Novel Catalysts Based on Magnesium, Aluminum, Nickel and Cobalt Hydroxo Salts for the Carbon Dioxide Conversion of Biogenic Alcohols to Hydrogen-Containing Gases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Catalysts based on alumomagnesium hydroxo salts of hydrotalcite type containing nickel and cobalt ions have been used for the first time for carbon dioxide conversion of biogenic alcohols – ethanol and isobutanol – into hydrogen-containing gases (a mixture of hydrogen and carbon monoxide). At the optimum temperatures of 800–900°C, the hydrogen yield in the conversion of ethanol reaches 77–97%, in the conversion of isobutanol – 80–89%.

Full Text

Restricted Access

About the authors

A. G. Dedov

Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences; Gubkin Russian State University of Oil and Gas

Email: al57@rambler.ru

Academician of the RAS

Russian Federation, Moscow; Moscow

A. S. Loktev

Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences; Gubkin Russian State University of Oil and Gas

Author for correspondence.
Email: al57@rambler.ru
Russian Federation, Moscow; Moscow

D. A. Chibrikova

Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences

Email: al57@rambler.ru
Russian Federation, Moscow

References

  1. Liew W.M., Ainirazali N. // Energy Convers. Manage. 2025. V. 326. 119463. https://doi.org/10.1016/j.enconman.2024.119463
  2. Dedov A.G., Karavaev A.A., Loktev A.S., Osipov A.K. // Petrol. Chem. 2021. V. 61. P. 1139–1157. https://doi.org/10.1134/S0965544121110165
  3. Zlotin S.G., Egorova K.S., Ananikov V.P., Akulov A.A., Varaksin M.V., Chupakhin O.N., Charushin V.N., Bryliakov K.P., Averin A.D., Beletskaya I.P., Dolengovski E.L., Budnikova Yu.H., Sinyashin O.G., Gafurov Z.N., Kantyukov A.O., Yakhvarov D.G., Aksenov A.V., Elinson M.N., Nenajdenko V.G., Chibiryaev A.M., Nesterov N.S., Kozlova E.A., Martyanov O.N., Balova I.A., Sorokoumov V.N., Guk D.A., Beloglazkina E.K., Lemenovskii D.A., Chukicheva I.Yu., Frolova L.L., Izmest'ev E.S., Dvornikova I.A., Popov A.V., Kutchin A.V., Borisova D.M., Kalinina A.A., Muzafarov A.M., Kuchurov I.V., Maximov A.L., Zolotukhina A.V. // Russ. Chem. Rev. 2023. V. 92. № 12. RCR5104. https://doi.org/10.59761/RCR5104
  4. Aziz M.A.A., Setiabudi H.D., Teh L.P., Annuar N.H.R., Jalil A.A. // J. Taiwan Inst. Chem. Eng. 2019. V. 101. P. 139–158. https://doi.org/10.1016/j.jtice.2019.04.047
  5. Wang W., Wang Y. // Int. J. Hydrogen Energy. 2009. V. 34. P. 5382–5389. https://doi.org/10.1016/j.ijhydene.2009.04.05
  6. Bej B., Bepari S., Pradhan N.C., Neogi S. // Catal. Today. 2017. V. 291. P. 58–66. https://doi.org/10.1016/j.cattod.2016.12.010
  7. Arapova M., Smal E., Bespalko Yu., Fedorova V., Valeev K., Cherepanova S., Ischenko A., Sadykov V., Simonov M. // Int. J. Hydrogen Energy. 2021. V. 46. P. 39236–39250. https://doi.org/10.1016/j.ijhydene.2021.09.197
  8. Ramkiran A., Vo D.-V.N., Mahmud M.S. // Int. J. Hydrogen Energy. 2021. V. 46. P. 24845–24854. https://doi.org/10.1016/j.ijhydene.2021.03.144
  9. Wang M., Li F., Dong J., Lin X., Liu X., Wang D., Cai W. // J. Environ. Chem. Eng. 2022. V. 10. 107892. https://doi.org/10.1016/j.jece.2022.107892
