Magnetosensitive luminescence of recombination exciplexes of dimethyl and dimethoxy tolan with N,N-dimethylaniline generated by X-irradiation in nonpolar solution

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

On the example of three compounds it is demonstrated that upon X-irradiation in nonpolar solution donor- substituted dimethyl- and dimethoxy-(diphenylacetylenes) form exciplexes with N,N-dimethylaniline via recombination of the respective radical ions with an intense magnetosensitive band of luminescence. Exciplexes of dimethyldiphenylacetylenes have the highest light production of all recombination exciplexes of diphenylacetylenes known so far. The studied compounds and their analogs as a class may be considered as potential blue emitters for organic electroluminescent systems, including magnetosensitive ones.

About the authors

D. V. Stass

V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: stass@kinetics.nsc.ru
630090 Novosibirsk, Russian Federation; 630090 Novosibirsk, Russian Federation

V. N. Verkhovlyuk

HUN-REN Wigner Research Centre for Physics

P.O. Box 49, H-1525 Budapest, Hungary

A. A. Stepanov

V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences

630090 Novosibirsk, Russian Federation

S. F. Vasilevsky

V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences

630090 Novosibirsk, Russian Federation

References

  1. Belloni J., Delcourt M.O., Houee-Levin C., Mostafavi M. // Annu. Rep. Prog. Chem. Sect. C. Phys. Chem. 2000. V. 96. P. 225–295. https://doi.org/10.1039/B001203N
  2. Green N.J.B., Pilling M.J., Pimblott S.M. // Int. J. Radiat. Appl. Instrum. C. Radiat. Phys. Chem. 1989. V. 34. P. 105–114. https://doi.org/10.1016/1359-0197(89)90014-3
  3. Anisimov O.A. Ion pairs in liquids. In: Radical ionic systems: Properties in condensed phases. V. 6. Lund A., Shiotani M. (ed.). Dordrecht, Springer, 1991. P. 285–309. https://doi.org/10.1007/978-94-011-3750-8_10
  4. Shkrob I.A., Sauer M.C., Trifunac A.D. Radiation chemistry of organic liquids: Saturated hydrocarbons. In: Studies in physical and theoretical chemistry. V. 87. Jonah C.D., Madhava Rao B.S. (eds.). Amsterdam, Elsevier, 2001. P. 175–221. https://doi.org/10.1016/S0167-6881(01)80011-2
  5. Braun D. // Mater. Today. 2002. V. 5. № 6. P. 32–39. https://doi.org/10.1016/S1369-7021(02)00637-5
  6. Sirringhaus H. // Adv. Mater. 2014. V. 26. P. 1319–1335. https://doi.org/10.1002/adma.201304346
  7. Chen Y., Liu R., Cai M., Shinar R., Shinar J. // Phys. Rev. B. 2012. V. 86. Art. 235442. https://doi.org/10.1103/PhysRevB.86.235442
  8. Shinar J. // Laser. Photonics. Reviews. 2012. V. 6. P. 767–786. https://doi.org/10.1002/lpor.201100026
  9. Tang C.W., VanSlyke S.A. // Appl. Phys. Lett. 1987. V. 51. P. 913–915. https://doi.org/10.1063/1.98799
  10. Burroughes J.H., Bradley D.D.C., Brown A.R., Marks R.N., MacKay K., Friend R.H., Burns P.L., Holmes A.B. // Nature. 1990. V. 347. № 6293. P. 539–541. https://doi.org/10.1038/347539a0
