Interpretation of the transit light curve in the presence of one principal minimum taking into account the eccentricity of the transit (planet) orbit

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using a high-precision algorithm for interpreting transit light curves in a model of a classical eclipsing binary star-exoplanet system, we investigated the possibility of determining the system parameters in the absence of a priori knowledge of the orbital eccentricity. It was shown that it is impossible to determine the exact value of the eccentricity and periastron longitude based on the main minimum of the transit light curve alone. Also, with an observational accuracy of about 1% of the eclipse depth, the uncertainty in the eccentricity and periastron longitude together causes a significant uncertainty in the values of the component radii (an error of 2–3 times relative to the true values) and the orbital inclination angle. However, the ratios of the system component radii and the limb darkening coefficients are determined with good accuracy. With an increase in the observational accuracy to 0.1% of the eclipse depth, it becomes possible to determine the component radii and the orbital inclination angle when interpreting the light curve taking into account the eccentricity.

Texto integral

Acesso é fechado

Sobre autores

M. Abubekerov

Lomonosov Moscow State University, Sternberg Astronomical Institute

Autor responsável pela correspondência
Email: marat@sai.msu.ru
Rússia, Moscow

N. Gostev

Lomonosov Moscow State University, Sternberg Astronomical Institute

Email: ngostev@mail.ru
Rússia, Moscow

Bibliografia

  1. Д. Я. Мартынов, Затменные переменные звезды, под ред. В. П. Цесевича (М.: Наука, 1971).
  2. М. К. Абубекеров, Н. Ю. Гостев, А. М. Черепащук, Астрон. журн. 85(2), 121 (2008).
  3. М. К. Абубекеров, Н. Ю. Гостев, А. М. Черепащук, Астрон. журн. 86(8), 778 (2009).
  4. М. К. Абубекеров, Н. Ю. Гостев, А. М. Черепащук, Астрон. журн. 87(12), 1199 (2010).
  5. M. K. Abubekerov and N. Yu. Gostev, Monthly Not. Roy. Astron. Soc. 432(3), 2216 (2013).
  6. M. K. Abubekerov and N. Yu. Gostev, Astron. and Astrophys. 633, id. A96 (2020).
  7. M. K. Abubekerov and N. Yu. Gostev, Monthly Not. Roy. Astron. Soc. 459(2), 2078 (2016).
  8. Н. Ю. Гостев, Астрон. журн. 88, 704 (2011).
  9. T. M. Brown, D. Charbonneau, R. L. Gilliland, R. W. Noyes, and A. Burrows, 552(2), 699 (2001).
  10. D. G. Koch, W. J. Borucki, J. F. Rowe, N. M. Batalha, et al., 713(2), L131 (2010).
  11. E. W. Dunham, W. J. Borucki, D. G. Koch, N. M. Batalha, et al., 713(2), L136 (2010).
  12. D. W. Latham, W. J. Borucki, D. G. Koch, T. M. Brown, et al., Astrophys.J. 713(2), L140 (2010).
  13. J. Southworth, P. J. Wheatley, and G. Sams, Monthly Not. Roy. Astron. Soc. 379(1), L11 (2007).
  14. Е. В. Бекесов, М. К. Абубекеров, Н. Ю. Гостев, А. М. Черепащук, Астрон. журн. 100(11), 964 (2023).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Dependence of the residual χ2, minimized in all other parameters, on e in the linear limb-darkening law. A synthetic light curve with central values ​​e = 0.1, ω = 120, and observational accuracy of 10–4 was used.

Baixar (64KB)
3. Fig. 2. Dependence on e of the residual χ2, minimized in all other parameters, in the linear limb-darkening law. A synthetic light curve with central values ​​e = 0.1, ω = 120, and observational accuracy of 10–5 was used.

Baixar (56KB)

Declaração de direitos autorais © The Russian Academy of Sciences, 2024