330-y
  5. Fazil M., Baboota S., Sahn J.K., Ameeduzzafar, Ali J. // Drug Delivery. 2015. V. 22. P. 1–9. https://doi.org/10.3109/10717544.2013.870259
  6. Li A., Xu H., Yu P., Xing J., Ding C., Yan X., Xie J., Li J. // Eur. Polym. J. 2020. V. 141. P. 110091. https://doi.org/10.1016/j.eurpolymj.2020.110091
  7. Orlova N., Nikolajeva I., Pučkins A., Belyakov S., Kirilova E. // Molecules. 2021. V. 26. P. 2570. https://doi.org/10.3390/molecules26092570
  8. Nazarova O., Chesnokova E., Nekrasova T., Zolotova Yu., Dobrodumov A., Vlasova E., Fischer A., Bezrukova M., Panarin E. // Polymers. 2022. V. 14. P. 590. https://doi.org/10.3390/polym14030590
  9. Bingöl B., Meyer W.H., Wagner M., Wegner G. // Macromol. Rapid Commun. 2006. V. 27. P. 1719–1724. https://doi.org/10.1002/marc.200600513
  10. Gindele M.B., Malaszuk K.K., Peter C., Gebauer D. // Langmuir. 2022. V. 38. P. 14409–14421. https://doi.org/10.1021/acs.langmuir.2c01662

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structural formulae of the synthesised (co)polymers.

Download (204KB)
3. Fig. 2. 1H NMR spectrum of the AALK-4-AM copolymer (70°C).

Download (151KB)
4. Fig. 3. Dependence of bound Ca2+ concentration on the concentration of added Ca2+ in the (co)-polymer solution at spol = 1 mg ml-1: poly-AALK (curve 1), AALK-MAG (curve 2), AALK-4-AM (curve 3), and VP-AA (curve 4).

Download (93KB)

Copyright (c) 2025 Russian Academy of Sciences