  11. Reineke S., Walzer K., Leo K. // Phys. Rev. B. 2007. V. 75. Art. 125328. https://doi.org/10.1103/PhysRevB.75.125328
  12. Cocchi M., Kalinowski J., Stagni S., Muzzioli S. // Appl. Phys. Lett. 2009. V. 94. Art. 083306. https://doi.org/10.1063/1.3081491
  13. Uoyama H., Goushi K., Shizu K., Nomura H., Adachi C. // Nature. 2012. V. 492. № 7428. P. 234–238. https://doi.org/10.1038/nature11687
  14. Wong M.Y., Zysman-Colman E. // Adv. Mater. 2017. V. 29. Art. 1605444. https://doi.org/10.1002/adma.201605444
  15. Rishi V., Taka A.A., Hratchian H.P., McCaslin L.M. // J. Phys. Chem. Lett. 2025. V. 16. № 21. P. 5213–5220. https://doi.org/10.1021/acs.jpclett.5c00827
  16. Skuodis E., Tomkeviciene A., Reghu R., Peciulyte L., Ivaniuk K., Volyniuk D., Bezvikonnyi O., Bagdziunas G., Gudeika D., Grazulevicius J.V. // Dyes. Pigment. 2017. V. 139. P. 795–807. https://doi.org/10.1016/j.dyepig.2017.01.016
  17. Sarma M., Chen L.-M., Chen Y.-S., Wong K.-T. // Mater. Sci. Eng. R. 2022. V. 150. Art. 100689. https://doi.org/10.1016/j.mser.2022.100689
  18. Dong B., Yan J., Li G., Xu Y., Zhao B., Chen L., Wang H., Li W. // Org. Electron. 2022. V. 106. Art. 106528. https://doi.org/10.1016/j.orgel.2022.106528
  19. Safonov A.A., Bagaturyants A.A., Sazhnikov V.A. // J. Phys. Chem. A. 2015. V. 119. P. 8182–8187. https://doi.org/10.1021/acs.jpca.5b03519
  20. Krueger R.A., Blanquart G. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 10325–10335. https://doi.org/10.1039/C9CP02027F
  21. do Casal M.T., Cardozo T.M. // Theor. Chem. Acc. 2020. V. 139. Art. 144. https://doi.org/10.1007/s00214-020-02658-0
  22. Ottolenghi M. / /Acc. Chem. Res. 1973. V. 6. P. 153–160. https://doi.org/10.1021/ar50065a002
  23. Birks J.B. // Rep. Prog. Phys. 1975. V. 38. P. 903–974. http://dx.doi.org/10.1088/0034-4885/38/8/001
  24. Kuzmin V.A., Darmanyan A.P., Levin P.P. // Chem. Phys. Lett. 1979. V. 63. P. 509–514. https://doi.org/10.1016/0009-2614(79)80701-0
  25. Armstrong N.R., Wightman R.M., Gross E.M. // Annu. Rev. Phys. Chem. 2001. V. 52. P. 391–422. https://doi.org/10.1146/annurev.physchem.52.1.391
  26. Electrogenerated chemiluminescence. Bard A.J. (ed.). Marcel Dekker, New York, 2004. 552 p.
  27. Ketter J.B., Wightman R.M. // J. Am. Chem. Soc. 2004. V. 126. P. 10183–10189. https://doi.org/10.1021/ja047602t
  28. Мельников А.Р., Кальнеус Е.В., Королев В.В., Дранов И.Г., Стась Д.В. // ДАН. 2013. Т. 452. С. 638–641. https://doi.org/10.1134/S0012501613100084
  29. Melnikov A.R., Kalneus E.V., Korolev V.V., Dranov I.G., Kruppa A.I., Stass D.V. // Photochem. Photobiol. Sci. 2014. V. 13. P. 1169–1179. https://doi.org/10.1039/C3PP50432H
  30. Ferrante C., Kensy U., Dick B. // J. Phys. Chem. 1993. V. 97. P. 13457–13463. https://doi.org/10.1021/j100153a008
  31. Hirata Y., Okada T., Mataga N., Nomoto T. // J. Phys. Chem. 1992. V. 96. P. 6559–6563. https://doi.org/10.1021/j100195a011
  32. Бучаченко А.А., Сагдеев Р.З., Салихов К.М., Магнитные и спиновые эффекты в химических реакциях. Новосибирск: Наука, 1978. 296 с.