  10. Zhukova A., Fionov Yu., Semenova S., Khaibullin S., Chuklina S., Maslakov K., Zhukov D., Isaikina O., Mushtakov A., Fionov A. // J. Phys. Chem. C. 2024. V. 128. P. 20177–20194. https://doi.org/10.1021/acs.jpcc.4c07213
  11. Wang M., Li T., Tian Y., Zhang J., Cai W. // Catal. Lett. 2024. V. 154. P. 3829–3838. https://doi.org/10.1007/s10562-024-04607-z
  12. Li F., Wang M., Zhang J., Lin X., Wang D., Cai W. // Appl. Catal. A. 2022. V. 638. 118605. https://doi.org/10.1016/j.apcata.2022.118605
  13. Dhanala V., Maity S.K., Shee D. // RSC Adv. 2015. V. 5. P. 52522–52532. https://doi.org/10.1039/C5RA03558A
  14. Dhanala V., Maity S.K., Shee D. // RSC Adv. 2013. V. 3. P. 24521–24529. https://doi.org/10.1039/C3RA44705G
  15. Lee I.C., Clair J.G.St., Gamson A.S. // Int. J. Hydrogen Energy. 2012. V. 37. P. 1399–1408. https://doi.org/10.1016/j.ijhydene.2011.09.121
  16. Chakrabarti R., Kruger J.S., Hermann R.J., Schmidt L.D. // RSC Adv. 2012. V. 2. P. 2527–2533. https://doi.org/10.1039/C2RA01348G
  17. Dhanala V., Maity S.K., Shee D. // J. Ind. Eng. Chem. 2015. V. 27. P. 153–163. https://doi.org/10.1016/j.jiec.2014.12.029
  18. Kruger J.S., Chakrabarti R., Hermann R.J., Schmidt L.D. // Appl. Catal. A. 2012. V. 411–412. P. 87–94. https://doi.org/10.1016/j.apcata.2011.10.023
  19. Sharma M.V.P., Akyurtlu J.F., Akyurtlu A. // Int. J. Hydrogen Energy. 2015. V. 40. P. 13368–13378. https://doi.org/10.1016/j.ijhydene.2015.07.113
  20. Moiseev I.I., Loktev A.S., Shlyakhtin O.A., Mazo G.N., Dedov A.G. // Petrol. Chem. 2019. V. 59. Suppl. 1. P. S1–S20. https://doi.org/10.1134/S0965544119130115
  21. Dedov A.G., Loktev A.S., Danilov V.P., Krasnobaeva O.N., Nosova T.A., Mukhin I.E., Baranchikov A.E., Yorov Kh.E., Bykov M.A., Moiseev I.I. // Petrol. Chem. 2020. V. 60. P. 194–203. https://doi.org/10.1134/S0965544120020048
  22. Qiu Y., Chen J., Zhang J. // Front. Chem. Eng. China. 2007. V. 1. P. 167–171. https://doi.org/10.1007/s11705-007-0031-7
  23. Krasnobaeva O.N., Belomestnykh I.P., Nosova T.A., Kondakov D.F., Elizarova T.A., Danilov V.P. // Russ. J. Inorg. Chem. 2015. V. 60. № 4. P. 409–414. https://doi.org/10.1134/S0036023615040099
  24. de Vasconcelos B.R., Minh D.P., Lyczko N., Phan T.S., Sharrock P., Nzihou A. // Fuel. 2018. V. 226. P. 195–203. https://doi.org/10.1016/j.fuel.2018.04.017
  25. Yuvasravana R., George P.P., Devanna N. // Inter. J. Innovative Res. Sci. Eng. Technol. 2017. V. 6. P. 11256–11265. https://doi.org/10.15680/IJIRSET.2017.0606208

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffractogram of 1.75Ni0.25CoGT powder.

Download (129KB)
3. Fig. 2. SEM micrograph (a) and distribution mapping of nickel (b) and cobalt (c) in 1.75Ni0.25CoGT powder.

Download (754KB)
4. Fig. 3. Diffractogram of 5NiGT catalyst after use in carbon dioxide conversion of isobutanol at 900°C.

Download (129KB)
5. Fig. 4. PEM micrograph of 5NiGT catalyst after use in carbon dioxide conversion of isobutanol at 900°C.

Download (124KB)
6. Fig. 5. Mass loss curve during heating in air current of 5NiGT catalyst used in carbon dioxide conversion of isobutanol at 900°C.

Download (67KB)

Copyright (c) 2025 Russian Academy of Sciences