Interpretation of the transit light curve in the presence of one principal minimum taking into account the eccentricity of the transit (planet) orbit

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using a high-precision algorithm for interpreting transit light curves in a model of a classical eclipsing binary star-exoplanet system, we investigated the possibility of determining the system parameters in the absence of a priori knowledge of the orbital eccentricity. It was shown that it is impossible to determine the exact value of the eccentricity and periastron longitude based on the main minimum of the transit light curve alone. Also, with an observational accuracy of about 1% of the eclipse depth, the uncertainty in the eccentricity and periastron longitude together causes a significant uncertainty in the values of the component radii (an error of 2–3 times relative to the true values) and the orbital inclination angle. However, the ratios of the system component radii and the limb darkening coefficients are determined with good accuracy. With an increase in the observational accuracy to 0.1% of the eclipse depth, it becomes possible to determine the component radii and the orbital inclination angle when interpreting the light curve taking into account the eccentricity.

Full Text

Restricted Access

About the authors

M. K. Abubekerov

Lomonosov Moscow State University, Sternberg Astronomical Institute

Author for correspondence.
Email: marat@sai.msu.ru
Russian Federation, Moscow

N. Yu. Gostev

Lomonosov Moscow State University, Sternberg Astronomical Institute

Email: ngostev@mail.ru
Russian Federation, Moscow

References

  1. Д. Я. Мартынов, Затменные переменные звезды, под ред. В. П. Цесевича (М.: Наука, 1971).
  2. М. К. Абубекеров, Н. Ю. Гостев, А. М. Черепащук, Астрон. журн. 85(2), 121 (2008).
  3. М. К. Абубекеров, Н. Ю. Гостев, А. М. Черепащук, Астрон. журн. 86(8), 778 (2009).
  4. М. К. Абубекеров, Н. Ю. Гостев, А. М. Черепащук, Астрон. журн. 87(12), 1199 (2010).
  5. M. K. Abubekerov and N. Yu. Gostev, Monthly Not. Roy. Astron. Soc. 432(3), 2216 (2013).
  6. M. K. Abubekerov and N. Yu. Gostev, Astron. and Astrophys. 633, id. A96 (2020).
  7. M. K. Abubekerov and N. Yu. Gostev, Monthly Not. Roy. Astron. Soc. 459(2), 2078 (2016).
  8. Н. Ю. Гостев, Астрон. журн. 88, 704 (2011).
  9. T. M. Brown, D. Charbonneau, R. L. Gilliland, R. W. Noyes, and A. Burrows, 552(2), 699 (2001).
  10. D. G. Koch, W. J. Borucki, J. F. Rowe, N. M. Batalha, et al., 713(2), L131 (2010).
  11. E. W. Dunham, W. J. Borucki, D. G. Koch, N. M. Batalha, et al., 713(2), L136 (2010).
  12. D. W. Latham, W. J. Borucki, D. G. Koch, T. M. Brown, et al., Astrophys.J. 713(2), L140 (2010).
  13. J. Southworth, P. J. Wheatley, and G. Sams, Monthly Not. Roy. Astron. Soc. 379(1), L11 (2007).
  14. Е. В. Бекесов, М. К. Абубекеров, Н. Ю. Гостев, А. М. Черепащук, Астрон. журн. 100(11), 964 (2023).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the residual χ2, minimized in all other parameters, on e in the linear limb-darkening law. A synthetic light curve with central values ​​e = 0.1, ω = 120, and observational accuracy of 10–4 was used.

Download (64KB)
3. Fig. 2. Dependence on e of the residual χ2, minimized in all other parameters, in the linear limb-darkening law. A synthetic light curve with central values ​​e = 0.1, ω = 120, and observational accuracy of 10–5 was used.

Download (56KB)

Copyright (c) 2024 The Russian Academy of Sciences