  33. Зельдович Я.Б., Бучаченко А.Л., Франкевич Е.Л. // УФН. 1988. Т. 155. С. 3–45. https://doi.org/10.3367/UFNr.0155.198805a.0003
  34. Chakraborty B., Sengupta C., Basu S. // J. Photochem. Photobiol. 2024. V. 21. 100238. https://doi.org/10.1016/j.jpap.2024.100238
  35. Borovkov V., Stass D., Bagryansky V., Molin Y. Study of spin-correlated radical ion pairs in irradiated solutions by optically detected EPR and related techniques. In: Applications of EPR in radiation research. Lund A., Shiotani M. (eds.). Springer, Cham, 2014. https://doi.org/10.1007/978-3-319-09216-4_17
  36. Sonogashira K., Tohda Y., Hagihara N. // Tetrahedron Lett. 1975. V. 16. P. 4467–4470. https://doi.org/10.1016/S0040-4039(00)91094-3
  37. Stephens R.D., Castro C.E. // J. Org. Chem. 1963. V. 28. P. 3313-3315. https://doi.org/10.1021/jo01047a008
  38. Василевский С.Ф., Степанов А.А. // ЖОХ. 2023 Т. 93 Вып. 10, С. 1479-1556. https://doi.org/10.31857/S0044460X23100013
  39. Nikul’shin P.V., Fedunov R.G., Kuibida L.V., Maksimov A.M., Glebov E.M., Stass D.V. // Int. J. Mol. Sci. 2023, V. 24, Art. 7568. https://doi.org/10.3390/ijms24087568
  40. Stass D.V., Vorotnikova N.A., Shestopalov M.A. // J. Appl. Phys. 2021. V. 129. Art. 183102. https://doi.org/10.1063/5.0049769
  41. Verkhovlyuk V.N., Stass D.V., Lukzen N.N., Molin Y.N. // Chem. Phys. Lett. 2005. V. 413. P. 71–77. https://doi.org/10.1016/j.cplett.2005.07.060
  42. Васильев А.В., Руденко А.П. // ЖОрХ. 1997. Т. 33. Вып. 11. С. 1639–1667.
  43. Руденко А. П., Васильев А.В. // ЖОрХ. 1995. Т. 31. Вып. 10. С. 1502–1522.
  44. Melnikov A.R., Davydova M.P., Sherin P.S., Korolev V.V., Stepanov A.A., Kalneus E.V., Benassi E., Vasilevsky S.F., Stass D.V. // J. Phys. Chem. A. 2018. V. 122. P. 1235–1252. https://doi.org/10.1021/acs.jpca.7b11634
  45. Amatatsu Y., Hosokawa M. // J. Phys. Chem. A. 2004. V. 108. P. 10238−10244. https://doi.org/10.1021/jp047308n
  46. Wierzbicka M., Bylinska I., Czaplewski C., Wiczk W. // RSC Adv. 2015, V. 5. P. 29294−29303. https://doi.org/10.1039/C5RA01077B
  47. Koenen J.-M., Zhu X., Pan Z., Feng F., Yang J., Schanze K.S. // ACS Macro. Lett. 2014. V. 3. P. 405–409. https://doi.org/10.1021/mz500067k
  48. Berlman I.B. Handbook of fluorescence spectra of aromatic molecules. New York: Academic Press, 1971. https://doi.org/10.1016/B978-0-12-092656-5.X5001-1
  49. Nikul’shin P.V., Filippova E.A., Fedunov R.G., Kuibida L.V., Glebov E.M., Stass D.V. // High Energy Chem. 2023. V. 57. P. S445–S454. https://doi.org/10.1134/S0018143923090102
  50. Sergey N.V., Verkhovlyuk V.N., Kalneus E.V., Korolev V.V., Melnikov A.R., Burdukov A.B., Stass D.V., Molin Yu.N. // Chem. Phys. Lett. 2012. V. 552. P. 32–37. https://doi.org/10.1016/j.cplett.2012.08.069
  51. Borovkov V.I., Bagryansky V.A., Yeletskikh I.V., Molin Yu.N. // Mol. Phys. 2002. V. 100. P. 1379–1384. https://doi.org/10.1080/00268970110117908
  52. Toriyama K., Nunome K., Iwasaki M. // J. Chem. Phys. 1982. V. 77. P. 5891–5912. https://doi.org/10.1063/1.443863

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences